用户名: 密码: 验证码:
一个水稻多柱头突变体的形态特征和遗传定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花发育是显花植物生殖生长期最明显的特征,花器官的形成程序则是植物的最重要、最复杂的遗传过程之一。水稻是世界上最重要的粮食作物之一,其产量和品质的形成受到花器官发育的直接影响,研究其基因调控机制将有助于水稻分子育种的发展:同时,水稻是单子叶的模式植物,其花发育机制直接反映单子叶植物花发育的基本原理。但是,对其的研究远远落后于双子叶植物。近年来,随着水稻基因组计划的实施和基因组全序列的公布,有关水稻花发育基因调控的研究已取得了长足的进展,通过突变体分析和同源基因比较研究,获得了一系列与水稻花发育相关的基因,水稻花发育的研究已开始成为植物分子遗传学的一个新的热点。
     我们从水稻保持系C2与2480B的杂交后代中发现一个花器官突变体,本实验通过花器官解剖结构观察、扫描电镜观察和雌雄育性分析等对突变体的表型特征进行了鉴定;同时构建了遗传分离群体,分析了突变性状的遗传特性。在此基础上,对突变基因进行了初步的分子标记定位。主要结果如下:
     1突变体水稻与野生型水稻相比,大部分植株较矮,穗型较小,分蘖较少,叶片卷曲,剑叶近轴处打结,谷粒比野生型小,颖壳变窄,弯曲呈弯月形,部分突变体内外颖壳不闭合,并且花期明显晚于野生型水稻。突变体颖花浆片正常,柱头增加,雌蕊增加,雄蕊数目减少。解剖镜观察结果表明,58%的小花表现为多柱头,29%具有雄蕊雌蕊化现象,25%表现为双子房,75%雄蕊花药呈现畸形。
     2扫描电镜观察发现,突变体与野生型材料在颖花原基分化初期,两者并没有明显差异。到雄蕊原基形成时期,突变体与野生型则表现明显不同。野生型对照进入雌雄蕊分化期,颖花原基会进行均衡分裂,最终形成6枚均等的雄蕊以同心圆方式排列在雌蕊周围。而突变体进入雌、雄蕊原基的分化较迟,外稃与内稃相交处的2枚雄蕊分化较早,并向外稃和内稃相交的两侧挤压,呈现椭圆形方式排列,同时,颖花原基进行不均等分裂,随后产生数目不等的雄蕊原基,呈非同心圆方式排列。
     3连续多代的杂合株系突变性状的分离分析表明,正常株与突变株均符合3:1的分离比例。同时,以突变体为母本与9311、G630、T116杂交,衍生3个F_1组合及相应F_2分离群体。调查显示,所有F_1均表现正常,F_2群体发生突变性状的分离,3个F_2正常株与突变株比例均符合3:1的分离比例,证实该突变性状受一对隐性基因控制。
     4利用水稻的512对SSR引物分析突变体和T116,筛选两个亲本间具有多态性差异的引物。差异标记分别在由亲本、4个可育株、6个不育株构成的小群体中进行初步的连锁分析,发现位于第6染色体上的SSR标记RM162、RM6838、RM3183和RM3827皆与突变性状存在连锁关系,然后用这4个标记对F_2所有的隐性单株(92株)进行扫描,证明这4个标记与突变性状表现连锁,而且RM162、RM6838和RM3183位于基因同一侧,其遗传距离分别为10.9 CM,5.4CM和2.2CM,RM3827位于基因另一侧,其遗传距离为12.0cM。
     5根据花器官的ABC模型,突变体性状主要属于第3、4轮花器官的变化。我们推测第4轮的双子房、多柱头现象源于第3轮雄蕊部分同源异型转化为雌蕊,可能为维持B功能基因的活性部分丧失造成;同时突变体还伴随有胚囊、胚珠变异,不排除还有D组基因参与的可能。
The development of flower are the most obvious characteristics of flowering plants at growth stage, the process of floral organ is one of the important genetic characteristics. Rice is one of the most important food crops in the world, rice production and quality depend on the development of the floral organ. Study the mechanism of genic regulation will contribute to the development of molecular breeding of rice. As a gramineal model plant and a delegate of monocotyledon, genetic and molecular mechanism underlying the regulation of the rice floral organ development had become a hot spot of plant developmental biology. At present, most genes were isolated by screening the cDNA or DNA library with the probes homologous to sequences of dicot plants, and their functions were identified by the morphology of floral organs in transgenic plant. But the method limited greatly the understanding of the regulation on floral development. The mutant of rice floral organ was important for gene cloning and the studies on gene expression and its function. Research on rice reproductive mechanism has significant theory worthiness. With molecular biology techniques of rapid development, floral organ mutants are increasingly being identified by the cloning of new genes on the increase in the quantity and gene regulation function of depth have been cloned, it may eventually change the rice flower development through means of genetic engineering, and achieve high yield and quality purposes.
     A rice floral mutant was isolated from the progenies of the combination of C2/Mianxiang2480B.Floral malformed structures and its morphogenesis were identified by anatomical microscopy, paraffin slics, scanning electron microscopy and genetic analysis of mutant traits, furthermore, related genes were preliminary molecular mapped. Main results were as below:
     1. Compared with wild type, the mutant showed dwarf plant-height, small panicle, the flag leaf curled and tied at the adaxial part, smaller grain, somne narrow and crescent Chaffs are not closed, and flowering time significantly later than wild-type rice. Most of florets were made up of normal lodicule, increased stigma, more pistils, fewer stamens. Anatomy microscope results showed that 58% of them are many stigma, 29% of them are displayed stamen—origin pistils , 25% of them are the twin ovarys, 75% of them are abnormal anthers.
     2. The wild type and mutant were not different significantly at the beginning of floral primordium differentiation by SEM. But their appearance were obviously different at the beginning of stamen primordium. Wild-type into the pistil and stamen differentiation stage, spikelet primordium will conduct a balanced split, eventually to form six equal stamens arranged a Concentric circles around the pistil. In mutant type florets, the stamen development was at the different stage. Two stamen primordiums at the cross of lemma and palea developed firstly, and outward on both sides of the intersection to extrusion, showing the way with oval. At the same time, spikelet primordium is unequal division, ranging the number of stamen primordiums, showing non-concentric circles.
     3. Three F_2 groups separately plant, the segregation ratio of wild type plants to mutant plants in the population was accorded with 3:1. It indicated that the mutant was controlled by a single recessive gene.
     4. Polymorphisms between mutant and T116, with 512 pairs of SSR primers. The polymorphic markers were subsequently used to survey in a small population including the 2 parents, 4 wild type F_2 plants and 6 mutant F_2 plants. Results showed that 4 SSR markers RM162, RM6838, RM3183 and RM3827, located on chromosome 6, were obviously associated to the mutant phenotype. Those 4 markers were then utilized to survey all 92 mutant plants which come from the mutant×T116 in the same F_2 population. Thus, RM162、RM6838 and RM3183 were verified to be linked to mutant gene on one side, with genetic distances of 10.9CM、5.4CM and 2.2 CM, respectively, and another marker RM3827 were verified to be linked to mutant gene on the other side, with genetic distances of 12.0 CM, respectively.
     5. According to the ABC model of floral organ, the traits were changed in the third and forth whorls of the mutant type florets. We deduced that the phenomenon of twin-ovary and more stigmas in the forth whorls were from partly homeotic conversion of stamens into pistils. It was very similar to the phenotype for loss of B functional genes in Arabidopsis. Simultaneously, the mutant had malformation embryo sac and two ovules in the same ovary, which implied that D functional genes were included.
引文
[1]刘坚,郭龙彪,钱前.水稻花器官发育基因的研究进展.中国稻米,2007,3:8-9.
    [2]Parkinson C L,Adams K L,Palmer J D.Multigene analyses identify the three earliest lineages of extant flowering plants.CurrBiol,1999,9(24):1485-1488.
    [3]高晶涵,李清昀.控制植物花器官发育的分子机理.生物学通报,2008,43(2):19-21.
    [4]COEN E S,MEYEROWITZ E M.The war of the whorls:genetic intera ctions controll ingflower development[J].Nature,1991,353(6339):31-37.
    [5]许智宏.植物发育与生殖的研究:进展和展望[J].植物学报,1999,41(9):909-930.
    [6]THEISSEN G,SAEDLER H.Floral quartets[J]Nature,2001,409(6819):469-471.
    [7]Finding M.Grasses as a Single Genetic System.Resssessment 2001,Plant Physiol,125:1191-1197.
    [8]Kempin SA,Savidge B and Yanoky MF.Molecular basis of the cauliflower phenotype in Arabidopsis.Science,1995,267(5197):522-525.
    [9]Gnter Theissen.Development of floral Organ idemity:stories from the MADS house.Current Opinion in Plant Biology.2001.4:75-85.
    [10]张云,刘青林.植物花发育的分子机理研究进展.植物学通报,2003:20(5):589-601.
    [11]丛楠,程治军,万建民.控制花器官发育的ABCDE模型[J].农业生物技术科学,2007,7(23):124-128.
    [12]刘晓玲.植物花发育模型的研究进展.现代农业科技,2008,22.
    [13]Mandel M A,Gustafson-Brown C,Savidge B.et al.Molecular characterization of the Arabidopsis floral homeotic gene APETALA1.Nature,1992,360(6401):273-277.
    [14]Jofuku KD,denBoer BG,Montagu MV,et al.Control of Arabidopsis flower and seed development by the homeotic gene APETALA2.Plant Cell,1994,6:1211-1225.
    [15]Jack T,BrocktnanL I,Meyetowitz E M.The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens.Cell,1992,68:683-697.
    [16]Goto K,Meyerowitz E M.Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA.Genes Dev,1994,8:1548-1560.
    [17]Yanofsky M F,Ma H,Bowman J L,et al.The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature, 1990, 346:35-39.
    [18]Huijser P, Klein J, Loenning W E, et al. Bracteomania, an inflorescence Anomaly, is caused the loss of function of the MARS-box gene squamosa in Antirrhiaum majus.EMBOJ.1992,11:1239-1249.
    [19]Sommer H, Beltran P, Huijser H, et al . Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhiaum majus: the protein shows homobgy to transcription factors. EMBO J ,1990,9: 605-613.
    [20]Trobner W, Ramirez L, Motte P, et al. GLOBOSA:a homeotic gene which interacts DEFICIENS in the control of Antirrhiaum floral organ ogenesis.EMBOJ,1992,11:4693-4704.
    [21]Bradley D, Carpenter R, Sommer H ,et al .Complementary floral homeotic phenotypes result from opposite orieritadons of a transport at the plenalocus of Antirrhinum.Cell,1993,72:85-95.
    [22]ANGENENT G C,FRANKEN J,BUSSCHER M, et al. Anovel class of MADS—box genes is involved in ovule development in petunia[J]. Plant Cell, 1995, 7(10): 1569-1582.
    [23]COLOMBO L,FRANKEN J,KOETJE E, at al. The Petunia MADSbox gene FBP11 determine Sovuleidentity[J]. PlantCell,1995(7): 1859—1868.
    [24]Theissen G, Becker A, Di Rosa Aet al. Ashort history of MADS-box genes in Plants. Plant Mol Biol,2000,42(1):115—149.
    [25]Pinyopich A, Ditta GS, SavidgeB, et al. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature,2003, 424(6944):85-88.
    [26]Favaro R, Pinyopich A, Battaglia R, et al. MADS-box protein complexes Control carpel and ovule development in Arabidopsis.Plant Cell,2003,15(11):2603-2611.
    [27]Battaglla R, Brambilla V, Colombo L et al. Functional analysis of MADS-box genes controlling ovule development in Arabidopsis using the ethanol-inducible alc gene-expression system. Mechanisms of Development,2006,123(4):267-276.
    [28JBecker A, Kaufmann K, Freialdenhoven A, et al. A novel MADS-box gene subfamily with a sister-group relationship to class B floral homcotic genes. Mol Genet and Genomics,2002,266(6):942-950.
    [29]Tonaco lA,Borst JW,de Vries SC,et al.In vivo imang of MADS-box transcription factor interactions.Journal of Experimental Botany,2006,57(1):33-42.
    [30]de Foher S,Shchennikova AV,Franken J,et al.A Bsister MADS-box gene involved in ovule and seed development in petunia and Arabidopsis.The Plant Journal.2006,47(6):934-946.
    [31]PELAZ S,DITTA G S,BAUMANN E,et al.B and C floral organ identity functions require SEPALLATA MADS-box genes[J].Nature,2000,405(6783):200-203.
    [32]DITTA G,PINYOPICH A,ROBLES P,et al.The SEP4 gene of Arabidopsis thaliana functions in floralorgan and meristem identity[J].Curr Biol,2004,14(21):1935-1940.
    [33]AGRAWAL K G,ABE K,YAMAZAKI M,et al.Conservation of the E-funcdon for floral organ identity in rice revealed by the analyfis of tissue culture-induced loss of unction mutants of the OsMADS1 gene[J].Plant Mol Biol,2005,59(1):125-135.
    [34]KYOZUKA J,KOBAYASHI T,MORITA M,et al.Spatially and tern-porally regulated expression of rice MADS-box genes with similarity to Arabidopsis class A,B and C genes[J].Plant Cell Physiol,2000,41(6):710-718.
    [35]张剑,徐桂霞,薛皓月,等.植物进化发育生物学的形成与研究进展[J].植物学通报,2007,24(1):1-30.
    [36]Pelaz S,Gustafson-Brown C,Kohalmi SE,et al.APETALA1 and SEPALLATA3interact to promote fower development.The Plant Journal,2001,26:385-394.
    [37]Immink RG,Ferrario S,Busscher-Lange J,et al.Analysis of the petunia MADS-box transcription factor family.Mol Genet Genomics,2003,268(5):598-606.
    [38]Ferrario S,Immink RG,Shchennikova A,et al.The MADS box gene FBP2 is required for SEPALLATA function in petunia.Plant Cell,2003,15(4):914-925.
    [39]Fan HY,Hu Y,Tudor M,et al.Specific interactions between the K domains of AG and AGLs,members of the MADS domain family of DNA binding proteins.The Plant Journal,1997,12(5):999-1010.
    [40]THEISSEN G,SAEDLER H.Floral quartets[J].Nature,2001,409(6819):469-471.
    [41]Castillejo C,Romera-Branchat M and Pelaz S.A new role of the Arabidopsis SEPALLATA3 gene revealed by its constitutive expression.The Plant Journal,2005,43(4):586-596.
    [42]Sablowski RW and Meyerowitz EM.A homolog of NO APICAL MERISTEM is an immediate target of the floral homcotic genes APETALA3 / PISTILLATA.Cell,1998,92(4):93-103.
    [43]Ito T,Wellmer F,Yu H,et al.The homcotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS.Nature,2004,430(6997):356-360.
    [44]Goff SA,Ricke D,Lan TH et al.A Draft Sequence of the Rice Genome(Oryza sativa L.ssp.japonica).Science,2002,296:92-100.
    [45]Gale MD,Devoe KM.Plant Comparative Genetics after 10 Years.Science,1998,282:656-659.
    [46]Chandler VL,Wessler S.Grasses.a collective model genetic system.Plant Physiol,2001,125(3):1155-6.
    [47]王彬,吴先军,谢兆辉等.花器官发育的ABC模型研究进展.农业生物技术科学,2003,10(5):78-82.
    [48]KANG H-G,Jeon J-S,Lee S,et al.Identification of class B and class C floral organ identity genes from rice plants.Plant Mol Biol,1998,38:1021-1029.
    [49]Shinozuha Y,Kojlma S,Shomura A,et al.Isolation and characterion of rice MADS-box gene homolog ues and their RFLP mapping.DNA Res,1999,6:123-129.
    [50]Chung Y Y,Kim S R,Noh Y S,et al.Characterization of two rice MADS-box genes homologous to GLOBOSA.Plant Sci,1995,109(1):45-56.
    [51]Xiao H,Wang Y,Liu D F,et al.Functional analysis of the AP3 homologue OsMADS16by RNA interference.Plant Mol Biol,2003,52:957-966.
    [52]Kang H G,Noh YS,Chung YY,et al.Phentypic alterations of petals and sepals by ectopic expression of a rice MADS-box gene in tobacco.Plant Mol Biol,1995,29:1-10.
    [53]Kyomka J,Shimamoto K.Ectopic expression of OsMADS3,a rice ortholog of AGAMOUS,caused a homeotic transformation of lodicules to stamens in tranagenic rice plants.Plants cell Physio,2002,43(1):130-135.
    [54]Favaro R,Immink R.G,Ferioli V,et al.Ovule-specific MADS-box proteins have conserved protein-protein interactions in monocot and dicot plants.Molecular genetics and genomics,2002,268(2):152-159.
    [55]Greco F,Stagi L,Colombo L,et al..MADS-box genes expressed in developing inflorescences of rice and sorghum.Mol Gen Genet,1997,15(3):615-623.
    [56]Malcomber S T,E A.Kellogg.Heterogeneous expression patterns and separate roles of the SEPALLATA-like gene LEAFY HMLL STERILE1(LHS1) in grasses(Poaceae).Plant Cell,2004,16(7):1692-1706.
    [57]白素兰,刘永胜,孙敬等.水稻颖花开裂SRS突变体的鉴定.2000,42(2):122-125.
    [58]Luo Q,Zhou K D,Zhao X F,et al.Identification and fine mapping of a mutant gene for palealess spikelet in rice.Planta,2005,221:222-230.
    [59]Nagasawa N,Miyoshi M,Sano Y,et al.SUPERWOMAN1 and DROOPING LEA F genes control floral organ identity in rice.Development,2003,130:705-718.
    [60]Mackill,D.J.,Pinson,S.R.M.,Rutger,J.N.,Frizzy panicle,An EMS-induced mutant in Japonica cultivar M-201.Rice Genetics Newsletter,1991,9:100-102.
    [61]Joann Conner,Zhongchi Liu.LEUNIG,a putative transcriptional corepressor that regulates AGAMOUS expression during flower development.Plant Biology,2000,10(97):12902-12907.
    [62]Nagasawa N,Miyoshi M,Nagato Y.DL regulates both leaf and pistil development in rice.RGN,1996,13:102-105.
    [63]Malcomber S T,E A.Kellogg.Heterogeneous expression patterns and separate roles of the SEPALLATA-like gene LEAFY HMLL STERILE1(LHS1) in grasses(Poaceae).Plant Cell,2004.16(7):1692-1706.
    [64]罗琼,周开达.一个新的水稻叶片和雌蕊发育异常突变体的遗传分析及其基因的分子标记定位.科学通报,2001,46(5):1277-1280.
    [65]Lim,J,Moon,YH,An,G,Jang,SK.Two rice MADS domain proteins interact with OsMADS1.Plant Mol Biol,2000,44:513-527.
    [66]Clark S E,Running M P,Meyerowitz E M.CLAVATA 1,a regulator of meristem and flower development in Arabidopsis.Development,1993(119):397-418.
    [67]Clark S E,Running M P,Meyerowitz E M.CLAVATA 3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1.Development,1995,121:2057-2067.
    [68]姜丽,钱前,毛龙.一个水稻花器官突变体fon3的特征鉴定.植物学报.2005,47(1):100-106.
    [69]Feng M,Fu DZ,Liang HX,et al.Floral morphogenesis of Aquilegia L.(Ranunculaceae).Acta Bot Sin,1995,37:791-794.
    [70]Mizukami Y,Ma H.Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity.Cell,1992,71:119-131.
    [71]罗琼,朱立煌.水稻花发育的分子生物学研究进展.遗传(Beijing),2002,24(1):87-93.
    [72]李云峰,罗洪发,杨正林,钟秉强,何光华.水稻雄蕊雌蕊化突变体的遗传分析.中国水稻科学(Chinese J Rice Sci).2004,18(6):499-502.
    [73]Michelmore,R.W.,I.Paran,R.V.Kesseli.Identification of markers linked to disease resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions using segregating populations.Proc.Natl.Acad.Sci,1991,88:9828-9832.
    [74]李云.水稻花器官突变体和的形态发生、遗传分析及相关基因的分子标记定位.四川农业大学水稻研究所博士论文,2006.
    [75]华志明.水稻分子发育研究的若干进展.中国水稻科学,2000,14(4):256-260.
    [76]李爱宏,武茹,张亚芳,汤雯,吴昌银,潘学彪.一个水稻多重颖壳突变体的形态学观察及初步遗传分析.中国水稻科学(Chinese J Rice Sci),2006,20(4):348-354.
    [77]Lawton-Rauh A L,Alvarez:Buylla E R,Pumgganan M D.Molecular evolution of flower development.Trends in Ecology and Evolution,2000,15(4):144-149.
    [78]张向前,邹金松,朱海涛,李晓燕,曾瑞珍.水稻早熟多子房突变体fon5的遗传分析和基因定位.遗传,2008,30(10):1349-1355.
    [79]金安江,范敬群.水稻花器官发育的全新分子机理被揭示.科学时报[N],2008,2008-09-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700