用户名: 密码: 验证码:
小麦低分子量麦谷蛋白亚基分离及密码子使用特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据不同分子量蛋白质在十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)迁移率不同,小麦(Triticum aestivum L.)麦谷蛋白亚基分为高分子量麦谷蛋白亚基(HMW-GS)和低分子量麦谷蛋白亚基(LMW-GS)。小麦HMW-GS和LMW-GS互作形成空间网格状结构决定小麦面包烘烤品质。然而小麦LMW-GS研究相对滞后。因此,获得我国独立的自主知识产权的LMW-GS功能基因,并用于改良我国小麦面包烘烤品质已迫在眉睫。
     该论文首先以国内优质强筋小麦中优9507为实验材料,通过优化SDS-PAGE技术蛋白质分离条件,分离小麦LMW-GS区段的特异条带,质谱鉴定获得肽段;进一步分析小麦麦谷蛋白亚基基因密码子使用特性,采用RT-PCR和RACE技术克隆目的基因核酸片段,建立小麦LMW-GS基因克隆技术体系。在此基础之上,以新疆本地主栽强筋小麦新春8为实验材料,锁定小麦面包烘烤品质主效LMW-GS,质谱鉴定获得肽段,为后续该小麦面包烘烤品质主效LMW-GS基因克隆、小麦HMW-GS和LMW-GS互作研究提供科学的数据参考。该论文主要研究结果如下:
     含0.3mol/LNaI和1.4%4-VP的LMW-GS提取液能有效提取小麦LMW-GS成分。在此基础上,当分离胶浓度为T=14%/C=3%、分离时间为40h、电极缓冲液为Tris-硼酸或Tris-甘氨酸时,能更加有效、准确、且重复性高地分离数目庞大的小麦LMW-GS。该技术体系为小麦LMW-GS深入研究的第一个限速步骤提供了良好的解决方案。
     从国内优质强筋小麦中优9507中锁定1个小麦面包烘烤品质可能相关的LMW-GS,命名为ZY9507-L1,其表观分子量为34kD。质谱鉴定获得5个肽段,分别命名为ZL1-1、ZL1-2、ZL1-3、ZL1-4、ZL1-5。其中,ZL1-1(肽段序列:GIIQPQQPAQLEVIR)与NCBI数据库中小麦已知LMW-GS氨基酸序列(GenBank登录号:ACJ76961.1)的覆盖率(Query coverage)为66%,ZL1-2(肽段序列:SVVHSIIMQQEQR)与小麦已知LMW-GS氨基酸序列(GenBank登录号:ABB04903.1)的Query coverage为92%。其余3个质谱鉴定获得的小肽段均与NCBI数据库中小麦已知LMW-GS氨基酸序列不存在相似性。
     为了解小麦麦谷蛋白亚基基因密码子使用特性,该文运用CodonW1.4.2和SPSS16.0软件对13个来源于小麦麦谷蛋白亚基基因的密码子用法特性进行了分析。结果显示,除1Dy10基因有效密码子数(ENC值)小于40外,其余亚基基因ENC值均介于40-50之间;密码子第三位GC含量(GC3)均在0.38-0.45之间;1Bx14基因偏向于使用A或T结尾的密码子,其余12个亚基基因偏向于使用G或C结尾的密码子;1Dy10与其余12个亚基基因间距离系数较大,然而各组染色体麦谷蛋白x-型或y-型亚基基因间距离系数较小。结果表明,小麦麦谷蛋白亚基基因具有较强的密码子使用偏爱性,各基因密码子用法上具有相似性,每一种氨基酸均存在1-2个偏爱密码子。在密码子用法差异上表现为,除1By9和1Dy10之外,无论是A染色体组、B染色体组,还是D染色体组,各组染色体上麦谷蛋白x-型或y-型亚基基因间密码子使用频率差异最小。这一分析结果对小麦HMW-GS功能基因资源的高效利用和LMW-GS新基因的克隆具有一定的指导意义。
     根据小麦面包烘烤品质相关LMW-GS ZY9507-L1质谱鉴定结果和小麦麦谷蛋白亚基基因密码子使用特性,该文以国内优质强筋小麦中优9507为实验材料,利用ZL1-1肽段设计3’端上游引物,采用RT-PCR和RACE技术获得目的基因ZL1-13’端序列。结果显示,分离获得2个不同的LMW-GS基因序列,分别命名为ZL1-1P和ZL1-1I,其中,ZL1-1P基因长度为620bp,可编码包含186个氨基酸残基的成熟蛋白质。该基因与NCBI数据库中许多小麦已知LMW-GS基因均具有同源性,其与小麦已知LMW-GS基因(登录号:FJ441109.1)的覆盖率为19%(见图5-11);ZL1-1I基因长度为693bp,可编码包含209个氨基酸残基的成熟蛋白质。该基因与NCBI数据库中许多小麦已知LMW-GS基因均具有同源性,该基因序列与已知LMW-GS基因(登录号:FJ441109.1)的覆盖率为17%。初步证实上述2个基因可能均属于小麦LMW-GS基因的一部分,而且也证实了该小麦LMW-GS基因克隆技术体系是完全可行的。
     在上述已建立的基因克隆技术体系基础之上,根据面包烘烤品质的决定机制特征,从新疆本地主栽强筋小麦新春8中锁定1个小麦面包烘烤品质主效LMW-GS,命名为XC8-L1,其表观分子量为46kD。质谱鉴定获得215个肽段,分别命名为XL1-1、XL1-2、XL1-3、XL1-4、XL1-5、……、XL1-215。其中,XL1-1(肽段序列:AIIYSIVLQEQQQVR)、XL1-2(肽段序列:VNVPLYR)、XL1-3(肽段序列:TTTSVPFGVGTGVGAY)和XL1-4(肽段序列:LEVMTSIALR)与NCBI数据库中小麦已知LMW-GS氨基酸序列(GenBank登录号:ACZ59817.1 )的Query coverage为100% , XL1-5 (肽段序列:TTTNVPFGVGTGVGSY)和XL1-6(肽段序列:VNVPLYR)与NCBI数据库中小麦已知LMW-GS氨基酸序列(GenBank登录号:ACA63873.1)的Query coverage为100%,XL1-7(肽段序列:QIAQLEVMTSIALR)和XL1-8(肽段序列:QIPEQSR)与NCBI数据库中小麦已知LMW-GS氨基酸序列(GenBank登录号:ADX68840.1)的Query coverage为100%,XL1-9(肽段序列:GTFLQPHQIAR)与NCBI数据库中小麦已知LMW-GS氨基酸序列(GenBank登录号:ADX68849.1)的Query coverage为100%。其余206个质谱鉴定后获得的小肽段均与NCBI数据库中小麦已知LMW-GS氨基酸序列不存在相似性。
     该论文不仅为小麦面包烘烤品质相关功能基因克隆提供技术体系,而且为获得我国独立的自主知识产权的小麦面包烘烤品质主效LMW-GS基因克隆提供有效的氨基酸序列支持,还为深入探讨小麦HMW-GS和LMW-GS互作研究、加快我国面包小麦改良步伐并实现优良面包粉的自主生产奠定一定的理论基础。
Glutenin polymers are formed by high (HMW-GS) and low molecular weight glutenins subunits(LMW-GS) on the basis of their mobilities in the sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE) in wheat(Triticum aestivum L.). It has been demonstrated that the variation in HMW-GS and LMW-GS composition has a strong impact on wheat bread-making quality. However, the deeply study on LMW-GS is far lower than HMW-GS. So, it’s very importace to develop our own intellectual property about LMW-GS.
     In this paper, the SDS-PAGE separation condition was optimazed, then interrelated subunit may be for wheat bread-making quality was isolated in Zhongyou 9507, and identified them by LC-MS. In addition, we analyzed the codon usage of glutenin subunits genes in wheat, to explore HMW-GS genetic resources efficiently and clone new LMW-GS genes. Soon after, it isolated nucleotide sequence of interrelated subunit by RT-PCR and RACE. On this basis, we choose Xinchun 8 as the experimental material, then isolated the major subunit on wheat bread-making quality by optimized SDS-PAGE technonlgy, and identified them by LC-MS. The main results are as follows:
     The LMW-GS extraction buffer containing 0.3mol/L NaI and 1.4% 4-VP can obtain LMW-GS availably, it's the best condition under T=14%C=3%、tris-boric acid buffer or tris-glycine buffer to separate glutenin subunits effectively. It provide a theoretical basic step for studying LMW-GS in breeding quality wheat cultivar.
     It locked 1 interrelated subunit in Zhongyou9507, named ZY9507-L1, its apparent molecular weight is 34kDa. It obtained 5 peptides by LC-MS, named ZL1-1、ZL1-2、ZL1-3、ZL1-4、ZL1-5 orderly. At the same time, Query coverage is 66% between ZL1-1(Peptide is GIIQPQQPAQLEVIR)and amino acid sequence of known wheat LMW-GS(ACJ76961.1) in NCBI. Query coverage is 92% between ZL1-2 (Peptide is SVVHSIIMQQEQR)and amino acid sequence of known wheat LMW-GS(ABB04903.1) in NCBI. There is little similarity between other two peptides and known LMW-GS in NCBI.
     The value of Effective Numberof Codons (ENC) of the other 12 glutenin subunits genes was between 40-50, except the 1Dy10 gene was less than 40.The GC3 contents were all between 0.38-0.45. The 1Bx14 Gene preferred to use A or T at the end of codon and the remaining 12 subunit genes preferred to use G or C . The distance coefficient of 1Dy10 was larger with rest of 12 genes, but it was small between x-type or y-type subunit genes of each chromosomes. The results showed that the glutenin subunit genes of wheat possessed a strong codon usage bias clearly. The codon usage of glutenin subunits genes was similar, and there were optimal(one or two) for each amino acid codon. Except for 1By9 and 1Dy10, the other 12 genes had the smallest differences in frequency of utilizing codon. The results would help to explore HMW-GS genetic resources efficiently and clone new LMW-GS genes.
     According to the LC-MS and characterization on codon usage of glutenin subunits genes in Wheat, we designed the specific primers on the basis of ZL1-1 peptide, it extracted the total RNA in Zhongyou 9507 by Trizol, then it gained first strand cDNA by RT-PCR.And It gained 3’nucleotide sequence of ZL1-1 finally. It showed that, it gained two new genes, named ZL1-1P and ZL1-1I respectively. The coding regions of ZL1-1P is 620bp, encoding the proteins with 186 amino acid residues. The coding regions of ZL1-1I is 693bp, encoding the proteins with 209 amino acid residues. There have homology among ZL1-1P、ZL1-1I and the known wheat LMW-GS in NCBI. It indicated that the genes is the LMW-GS preliminary.
     It locked 1 major subunit which is about wheat bread-making quality in Xinchun 8, named XC8-L1, molecular weight is 46kD. It obtained 215 peptides by LC-MS, named XL1-1、XL1-2、XL1-3、XL1-4、XL1-5、……、XL1-215 orderly. At the same time, Query coverage is 100% among XL1-1(Peptide is AIIYSIVLQEQQQVR)、XL1-2(Peptide is VNVPLYR)、XL1-3(Peptide is TTTSVPFGVGTGVGAY)、(Peptide is LEVMTSIALR)and amino acid sequence of wheat LMW-GS(ACZ59817.1) in NCBI, Query coverage is 100% among XL1-5(Peptide is TTTNVPFGVGTGVGSY) and XL1-6(Peptide is VNVPLYR)and amino acid sequence of wheat LMW-GS(ACA63873.1) in NCBI, Query coverage is 100% among XL1-7(Peptide is QIAQLEVMTSIALR) and XL1-8(Peptide is QIPEQSR)and amino acid sequence of wheat LMW-GS(ADX68840.1) in NCBI, Query coverage is 100% between XL1-9(Peptide is GTFLQPHQIAR)and amino acid sequence of wheat LMW-GS(ADX68849.1) in NCBI.
     It will laid a theorwtical foundation for establishing relevant functional gene cloning system、obtaining our own intellectual property LMW-GS genes.
引文
[1]曹卫星,郭文善,王龙俊,姜东,等.小麦品质生理生态及调优技术[J].中国农业出版社,2005,4,:1-5
    [2] Payne PI,et al.The relationgship between HMW glutenin subunit composition and the bread-making guality of British-grown wheat varieties[J].J.Sci.Food Agric,1987,40(1):51-65
    [3] Carrillo J M,M Rousset,C O Qualset,et al.Use of recombinant inbredlines of wheat for study of associations of high-molecula-weight glutenin subunit alleles to quantitative traits[J].Theory Appl Genet,1990,79(3):321-330
    [4]毛沛,李宗智,卢少源.小麦高分子量麦谷蛋白亚基对面包烘烤品质的效应分析[J].华北农学报,1995,20(增刊):55-59
    [5]李硕碧,单明珠,李必运.陕西省小麦品种资源高分子量谷蛋白亚基组成研究[J].西北农林科技大学学报(自然科学版),2002,30(4):1-5
    [6]李硕碧,毛建昌,王光瑞.小麦品种面包烘烤品质与其它品质性状关系之研究[J].西北农业学报,1996,5(4):25-30
    [7]张津立,李硕碧.小麦品种HMW谷蛋白亚基组成的数量分析[J].麦类作物,1998,18(6):21-23
    [8]程国旺,徐风,马传喜,等.小麦高分子量麦谷蛋白亚基组成与面包烘烤品质关系的研究[J].安徽农业大学学报,2002,29(4):369-372
    [9]毛沛,李宗智,卢少源.小麦高分子量麦谷蛋白亚基对面包烘烤品质的效应分析[J].华北农学报,1995,20(增刊):55-59
    [10]高翔,李硕碧.小麦高分子量谷蛋白亚基对加工品质影响的效应分析[J].西北植物学报,2002,22(4):771-779
    [11]高翔,仝胜利,张改生.150个小麦品种高分子量谷蛋白亚基组成与蛋白质含量和沉降值关系的研究[J].西北植物学报,2005,25(2):299-303
    [12]彭义,徐如宏,任明见.小麦Glu-A1位点null和1亚基重组姊妹系间品质差异的研究[J].种子,2006,25(7):38-40
    [13]杨玉双,庞斌双,王兰芬,等.小麦高分子量谷蛋白亚基间的互补效应对面包加工品质的影响[J].作物学报,2009,35(8):1379-1385
    [14]马小乐,尚勋武,辛培尧,等.春小麦品种高分子量谷蛋白亚基与品质的关系[J].麦类作物学报,2006,26(1):66-70
    [15]任红松,曹连莆,魏凌基,等.小麦高分子量谷蛋白亚基积累量与沉降值的关系[J].西北农业学报,2005,14(1):37-40
    [16]刘丽,周阳,何中虎,等.高、低分子量麦谷蛋白亚基等位变异对小麦加工品质性状的影响[J].中国农业科学,2004,37(1):8-14
    [17]胡琳,许为钢,王根松,等.小麦低分子量谷蛋白亚基品质效应的研究[J].麦类作物学报,2009,29(3):424-428
    [18]穆培源,刘丽,陈锋,等.CIMMYT人工合成小麦改良品系的HMW-GS和LMW-GS组成及其对面筋品质的影响[J].麦类作物学报,2008,28(4):607-612
    [19]雷振生,刘丽,王美芳,等. HMW-GS和LMW-GS组成对小麦加工品质的影响[J].作物学报,2009,35(2):203-210
    [20]陈东升,刘丽,董建力,等. HMW-GS和LMW-GS组成及1BL/1RS易位对春小麦品质性状的影响[J].作物学报,2005,31(4):414-419
    [21]张留臣,胡琳,余大杰,等.低分子量谷蛋白亚基Glu-A3和Glu-B3位点对小麦面筋强度和烘焙特性影响[J].华北农学报,2007,22 (4):162-167
    [22]杨曦,黄伟伟,汪越胜,等.小麦谷蛋白分子结构研究进展[J].生物技术,2009,19(1):89-93
    [23]赵永涛,薛国典,沈向磊,等.小麦低分子量麦谷蛋白亚基研究进展[J].安徽农业科学,2010,38(3):1185-1187,1193
    [24] Cassdy B G,Dvora K J,Anderson O D.The wheat low-molecular-weight glutenin genes:characterization of six new genes and progress in understanding gene family structure[J].Theor Appl Genet,1998,96:743-750
    [25] Kasarda D D.Glutenin structure in relation to wheat quality.In:Pomeranz Y.Wheat is Unique.American Association of Cereal Chemists[J]:St PaulMN,1989:277-302
    [26] Tatham A S,Field J M,Smith J S,et al.The conformation of wheat gluten proteins.ⅡAggregated gliadins and low molecular weight subunits of glutenin[J].Journal of Cereal Science,1987,5:203-214
    [27] Thomson N H,Miles M J,Tatham A S,et al.Molecular images of cereal proteins by ST M[J].Ultramicroscopy,1992,42/44:1118-1122
    [28] Masci S,D’Ovidi O R,Lafiandr A D,et al.Characterization of a low-molecular-weight glutenin subunit gene from bread wheat and the corresponding protein that represents a major subunit of the glutenin polymer[J].Plant Physiology,1998,118:1147-1158
    [29] Okita T.W.,Cheesbrough V.,Reeves C.D.Evolution and heterogeneity of theα-/β-type andγ-type gliadin DNAsequences[J].Biol Chem,1985,260:8203-8213
    [30] Cassidy B.G..,Dvorak J.Molecular characterization of a low-molecular-weightglutenin cDNA clone from Triticum durum[J].Thero Appl Gene,1991,81:653-660
    [31] Cassidy B.G.,Dvorak J.,Anderson O.D.The wheat low-molecular-weight glutenin genes:Characterization of six new genes and progress in understanding gene family structure[J].Theor Appl Genet,1998,96:743-750
    [32] Pitts E.G.,Rafalski J.A.,Hedgcoth C.Nucleotide sequence and encoded amino acid sequence of a genomic gene region for a low molecular weight glutenin[J].Nucleic Acids Research,1988,16:11376
    [33] Masci S.,Egorov T.A.,Ronchi C.,et al.Evidence for the presence of only one cysteine residue in the D-type low-molecular-weight subunits of wheat glutenin[J].Cereal Sci,1999,29:17-25
    [34]崔翠菊,马凤云,王洪文,等.小麦LMW-GS基因的分离与归类[J].分子植物育种,2009,7(4):788-792
    [35]张琪琪,马传喜,司红起,等.3个新疆地方小麦品种Glu-A3位点低分子量谷蛋白亚基新基因的序列分析[J].分子植物育种,2007,5(4):553-558
    [36]汪越胜,覃建兵,汪长东,等.一个小麦低分子量谷蛋白基因的分离[J].武汉植物学研究,2005,23(6):511-513
    [37]李艳亮,高翔,陈其皎,等.小麦”陕253”低分子量谷蛋白基因的克隆与序列分析[J].麦类作物学报,2010,30(2):203-209
    [38]李巧云,安学丽,肖英华,等.野生二粒小麦(Triticum dicoccoides)低分子量谷蛋白亚基基因的克隆与序列分析[J].中国农业科学,2007,40(3):457-463
    [39]伍碧华,路洁霏,胡喜贵,等.野生二粒小麦低分子量谷蛋白基因序列分析[J].四川农业大学学报,2008,26(4):385-392
    [40]曾节,代寿芬,郑有良,等.带芒草属低分子量谷蛋白基因的克隆及序列分析[J].遗传,2008,30(5):633-641
    [41]王建伟,陈新宏,赵继新,等.华山新麦草(Psathyrostachys huashanica)LMW-GS基因的克隆和序列分析[J].麦类作物学报,2008,28(5):733-737
    [42] Bietz J.A. and Wall J.S.Isolation and characterization of gliadin-like subunits from glutenins[J].Cereal Chem,1973,50:537-547
    [43]陈华萍,黄乾明,魏育明等.四川小麦地方品种AS1643中低分子量麦谷蛋白基因的克隆及其蛋白质的二级结构预测[J].遗传,2007,29(7):859-866
    [44]吴芳,刘英华,刘琳等.普通小麦低分子量麦谷蛋白亚基核心编码区与面团强度关系的研究[J].遗传,2007,29(11):1399-1404
    [45]张留臣,胡琳,余大杰等.低分子量谷蛋白亚基Glu-A3和Glu-B3位点对小麦面筋强度和烘焙特性影响[J].华北农学报,2007,22(4):162-167
    [46]张琪琪,马传喜,司红起等.3个新疆地方小麦品种Glu-A3位点低分子量麦谷蛋白亚基新基因的序列分析[J].分子植物育种,2007,5(4):553-558
    [47] Luo C.,Griffin W.B.,Branlard G.and McNeil D.L.Comparison of low and high molecular weight glutenin allele effects on flour quality[J].Theor.Appl.Genet.,2001,102:1088-1098
    [48]石玉,张永丽,于振文.小麦籽粒蛋白质组分含量及其与加工品质的关系[J].作物学报,2009,35(7):1306-1312
    [49]穆培源,刘丽,陈锋等.CIMMYT人工合成小麦改良品系的HMW-GS和LMW-GS组成及其对面筋品质的影响[J].麦类作物学报,2008,28(4):607-612
    [50]唐建卫,刘建军,张平平等.小麦Glu-1位点变异和1B/1R易位对谷蛋白亚基表达量和面包加工品质的影响[J].作物学报,2008,34(4):571-577
    [51]覃建兵,祝长青,赵惠新.外源基因1Dx5在转基因小麦后代中的表达[J].华中师范大学学报(自然科学版),2008,42(2):267-271
    [52]纪军,刘冬成,王静,等.一种小麦高、低分子量麦谷蛋白亚基的提取方法[J].遗传,2008,30(1):123-126
    [53]宋笑明.花粉管通道法遗传转化小麦与变异株的醇溶蛋白分析[J].郑州大学,2007
    [54]纪军,刘东成,李俊明,等.一种小麦高、低分子量麦谷蛋白亚基的提取方法[J].遗传,2008,30(1):123-126
    [55]李巧云,安学丽,肖英华,等.野生二粒小麦低分子量麦谷蛋白亚基基因的克隆及序列分析[J].中国农业科学,2007,40(3):457-463
    [56]穆培源,刘丽,陈锋,等.CIMMYT人工合成小麦改良品系的HMW-GS和LMW-GS组成及其对面筋品质的影响[J].麦类作物学报,2008,28(4):607-612
    [57] Valerie Melas et al.A handy method of extraction of wheat LMW-GS[J].Cereal chemistry,1994,71(3):234-237
    [58]杨曦,黄伟伟,汪越胜,等.小麦谷蛋白分子结构研究进展[J].生物技术,2009,19(1):89-93
    [59]陈官印,张军.专用面包小麦新品种——中优9507[J].中国农技推广,2002,(5):26
    [60]祝长青,李艳红,覃建兵.新疆主栽小麦品种高分子量麦谷蛋白亚基组成分析[J].华中师范大学学报,2008,42(3):431-434
    [61]吴振录,樊哲儒.新春9号面包强筋小麦的主要特点、品质状况和优质高产栽培[J].新疆农业科学,2002,39(6):327-330
    [62]古丽菲娅,阿不都热合曼·依迪热斯.小麦新冬18号高产栽培技术[J].农村科技,2004,(7):6
    [63]阿丽丹,哈里毕努尔,阿不都热西提.加拿大强筋春小麦“Y20”及栽培技术[J].新疆农业科技,2003,(12):24
    [64]王宏伟.春小麦新品种新春14号特征特性及高产栽培技术[J].现代农业科技,2006,(12):101
    [65]陈官印.新春17号小麦特性及高产栽培技术[J].农业科技与信息,2006,(4):13
    [66]舒献忠,罗燕,宋梅英.冬小麦新冬24号品种特性及栽培措施[J].新疆农业科技,2007,(6):13
    [67]陈华萍,黄乾明,魏育明,等.四川小麦地方品种AS1643中低分子量谷蛋白基因的克隆及其蛋白的二级结构预测[J].遗传,2007,29(7):859-866
    [68]王侃,刘次全,曹槐,等.大肠杆菌mRNA编码区长度、形成二级结构倾向与密码子偏好性的关系[J].微生物学报,2006,46(6):895-899
    [69]钟东,赵贵军,刘宇虎,等.62种细菌基因组中密码子碱基位置上碱基分布的差异性及相关性[J].中国微生态学杂志,2003,15(3):134-136
    [70] Wu Haonan,Da Yao,Wei Jiawe,et al.Synonymous codon usage in Methanosarcinamazei str.Goe1 and other Euryarchaeota microorganisms[J].Journal of Southeast University,2007,l23(2):289-293
    [71]范三红,郭蔼光,单丽伟,等.拟南芥基因密码子偏爱性分析[J].生物化学与生物物理进展,2003,30(2):221-225
    [72]赵耀,刘汉梅,顾勇,等.玉米waxy基因密码子偏好性分析[J].玉米科学,2008,16(2):16-21
    [73]张晓峰,薛庆中.水稻和拟南芥NBS-LRR基因家族同义密码子使用偏好的比较[J].作物学报,2005,31(5):596-602
    [74]刘庆坡,谭军,薛庆中.籼稻品种93-11同义密码子的使用偏性[J].遗传学报,2003,30(4):335-340
    [75]单文娟,周猛,卫巍,等.杨树部分基因起始密码子AUG侧翼序列特征分析[J].南京林业大学学报(自然科学版),2008,32(5):61-64
    [76]龙华,王祖荣.15种鱼转铁蛋白cDNA序列密码子使用比较分析[J].南方水产,2005,1(1):6-10
    [77]赵胜,张琴,廖伟璇,等.41条牦牛CDS序列的密码子偏好性分析[J].西南民族大学学报,2005,31(5):755-760
    [78]刘华贵,王小花,刘玉方,等.五个鸡群中催乳素基因密码子使用频率与产蛋量的关系分析[J].生物化学与生物物理进展,2007,34(10):1101-1106
    [79]武茹,高德荣,别同德,等.转基因小麦1Dx5基因沉默的遗传表达和品质效应分析[J].麦类作物学报,2010,30(6):991-996
    [80]祝长青,赵惠新,李艳红,等.转基因小麦后代外源目的基因的遗传分析[J].干旱区研究,2008,25(6):808-811
    [81] Das S,Paul S,Dutta C.Synonymous codon usage in adenoviruses:influence of mutation、selection and protein hydropathy[J].Virus Res,2006,117(2):227-236
    [82]刘汉梅,赵耀,顾勇,等.几种植物waxy基因的密码子用法特性分析[J].核农学报,2010,24(3):476-481
    [83] Liu Q,Feng Y,Zhao X,et al.Synonymous codon usage bias in Oryza sativa[J].Plant Science,2004,167:101-105
    [84]吴宪明,吴松锋,任大明.密码子偏性的分析方法及相关研究进展[J].遗传,2007,29(4): 420-426
    [85]曹连莆,王荣栋,李卫华,等.优质高产春小麦新品种新春8号[J].新疆农业科学,2000,(4):191-192
    [86]叶玉香,杨志明,何建军,等.优质强筋春小麦新品种——新春21号[J].麦类作物学报,2006,26(4):169
    [87]汪越胜,柯涛,李三和,等.转基因小麦后代HMW-GS组成的变异研究[J].作物学报,2005,31(4):529-531
    [88]吴振录,樊哲儒,陈玉魁,等.超高产优质中筋春小麦品种——新春6号[J].麦类作物学报,2005,25(2):147
    [89]韩新年,田笑明,穆培源,等.冬小麦石冬9号[J].新疆农垦科技,2003,(5):25
    [90]陈新宏,李璋,阎正禄,等.小偃22的选育及其特性研究[J].西北农林科技大学学报(自然科学版),2001,29(8):9-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700