用户名: 密码: 验证码:
水稻白叶枯病抗性突变体的筛选与高分辨率溶解曲线在水稻中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻白叶枯病是水稻重要病害之一,对水稻生产造成了严重的危害。新的白叶枯病抗性种质资源的获得对于水稻抗白叶枯病育种具有重要意义。
     本研究对5万个T-DNA突变体株系进行了系统的大田筛选。从5叶期开始,每个株系经过4轮的白叶枯病菌P10接种,研究初筛获得了一些白叶枯病抗性植株,对其中2个表型较好的植株进行了初步的生理研究。同时,在突变体库中观察获得了一些其他表型突变的株系。为加快水稻突变体基因定位,本研究尝试利用高分辨率溶解曲线技术(high resolution melting, HRM)进行水稻F2群体基因分型,为后期将HRM用于突变体中抗性基因定位探索条件。目前,已取得的主要研究结果有:
     1.通过T-DNA突变体库大田种植观察及接种P10菌株,初筛获得了125个M0代白叶枯病抗性突变体。同时,获得了一些具有其他表型变化的突变体株系,如类病变突变体,叶色突变体,颖花退化,穗颈长度变化,有芒与无芒,颖壳变化,高矮秆突变,叶形突变等。
     2.对初筛获得的125个M0代白叶枯病抗性突变体中的17个株系的M1代进行了对P10菌株的抗性鉴定,结果表明2个株系BBM14和BBM66的M1代对P10菌株抗性稳定,且BBM14和BBM66的M1代植株无明显抗性分离。同时,转基因PCR检测表明T-DNA插入已经纯合,因此,需要设计专门实验来判断BBM14和BBM66的抗性是否由T-DNA插入引起。对接种P10后叶片内部的菌株生长情况进行生长曲线分析表明,P10菌株在BBM14和BBM66中的生长相对于亲本中花11明显受到抑制,由此进一步证实了BBM14和BBM66对P10菌株的抗性。对BBM14和BBM66的抗谱分析发现,BBM14对白叶枯病菌株菲律宾生理小种P2 (PXO86), P3 (PXO79), P7 (PXO145), P8(PXO280), P10 (PXO124)表现抗性,对P4 (PXO71), P6(PXO99)表现感病。BBM66对P2,P7,P8,P10菌株表现出抗性,对P3,P4,P6表现感病。同时,将BBM14和BBM66抗谱与已知白叶枯病抗性基因抗谱比较后发现,两者的抗谱与这些白叶枯病抗性基因抗谱都不同,因此,初步判断BBM14和BBM66中均具有新的白叶枯病抗性基因。对BBM14和BBM66中的部分防卫相关基因进行表达分析,结果表明接种P10菌株后OsPRlb基因表达上调。
     3.本研究尝试将HRM用于水稻F2群体基因分型,同时进行了HRM反应条件优化,为后续将HRM用于BBM14和BBM66中抗性基因定位打下了基础。利用本实验室创制的高抗白叶枯病材料Y73以及高感白叶枯病材料IR24杂交以构建F2群体,选取了22株F2植株。在5μl反应体系及普通PCR程序条件下,本研究对353对STS和SSR分子标记进行了Y73,IR24以及其F1之间多态HRM分子标记筛选,其中103对分子标记表现出多态的HRM曲线。将这103对多态HRM分子标记用于以上F2群体的HRM基因分型,结果显示在5μl反应体系及普通PCR程序条件下,12对STS和SSR分子标记成功地对该F2群体进行了基因型分析。传统的凝胶电泳结果显示,HRM基因分型结果与传统的PCR后电泳检测结果完全一致。为提高STS与SSR分子标记用于HRM基因分型的效率,本研究在另外两种HRM反应条件下,对这103对多态HRM分子标记用于该F2群体基因分型进行了重新的筛选。在5μl反应体系与降落PCR程序中,筛选效率没有明显提高,而在10μl反应体系与降落PCR程序中,除了这12对分子标记外,另外9对分子标记成功地对该F2群体进行了基因分型,筛选效率明显提高。因此,以上结果表明HRM用于水稻F2群体的基因分型具有可行性,且3种HRM体系中,10μl反应体系与降落PCR程序条件时的HRM体系更稳定,更适宜于水稻F2群体基因分型。
     综合以上研究结果表明,突变体BBM14和BBM66对部分白叶枯病菌抗性稳定,可进行进一步的白叶枯病抗性基因研究。同时,HRM技术在水稻F2群体基因分型中具有可行性,因此,将HRM技术应用于BBM14和BBM66相关抗性基因的研究对于同时加快白叶枯病新抗性基因的定位以及推进HRM基因分型技术在水稻中的应用具有双重作用。
Bacterial blight is one of the most serious rice diseases, causing great damage to rice production. Novel bacterial blight resistance cultivars play an important role in bacterial blight resistance breeding in rice.
     In this study, a large-scale screening was performed on a rice mutant population of 50,000 T-DNA insertion lines in the field. Plants at five-leaf stage were inoculated with Xanthomonas oryzae pv.oryzae (Xoo) P10 by cutting the leaf top with scissors and sprayed for at least four times. Some candidate bacterial blight resistance mutants were preliminarily screened from the population. Among them, two mutant lines were selected for further researches. At the same time, some other phenotype mutants were observed in the library. To make preparations for mapping the resistance genes in these mutants, high-resolution melting (HRM) was used to genotype the F2 population in rice. Major research results were summarized as follows:
     1. A total of 125 bacterial blight resistance mutants' M0 lines were screened from the T-DNA mutant library. Simultaneously, some other phenotype mutants were observed, such as leaf colour mutants, lesion mimic mutant, degenerated spikelet, changes of ear stem length, beared and beardless rice, rice glume mutant, dwarf and tall-culm mutant, leaf shape mutant.
     2. Resistance of 17 mutants' M1 progenies from the 125 lines was identified by the P10 strain. It shows that the M1 progenies of two mutants BBM14 and BBM66 were resistant to P10 strain stably and hereditably. However, no resistance separation was observed among the M1 progenies and transgene PCR detection shows that T-DNA insertion was homozygous, so further researches are needed to determine whether the resistance of BBM14 and BBM66 to the P10 strain was caused by T-DNA insertion was uncertain. The growth curves of the P10 strain in BBM14 and BBM66 leaves were analyzed, it shows that bacterial growth in the two mutants was suppressed compared to the parent zhonghuall, this confirmed the resistance of BBM14 and BBM66 to P10 strain further. Resistant spectrum showed that BBM14 was resistant to the strains P2 (PXO86), P3 (PXO79), P7 (PXO145), P8 (PXO280), and P10 (PXO124), and susceptible to the strains P4 (PXO71), P6 (PXO99). While BBM66 was resistant to the strains P2, P7, P8, P10 and susceptible to the strains P3, P4, P6. Comparing the resistance spectrum of BBM14 and BBM66 to the known bacterial blight resistance genes in this research, it was suggested that there were new bacterial blight resistance genes in the two mutants. The expression of some defense related genes were analyzed in the mutants after inoculated by P10, and it shows that OsPR1b was upregulated after P10 strain inoculation.
     3. HRM technique was employed for F2 population genotyping in rice and the HRM reaction conditions were optimizated to make preparations for mapping the resistance genes in BBM14 and BBM66 For optimizing the reaction conditions, Twenty-two F2 lines were selected from the cross between the highly resistant cultivar Y73 and the susceptible cultivar IR24. With the 5μl reaction system and normal PCR procedure, a total of 353 STS and SSR markers were used to screen the markers showing polymorphic HRM curves between Y73, IR24 and F1. A total of 103 STS and SSR markers showed polymorphic melting curves among the three parents. These 103 markers were further used to genotype the F2 population. It showed that 12 STS and SSR markers genotyped the mapping population successfully. And the HRM genotyping results were consistent with traditional electrophoresis results completely. To raise the efficiency of STS and SSR markers for HRM genotyping, another two HRM reaction conditions were applied for screening the 103 polymorphic markers. In a 5μ1 reaction system and touchdown-PCR procedure, no screening efficiency improvement was observed. However, in a 10μl reaction system and touchdown-PCR procedure,9 new markers genotyped the mapping population successfully except for the 12 markers, HRM marker screening efficiency increased greatly. Therefore,it is practical for applying HRM in F2 genotyping in rice. And among the three HRM reaction conditions, the 10μl reaction system and touchdown-PCR procedure was more stable and suitable for genotyping in rice.
     From the above results, it shows that BBM14 and BBM66 were resistant to part of the bacterial blight strains stably. Meanwhile, HRM was useful for F2 population genotyping in rice. So applying HRM for mapping the resistance gene in BBM14 and BBM66 can accelerate not only the gene identification but also the application of HRM genotyping in rice.
引文
[1]Gnanamanickam S S, Brindha Priyadarisini V, Narayanan N N, Vasudevan Preeti, Kavitha S. An overview of bacterial blight of rice and strategies for its management[J]. Current Science,1999,77(11):1435-1443.
    [2]Mew T W, Alvarez A M, Leach J E, Swings J. Focus on bacterial blight of rice[J]. Plant Disease,1993,77(1):5-12.
    [3]NiNO-Liu D O, Ronald P C, Bogdanove A J. Xanthomonas oryzae pathovars: model pathogens of a model crop[J]. Molecular Plant Pathology,2006,7(5): 303-324.
    [4]许静,张丽丽,冯元霞.水稻白叶枯病的防治方法[J].农村实用科技信息,2009,(07):34.
    [5]李晖辉,顾启花,水稻白叶枯病发生及防治技术[J].吉林农业:下半月,2009,(12):61-61.
    [6]于卫清,陈丽,赵加林,水稻白叶枯病的发生及防治[J].现代农业科技,2009,(21):139-139.
    [7]陈松,于海艳,顾启花,水稻白叶枯病发生及防治技术[J].现代农业科学,2008,15(4):40.
    [8]刘丙新,季芝娟,石建尧,马良勇,李西明,杨长登.水稻白叶枯病抗性基因的发掘及在育种中的应用[J].中国稻米,2010,16(2):10-15.
    [9]翟文学,朱立煌,水稻白叶枯病抗性基因的研究与分子育种[J].生物工程进展,1999,19(6):9-15.
    [10]He Y W, Wu J E, Cha J S, Zhang L H. Rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae produces multiple DSF-family signals in regulation of virulence factor production [J]. BMC Microbiology,2010,10(1): 187-195.
    [11]钱前,程式华.水稻遗传学和功能基因组学[M].北京:科学出版社,2006.
    [12]Gonzalez C, Szurek B, Manceau C, Mathieu T, Sere Y, Verdier V. Molecular and pathotypic characterization of new Xanthomonas oryzae Strains from west africa Molecular Plant-Microbe Interactions,2007,20(5):534-546.
    [13]Kottapalli K R, Lakshmi Narasu M, Jena K K. Effective strategy for pyramiding three bacterial blight resistance genes into fine grain rice cultivar, Samba Mahsuri, using sequence tagged site markers[J]. Biotechnology Letters,2010, 32(7):989-996.
    [14]Yoshimura S, Umehara Y, Kurata N, Nagamura Y, Sasaki T, Minobe Y, Iwata N. Identification of a YAC clone carrying the Xa-1 allele, a bacterial blight resistance gene in rice[J]. Theoretical and Applied Genetics,1996,93(1): 117-122.
    [15]Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang Z X, Kono I, Kurata N, Yano M, Iwata N, Sasaki T. Expression of Xal, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation[J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(4):1663-1668.
    [16]He Q, Li D B, Zhu Y S, Tan M P, Zhang D P, Lin X H. Fine Mapping of Xa2, a bacterial blight resistance gene in rice[J]. Molecular Breeding,2006,17(1):1-6.
    [17]Cao Y L, Duan L, Li H J, Sun X L, Zhao Y, Xu C G, Li X H, Wang S P. Functional analysis of Xa3/Xa26 family members in rice resistance to Xanthomonas oryzae pv. Oryzae[J]. Theoretical and Applied Genetics,2007, 115(7):887-895.
    [18]Xiang Y, Cao Y L, Xu C G, Li X H, Wang S P. Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26[J]. Theoretical and Applied Genetics,2006,113(7):1347-1355.
    [19]Yoshimura S, Yoshimura A, Iwata N, McCouch S R, Abenes M L, Baraoidan M R, Mew T W, Nelson R J. Tagging and combining bacterial blight resistance genes in rice using RAPD and RFLP markers[J]. Molecular Breeding,1995, 1(4):375-387.
    [20]章琦,施爱农,王春莲,阙更生,Mew T W.稻白叶枯病(Xanthomonas campestris pv. oryzae)抗性遗传研究Ⅲ.两个成株抗性基因Xa-6与Xa-3的等位性分析[J].作物学报,1994,17(3):233-237.
    [21]Sun X, Yang Z, Wang S, Zhang Q. Identification of a 47-kb DNA fragment containing Xa4, a locus for bacterial blight resistance in rice[J]. Theoretical and Applied Genetics,2003,106(4):683-687.
    [22]Wang W, Zhai W, Luo M, Jiang G, Chen X, Li X, Wing R A, Zhu L. Chromosome landing at the bacterial blight resistance gene Xa4 locus using a deep coverage rice BAC library[J]. Molecular Genetics and Genomics,2001, 265(1):118-125.
    [23]王文明,周永力,江光怀,,马伯军,陈学伟,章琦,朱立煌,翟文学.水稻抗白叶枯病基因Xa-4的精细定位及其共分离分子标记[J].科学通报,2000,45(10):1067-1070.
    [24]Blair M W, Garris A J, Iyer A S, Chapman B, Kresovich S, McCouch S R. High resolution genetic mapping and candidate gene identification at the xa5 locus for bacterial blight resistance in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics,2003,107(1):62-73.
    [25]Iyer A S, McCouch S R. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance[J]. Molecular Plant-Microbe Interactions,2004, 17(12):1348-1354.
    [26]Iyer-Pascuzzi A S, Jiang H, Huang L, McCouch S R. Genetic and functional characterization of the rice bacterial blight disease resistance gene xa5[J]. Phytopathology,2008,98(3):289-295.
    [27]Porter B W, Chittoor J M, Yano M, Sasaki T, White F F. Development and mapping of markers linked to the rice bacterial blight resistance gene Xa7[J]. Crop Science,2003,43(0):1484-1492.
    [28]Webb K M, Ona I, Bai J, Garrett K A, Mew T, Vera Cruz C M, Leach J E. A benefit of high temperature:increased effectiveness of a rice bacterial blight disease resistance gene[J]. New Phytologist,2009,185(2):568-576.
    [29]Singh K, Vikal Y, Singh S, Leung H, Dhaliwal H S, Khush G S. Mapping of bacterial blight resistance gene xa8 using microsatellite markers[J]. Rice Genetics Newsletters,2002,19(0):94-97.
    [30]Gu K Y, Sangha J S, Li Y, Yin Z.C. High-resolution genetic mapping of bacterial blight resistance gene Xa10[J]. Theoretical and Applied Genetics,2008, 116(2):155-163.
    [31]Chu Z H, Fu B Y, Yang H, Xu C G, Li Z K, Sanchez A, Park Y J, Bennetzen J L, Zhang Q F,S, Wang S P. Targeting xa13, a recessive gene for bacterial blight resistance in rice[J]. Theoretical and Applied Genetics,2006.112(3):455-461.
    [32]Chu Z H, Meng Y, Yao J L, Ge X J, Yuan B, Xu C G, Li X H, Fu B Y, Li Z K, Bennetzen.J L, Zhang Q F, Wang S P. Promoter mutations of an essential gene for pollen development result in disease resistance in rice[J]. Genes and Development,2006,20(10):1250-1255.
    [33]Sanchez A.C, Ilag L.L, Yang D, Brar D.S, Ausubel F, Khush G.S, Yano M, Sasaki T, Li Z, Huang N. Genetic and physical mapping of xa13, a recessive bacterial blight resistance gene in rice[J]. Theoretical and Applied Genetics, 1999,98(6):1022-1028.
    [34]鲍思元,谭明谱,林兴华.水稻抗白叶枯病基因Xa14的遗传定位.作物学 报,201 0,36(03):422-427.
    [35]Noda T, Ohuchi A. A new pathogenic race of Xanthomonas campestris pv. oryzae and inheritance of resistance of differential rice variety, Te-tep to it[J]. Annals of the Phytopathological Society of Japan,1989.55(2):201-207.
    [36]Ronald P C, Albano.B, Tabien R, Abenes L, Wu K S, McCouch S, Tanksley S D. Genetic and physical analysis of the rice bacterial blight disease resistance locus, Xa21[J]. Molecular and General Genetics,1992,236(1):113-120.
    [37]Wang G L, Ruan D L, Song W Y, Sideris S, Chen L L, Pi L Y, Zhang S P, Zhang Z, Fauquet C, Gaut B S, Whalen M C, Ronald P C. Xa21D encodes a receptor-like molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution[J]. Plant Cell, 1998,10(5):765-780.
    [38]Lin X H, Zhang D P, Xie Y F, Gao H P, Zhang.Q F. Identifying and mapping a new gene for bacterial blight resistance in rice based on RFLP markers[J]. Phytopathology,1996,86(11):1156-1159.
    [39]Wang C T, Tan M P, Xu X, Wen G, Zhang D P, Lin X H. Localizing the bacterial blight resistance gene, Xa22(t), to a 100-kilobase bacterial artificial chromosome[J]. Phytopathology,2003,93(10):1258-1262.
    [40]章琦,赵炳宇,赵开军,王春连,杨文才,林世成,阙更生,周永力,李道远,陈成斌,朱立煌.普通野生稻的抗水稻白叶枯病(Xanthomonas oryzae v.oryzae)新基因Xa-23(t)的鉴定和分子标记定位[J].作物学报,2000,26(5):536-542.
    [41]Khush G S, Angeles E R. A new gene for resistance to race 6 of bacterial blight in rice, Oryza saliva L.[J]. Rice Genetics Newsletters,1999,16(0):92-93.
    [42]Chen H L, Wang S P, Zhang Q F. New gene for bacterial blight resistance in rice located on chromosome 12 identified from minghui 63, an elite restorer line[J]. Phytopathology,2002,92(7):750-754.
    [43]高东迎,刘蔼民,周亦红,程艳军,向阳海,孙立华,翟文学.水稻抗白叶枯病基因Xa-25的分子定位.遗传学报,2005,32(2):183-188.
    [44]高东迎,向阳海,孙立华,陆作楣.抗水稻白叶枯病新基因Xa-25(t)的RAPD分析[J].中国水稻科学,2002,16(2):179-181.
    [45]Lee K.S, Rasabandith S, Angeles E.R, Khush G.S. Inheritance of resistance to bacterial blight in 21 cultivars of rice[J]. Phytopathology,2003,93(2):147-152.
    [46]Amante-Bordeos A, Sitch L A, Nelson R, Dalmacio R D, Oliva N P, Aswidinnoor H, Leung H. Transfer of bacterial blight and blast resistance from the tetraploid wild rice Oryza minuta to cultivated rice, Oryza sativa[J]. Theoretical and Applied Genetics,1992,84(3):345-354.
    [47]Gu K, Tian D, Yang F, Wu L, Sreekala C, Wang D, Wang G L, Yin Z. High-resolution genetic mapping of Xa27(t), a new bacterial blight resistance gene in rice,Oryza sativa L.[J]. Theoretical and Applied Genetics,2004,108(5): 800-807.
    [48]Gu K Y, Yang B, Tian D S, Wu L F, Wang D J, Sreekala C, Yang F, Chu Z Q, Wang G L, White F F, Yin Z C. R gene expression induced by a type-Ⅲ effector triggers disease resistance in rice[J]. Nature,2005,435(7045):1122-1125.
    [49]谭光轩,任翔,翁清妹,时振英,祝莉莉,何光存.药用野生稻转育后代一个抗白叶枯病新基因的定位[J].遗传学报,2004,31(7):724-729.
    [50]金旭炜,王春连,杨清,江祺祥,樊颖伦,刘古春,赵开军.水稻抗白叶枯病近等基因系CBB30的培育及Xa30(t)的初步定位[J].中国农业科学,2007.40(6):1094-1100.
    [51]王春连,赵炳宇,章琦,赵开军,邢全党,水稻白叶枯病新抗源Y238的鉴定及其近等基因系培育[J].植物遗传资源学报,2004,5(1):26-30.
    [52]Wang C T, Wen G S, Lin X H, Liu X Q, Zhan D P. Identification and fine mapping of the new bacterial blight resistance gene, Xa31(t), in rice[J]. European Journal of Plant Pathology,2009,123(2):235-240.
    [53]郑崇珂,王春连,于元杰,梁云涛,赵开军.水稻抗白叶枯病新基因Xa32(t)的鉴定和初步定位[J].作物学报,2009,35(7):1173-1180.
    [54]Korinsak S, Sriprakhon S C, Sirithanya P, Jairin J P, Korinsak S, Vanavichit a, Toojinda T. Identification of microsatellite markers (SSR) linked to a new bacterial blight resistance gene xa33(t) in rice cultivar'Ba7'[J]. Maejo International Journal of Science and Technology,2009,3(2):235-247.
    [55]Korinsak.S, Sirithanya P, Toojinda.T. Identification of SSR markers linked to a bacterial blight resistance gene in rice cultivar 'Pin Kaset'[J]. KKU Research Journal (GS),2009,9(2):16-21.
    [56]郭嗣斌,张端品,林兴华.小粒野生稻抗白叶枯病新基因的鉴定与初步定位[J].中国农业科学,2010,43(13):6-13.
    [57]苗丽丽,王春连,郑崇珂,车晋英,高英,温义昌,李贵全,赵开军.水稻抗白叶枯病新基因的初步定位[J].中国农业科学,2010,43(15):3051-3058.
    [58]杨松涛,张涛,郑家奎.水稻突变体库研究进展[J].中国农学通报,2010, 26(19):27-30.
    [59]Jiang S Y, Ramachandran S. Natural and artificial mutants as valuable resources for functional genomics and molecular breeding[J]. International Journal of Biological Sciences 2010,6(3):228-251.
    [60]Kodym A, Afza R. Methods in molecular biology[M]. New Jersey:Humana Press,2003:189-203.
    [61]Wang G L, Wu C, Zeng L, He C, Baraoidan M, de Assis Goes da Silva F, Williams C.E, Ronald P.C, Leung H. Isolation and characterization of rice mutants compromised in Xa21-mediated resistance to X. oryzae pv. Oryzae[J]. Theoretical and Applied Genetics,2004,108(3):379-384.
    [62]Woo Lee S, Choi G J, Cheol Kim J, Kim H T, Choi Y H, Cho K Y. Loss-of-function and gain-of-function rice mutants from gamma-ray mutagenesis[J]. the plant pathology journal,2003,19(6):301-304.
    [63]胡标林,谢建坤,包劲松,余守武,张铮.籼稻9311辐射突变体的分离与鉴定[J].分子植物育种,2006,4(2):181-188.
    [64]叶俊,吴建国,杜婧,郑希,张志,石春海.水稻“9311”突变体筛选和突变体库构建[J].作物学报,2006,32(10):1525-1529.
    [65]朱旭东,陈红旗,罗达,张建军,方红民,闵绍楷.水稻中花11辐射突变体的分离与鉴定[J].中国水稻科学,2003,17(3):205-210.
    [66]Natarajan A T. Chemical mutagenesis:From plants to human[J]. Current Science,2005,89(2):312-317.
    [67]Wu J L, Wu C J, Lei C L, Baraoidan M, Bordeos A, Reina Suzette Madamba M. Ramos-Pamplona M, Mauleon R, Portugal A, Ulat V J, Bruskiewich R, Wang G L, Leach J, Khush G, Leung H. Chemical-and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics[J]. Plant Molecular Biology, 2005,59(1):85-97.
    [68]Till B J, Cooper J, Tai T H, Colowit P, Greene E A, Henikoff S, Comai L. Discovery of chemically induced mutations in rice by TILLING[J]. BMC Plant Biology,2007,7(1):19-30.
    [69]Zhu C F, Wu J H, He C Z. Induction of chromosomal inversion by integration of T-DNA in the rice genome[J]. Journal of Genetics and Genomics,2010,37(3): 189-196.
    [70]Cheng C Y, Daigen M, Hirochika H. Epigenetic regulation of the rice retrotransposon Tos17[J].Molecular Genetics and Genomics,2006,276(4): 378-390.
    [71]Hirochika H. Contribution of the Tos17 retrotransposon to rice functional genomics[J]. Current Opinion in Plant Biology,2001,4(2):118-122.
    [72]Hirochika, H., Insertional mutagenesis with Tos17 for functional analysis of rice genes[J]. Breeding Science,2010,60(5):486-492.
    [73]Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M. Retrotransposons of rice involved in mutations induced by tissue culture. Proceedings of the National Academy of Sciences of the United States of America[J].1996,93(15): 7783-7788.
    [74]Greco R, Ouwerkerk P B F, de Kam R J, Sallaud C, Favalli C, Colombo L, Guiderdoni E, Meijer A.H, Hoge(?) J H C, Pereira A. Transpositional behaviour of an Ac/Ds system for reverse genetics in rice[J]. Theoretical and Applied Genetics,2003,108(1):10-24.
    [75]Kolesnik T, Szeverenyi I, Bachmann D, Kumar C S, Jiang S Y, Ramamoorthy R, Cai M, Ma Z G, Sundaresan V, Ramachandran S. Establishing an efficient Ac/Ds tagging system in rice:large-scale analysis of Ds flanking sequences[J]. The Plant Journal,2004,37(2):301-314.
    [76]Wang X M, Yang Y, Yu C L, Zhou J, Cheng Y, Yan C Q, Chen J P. A highly efficient method for construction of rice artificial microRNA vectors[J]. Molecular Biotechnology,2010,46(3):211-218.
    [77]Krishnan A, Guiderdoni E, An G H, Hsing Y C, Han C D, Lee M C, Yu S M, Upadhyaya N, Ramachandran S, Zhang Q F, Sundaresan V, Hirochika H, Leung H, Pereira A. Mutant resources in rice for functional genomics of the grasses[J]. Plant Physiolog,2009,149(1):165-170.
    [78]Fu F F, Ye R, Xu S.P, Xue H.W. Studies on rice seed quality through analysis of a large-scale T-DNA insertion population[J]. Cell Research,2009,19(3): 380-391.
    [79]Jiang S Y, Ramachandran S. Assigning biological functions to rice genes by genome annotation, expression analysis and mutagenesis[J]. Biotechnology Letters,2010,32(12):1753-1763.
    [80]闫双勇,智庆文,刘欣洁,张红伟,谭振波,李仕贵.水稻T-DNA插入突变体库的构建及突变类型的分析[J].遗传学报,2004,31(12):1388-1394.
    [81]李爱宏,张亚芳,吴昌银,汤雯,武茹,戴正元,刘广青,张洪熙,潘学彪.水稻T-DNA插入突变体库的筛选及遗传分析(英文)[J].遗传学报,2006, 33(4):312-318.
    [82]宣云.γ-射线辐照粳稻愈伤组织后代突变体的筛选[J].中国农学通报,2010,26(6):39-42.
    [83]张治国.水稻标签库突变体筛选与分析[D].北京:中国农业科学院,2006.
    [84]Kesawat M S, Kumar Das B. Molecular markers:It's application in crop improvement[J]. Journal. of Crop Science and Biotechnology,2009,12(4): 169-181.
    [85]Kumar P, Gupta V K, Misra A K, Modi D R, Pandey B K. Potential of molecular markers in plant biotechnology[J]. Plant Omics Journal,2009,2(4): 141-162.
    [86]Ouborg N J, Piquot Y, Van Groenendael J M. Population genetics, molecular markers and the study of dispersal in plants[J]. Journal of Ecology,1999,87(4): 551-568.
    [87]李玥莹,邹剑秋,徐秀明.高粱SSR分子标记反应体系的建立和优化[J].杂粮作物,200,27(5):331-335.
    [88]Yesilkaya H, Meacci F, Niemann S, Hillemann D, Rusch-Gerdes S, LONG DRUG Study Group, Barer M R, Andrew P.W, Oggioni M.R. Evaluation of molecular-beacon, TaqMan, and fluorescence resonance energy transfer probes for detection of antibiotic resistance-conferring single nucleotide polymorphisms in mixed Mycobacterium tuberculosis DNA extracts[J]. Journal of Clinical Microbiology,2006,44(10):3826-3829.
    [89]Black WC 4th, Gorrochotegui-Escalante N, Duteau N M. Heated oligonucleotide ligation assay (HOLA):an affordable single nucleotide polymorphism assay[J]. Journal of Medical Entomology,2006,43(2):238-247.
    [90]Prince J A, Feuk L, Howell W M, Jobs M, Emahazion T, Blennow K, Brookes A.J. Robust and accurate single nucleotide polymorphism genotyping by dynamic allele-specific hybridization (DASH):design criteria and assay validation[J]. Genome Research,2001,11(1):152-162.
    [91]Galeano C H, Fernandez A C, Gomez M, Blair M W. Single strand conformation polymorphism based SNP and Indel markers for genetic mapping and synteny analysis of common bean (Phaseolus vulgaris L.)[J]. BMC Genomics,2009,10:629-642.
    [92]Lu X J, Jia Y Q, Fan H, Zhang L, Jia J. Methodological evaluation on PCR-DGGE technique in detecting DNA mutation and single nucleotide polymorphism[J]. Sichuan Da Xue Xue Bao Yi Xue Ban,2007,38(5):882-884.
    [93]Gupta P K, Roy J K, Prasad M. Single nucleotide polymorphisms:A new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants[J]. Current Science,2001,80(4):524-535.
    [94]Tobler A R, Short S, Andersen M R, Paner T M, Briggs J C, Lambert S M, Wu P P, Wang Y W, Spoonde A Y, Koehler R T, Peyret N, Chen C F, Broomer A J, Ridzon D A, Zhou H, Hoo B S, Hayashibara K C, Leong L N, Ma C C N, Rosenblum B B, Day J P, Ziegle J S, De La Vega F M, Rhodes M D, Hennessy K M, Wenz H.M. The SNPlex genotyping system:a flexible and scalable platform for SNP genotyping[J]. Journal of Biomolecular Techniques 2005, 16(4):398-406.
    [95]Michel F, Lazowska J, Faye G, Fukuhara H, Slonimski P P. Physical and genetic organization of petite and grande yeast mitochondrial DNA:Ⅲ. High resolution melting and reassociation studies[J]. Journal of Molecular Biology, 1974,85(3):411-431.
    [96]Steinert M, Van Assel S. Base composition heterogeneity in kinetoplast DNA from four species of hemoflagellates[J]. Biochemical and Biophysical Research Communications,1974,61(4):1249-1255.
    [97]Hiratsuka M, Narahara K, Kishikawa Y, Ismail Hamdy S, Endo N, Agatsuma Y, Matsuura M, Inoue T, Tomioka Y, Mizugaki M. A simultaneous LightCycler detection assay for five genetic polymorphisms influencing drug sensitivity[J]. Clinical Biochemistry,2002,35(1):35-40.
    [98]Ririe K M, Rasmussen R.P, Wittwer C.T. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction[J]. Analytical Biochemistry,1997.245(2):154-160.
    [99]Toyota T, Watanabe.A, Shibuya H, Nankai M, Hattori E, Yamada K, Kurumaji A, Karkera J D, Detera-Wadleigh S D, Yoshikawa T. Association study on the DUSP6 gene, an affective disorder candidate gene on 12q23, performed by using fluorescence resonance energy transfer-based melting curve analysis on the LightCycler[J]. Molecular Psychiatry,2000,5(5):489-494.
    [100]Herrmann M G, Durtschi J D, Wittwer C T, Voelkerding K V. Expanded instrument comparison of amplicon DNA melting analysis for mutation scanning and genotyping[J]. Clinical Chemistry,2007,53(8):1544-1548.
    [101]Wittwer C T, Reed G H, Gundry C N, Vandersteen J G, Pryor R J. High-resolution genotyping by amplicon melting analysis using LCGreen[J]. Clinical Chemistry,2003,49(6):853-860.
    [102]Erali M, Wittwer C T. High resolution melting analysis for gene scanning[J]. Methods,2010,50(4):250-261.
    [103]Vossen R H, Aten E, Roos A, den Dunnen J T. High-resolution melting analysis (HRMA):more than just sequence variant screening[J], Hum Mutat,2009, 30(6):860-866.
    [104]Mao F, Leung W.Y, Xin X. Characterization of EvaGreen and the implication of its physicochemical properties for qPCR applications[J]. BMC Biotechnology, 2007,7:76-91.
    [105]Tindall E A, Petersen D C, Woodbridge P, Schipany K, Hayes V.M. Assessing high-resolution melt curve analysis for accurate detection of gene variants in complex DNA fragments[J]. Human Mutation,2009,30(6):876-883.
    [106]Reed Gudrun H, Wittwer C T. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis[J]. Clinical Chemisty,2004,50(10):1748-1754.
    [107]甘四明,李发根,翁启杰,李梅,周长品,于晓丽.高分辨率溶解曲线及其在植物DNA变异检测中的应用[J/OL].基因组学与应用生物学,2010,29(5)[2011-3-8].http://chinese.sophiapublisher.com/art_detial.php?article_id=92 &j ournal_id=2&type=gab.
    [108]Hofinger B J, Jing H C, Hammond-Kosack K E, Kanyuka K. High-resolution melting analysis of cDNA-derived PCR amplicons for rapid and cost-effective identification of novel alleles in barley[J]. Theoretical and Applied Genetics, 2009,119(5):851-865.
    [109]Wu S B, Wirthensohn M G, Hunt P, Gibson J P, Sedgley M. High resolution melting analysis of almond SNPs derived from ESTs[J]. Theoretical and Applied Genetics,2008,118(1):1-14.
    [110]Margraf R L, Mao R, Edward Highsmith W, Holtegaard L M, Wittwer C T. Mutation scanning of the RET protooncogene using high-resolution melting analysis[J]. Clin Chem,2006,52(1):138-141.
    [111]Liew M, Pryor R, Palais R, Meadows C, Erali M, Lyon E, Wittwer C. Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons[J]. Clin Chem,2004,50(7):1156-1164.
    [112]Guan M., Zhou D Q, Ma W Z, Chen Y M, Zhang J, Zou H J. Association of an intronic SNP of SLC2A9 gene with serum uric acid levels in the Chinese male Han population by high-resolution melting method[J]. Clinical Rheumatology, 2011,30(1):29-35.
    [113]Lo F S, Luo J D, Lee Y J, Shu S G, Kuo M T, Chiou C C. High resolution melting analysis for mutation detection for PTPN11 gene:applications of this method for diagnosis of Noonan syndrome[J]. Clinica Chimica Acta,2009, 409(1-2):75-77.
    [114]Whittall R A, Scartezini M, Li K, Hubbart C, Reiner Z, Abraha A, Neil H A W, Dedoussis G, Humphries S E. Development of a high-resolution melting method for mutation detection in familial hypercholesterolaemia patients[J]. Annals Clinical Biochemistry,2009,47(1):44-55.
    [115]Chateigner-Boutin A L, Small I. A rapid high-throughput method for the detection and quantification of RNA editing based on high-resolution melting of amplicons[J]. Nucleic Acids Research,2007,35(17):e114-e121.
    [116]Akiyama H, Nakamura F, Yamada C, Nakamura K, Nakajima O, Kawakami H, Harikai N, Furui S, Kitta K, Teshima R. A screening method for the detection of the 35S promoter and the nopaline synthase terminator in genetically modified organisms in a real-time multiplex polymerase chain reaction using high-resolution melting-curve analysis [J]. biological and pharmaceutical bulletin,2009,32(11):1824-1829.
    [117]Wojdacz T K, Dobrovic A. Methylation-sensitive high resolution melting (MS-HRM):a new approach for sensitive and high-throughput assessment of methylation[J]. Nucleic Acids Research,2007,35(6):e41-e48.
    [118]Mackay J F, Wright C D, Bonfiglioli R G. A new approach to varietal identification in plants by microsatellite high resolution melting analysis: application to the verification of grapevine and olive cultivars[J]. Plant Methods, 2008,4:8-17.
    [119]Jeong H J, Jo Y D, Park S W, Kang B C. Identification of Capsicum species using SNP markers based on high resolution melting analysis[J]. Genome,2010, 53(12):1029-1040.
    [120]Ganopoulos I, Argiriou A, Tsaftaris A. Microsatellite high resolution melting (SSR-HRM) analysis for authenticity testing of protected designation of origin (PDO) sweet cherry products[J]. Food Control,2011,22(3-4):532-541.
    [121]Jaakola L, Suokas M, Haggman H. Novel approaches based on DNA barcoding and high-resolution melting of amplicons for authenticity analyses of berry species[J]. Food Chemistry,2010,123(2):494-500.
    [122]Lehmensiek A, Sutherland M W, McNamara R B. The use of high resolution melting (HRM) to map single nucleotide polymorphism markers linked to a covered smut resistance gene in barley[J]. Theoretical and Applied Genetics, 2008,117(5):721-728.
    [123]Croxford A E, Rogers T, Caligari P D S, Wilkinson M J. High-resolution melt analysis to identify and map sequence-tagged site anchor points onto linkage maps:a white lupin (Lupinus albus) map as an exemplar[J]. New Phytologist 2008,180(3):594-607.
    [124]Chagne D, Gasic K, Crowhurst R.N, Han Y P, Bassett H.C, Bowatte D.R, Lawrence T J, Rikkerink E H A, Gardiner S E, Korban S S. Development of a set of SNP markers present in expressed genes of the apple[J]. Genomics,2008, 92(5):353-358.
    [125]Ujino-Ihara T, Taguchi Y, Moriguchi Y, Tsumura Y. An efficient method for developing SNP markers based on EST data combined with high resolution melting (HRM) analysis[J]. BMC Research Notes,2010,3:51-55.
    [126]Wu S B, Tavassolian I, Rabiei G, Hunt P, Wirthensohn M, Gibson J P, Ford C M, Sedgley M. Mapping SNP-anchored genes using high-resolution melting analysis in almond[J]. Molecular Genetics and Genomics,2009,282(3): 273-281.
    [127]Mittler R, Rizhsky L. Transgene-induced lesion mimic[J]. Plant Molecular Biology,2000,44(3):335-344.
    [128]Mori M, Tomita C, Sugimoto K, Hasegawa M, Hayashi N, Dubouzet J G, Ochiai H, Sekimoto H, Hirochika H, Kikuchi S. Isolation and molecular characterization of a Spotted leaf 18 mutant by modified activation-tagging in rice[J]. Plant Molecular Biology,2007,63(6):847-860.
    [129]Wu C J, Bordeos A, Madamba M R S, Baraoidan M, Ramos M, Wang G L, Leach J E, Leung H. Rice lesion mimic mutants with enhanced resistance to diseases. Molecular Genetics and Genomics,2008,279(6):605-619.
    [130]Yin Z C, Chen J, Zeng L R, Goh M, Leung H, Khush G S, Wang G L. Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight[J]. Molecular Plant-Microbe Interactions,2000,13(8):869-876.
    [131]柳新伟,孟亚利,周治国,曹卫星.水稻颖花与籽粒发育模拟的初步研究[J].中国水稻科学,2004,18(3):249-254.
    [132]高东迎,郭士伟,李霞,孙立华,刘蔼民.02428/HX-3双单倍体(DH)群体对水稻白叶枯病的抗性鉴定[J].江苏农业学报,2002,18(4):246-248.
    [133]高东迎,黄雪清,刘永锋,孙立华,陈志谊,刘蔼民.水稻体细胞突变体HX-3在细胞水平上对白叶枯病的抗性[J].中国水稻科学,2003,17(4):311-314.
    [134]高东迎,黄雪清,孙立华,陆作楣.抗水稻白叶枯病体细胞突变体HX-3的研究及应用[J].云南大学学报(自然科学版),1999,21(S3):89-90.
    [135]高东迎,孙立华,刘蔼民.水稻白叶枯病菌对体细胞突变体HX-3愈伤组织的侵染[J].江苏农业学报,2004,20(1):13-17.
    [136]高东迎,孙立华,陆作楣.体细胞突变体HX-3对水稻白叶枯病的抗性遗传[J].西南农业学报,2001,14(2):41-43.
    [137]高东迎,孙立华,朱永兰,陆作楣,刘蔼民.水稻细胞突变体HX-3无性系的变异[J].江苏农业学报,2002,18(2):65-70.
    [138]高东迎,许志刚,陈志谊,孙立华,孙启明,陆凡,胡白石,刘永锋.体细胞突变体HX-3抗水稻白叶枯病基因的鉴定[J].遗传学报,2002,29(2):138-143.
    [139]孙立华,吕学锋,汤邦根,朱作为,黄明.用组织培养法筛选水稻抗白叶枯病突变体Ⅱ.再生植株后代的性状变异[J].江苏农业学报,1989,5(1):24-30.
    [140]孙立华,余建明,吕学锋.用组织培养法筛选水稻抗白叶枯病突变体Ⅰ.水稻愈伤组织抗白叶枯病病原菌的选择及其再生植株的抗病性鉴定[J].遗传学报,1986,13(3):188-193.
    [141]黄佳男,王长春,胡海涛,马伯军,严成其,杨玲.疣粒野生稻抗白叶枯病新基因的初步鉴定[J].中国水稻科学,2008,22(1):33-37.
    [142]王春连,赵炳宇,章琦,赵开军,刑全党.水稻白叶枯病新抗源Y238的鉴定及其近等基因系培育[J].植物遗传资源学报,2004,5(1):26-30.
    [143]郑崇珂,王春连,于元杰,梁云涛,赵开军.水稻抗白叶枯病新基因Xa32(t)的鉴定和初步定位[J].作物学报,2009,35(7):1178-1180.
    [144]Andaya C B, Ronald P C. A catalytically impaired mutant of the rice Xa21 receptor kinase confers partial resistance to Xanthomonas oryzae pv oryzae[J]. Physiological and Molecular Plant Pathology,2003,62(4):203-208.
    [145]Fitzgerald H A, Canlas P E, Chern M S, Ronald P C. Alteration of TGA factor activity in rice results in enhanced tolerance to Xanthomonas oryzae pv. Oryzae[S]. The Plant Journal,2005,43(3):335-347.
    [146]储昭晖.水稻白叶枯病隐性抗病基因xa13的分离与鉴定[D].武汉:华中农业大学,2005.
    [147]Du B, Zhang W L, Liu B F, Hu J, Wei Z, Shi Z Y, He R F, Zhu L L, Chen R Z, Han B, He G C. Identification and characterization of Bphl4, a gene conferring resistance to brown planthopper in rice[J]. Proceedings of the National Academy of Sciences,2009,106(52):22163-22168.
    [148]Qiu D Y, Xiao J, Ding X H, Xiong M, Cai M, Cao Y L, Li X H, Xu C G, Wang S P. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling[J]. Molecular Plant-Microbe Interactions,2007,20(5):492-499.
    [149]沙爱华.水稻白叶枯病成株抗性机理研究[D].武汉:华中农业大学,2005.
    [150]毛碧增.转基因水稻抗病性的遗传和对发育调控的机理研究[D].杭州:浙江大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700