用户名: 密码: 验证码:
电网电压跌落下双馈风电机组运行控制与保护研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着风电在电网中比例快速提高,具有随机性和间歇性特点的风电并网将给系统的无功电压稳定运行带来较大影响。2011年以来,中国西北、华北等大规模风电基地发生了多起风电机组连锁脱网事故。初步分析表明这几起大面积风电脱网事故与风电机组的低电压穿越能力、高电压穿越能力以及无功电压控制等密切相关。当前双馈风电机组(Doubly-Fed Induction Generator, DFIG)已成为世界上风电装机的主流机型,也是在系统故障时发生连锁脱网最多的机组类型。为研究机组连锁脱网原因和提出相应措施,本文研究了电网电压跌落下DFIG运行控制与保护技术,主要研究内容包括:
     分析表明了在电网不对称电压跌落下提高DFIG控制能力是应对脱网的技术关键。提出了用于快速分离正负序分量的瞬时对称分量计算法,并将其扩展到分离转子中非工频的正负序分量。仿真对比表明大幅提高了不对称电压跌落下的控制响应速度。提出将DFIG电网电压跌落下的控制过程分为四个阶段,并给出了机/网侧变流器不同阶段相应的控制目标和控制策略。提出了以转子功率变化量为网侧控制前馈项的控制策略,实现了机网侧联合统一控制,仿真结果表明显著改善了电压深度跌落下DFIG的控制性能。
     研究了电网电压恢复过程中DFIG连锁脱网重要原因。深入分析了电压跌落和恢复过程中的机端电压相角跳变机理及其对矢量定向控制的影响。提出了机端电压相角补偿控制原理,改进了现有的DFIG电压跌落下控制策略:正常运行及Crowbar退出阶段,采用定子磁链定向控制;在Crowbar投入阶段,封闭转子侧变流器的脉冲,网侧变流器保持正常工作;在电网电压恢复阶段采用相角补偿控制。仿真和动模试验结果表明电压恢复阶段,改进的控制策略能够有效抑制转子过电流,从而降低机组脱网的风险。
     撬棒(Crowbar)保护是DFIG实现低电压穿越的主要方式。为研究集成Crowbar保护的DFIG交互影响及其连锁脱网原因,分析了对称电压跌落下定转子电流的计算方法,给出了投入Crowbar后定转子电流峰值估算式以及Crowbar电阻取值方法。分析了Crowbar保护风电场无功功率特性和低电压穿越特性。仿真研究表明风电机组和风电场之间存在较强暂态耦合,Crowbar保护对系统动态特性具有重要影响,Crowbar保护电阻取值和投切控制需要综合考虑机组电气应力约束和系统无功支撑的需求。针对基于SCR的三相交流结构和基于IGBT的三相整流结构的Crowbar保护方案,进行了风电场现场测试,数据表明Crowbar保护投入后应在故障清除后1~2周期内切出,避免在故障恢复期间,因风电机组异步运行从系统吸收大量无功,对系统恢复产生不利影响;有源Crowbar保护具有较好的可控性,可以达到更加优异的系统特性,并保有足够的可靠裕度,能有效增强风电场对电网故障的应对能力。
     基于实际风电外送电网拓扑和参数建模,仿真重演了某实际风电场的风电机组连锁脱网事故的暂态过程。基于仿真结果分析了该暂态过程中风电机组和无功补偿装置的动态无功响应能力,并提出了综合考虑以上动态无功响应能力的大规模风电场全过程无功电压紧急控制策略:在电压跌落期间风电机组网侧变流器基于电压变化量提供实时动态无功支撑缓解电压跌落;在故障切除之前主动切除部分无功补偿装置来抑制暂态过电压;在故障恢复阶段根据电压判据重新投入无功补偿装置为系统提供无功调节能力,并通过仿真验证了所提策略的可行性和有效性。
With the increasing share of the wind power in the power system, the impact of its integration is becoming more widespread. Random and intermittence of wind has more and more influence on the stability of power system. Since2011, the cascad-ing disconnection failures of power system caused by disturbance frequently occur in large-scale wind power base of China's North and Northwest. The preliminary analysis shows that the cascading disconnection closely related to low voltage ride through (LVRT) and high voltage ride through (HVRT) capability of the wind pow-er generation system and its reactive power control system. Based on its merit, doubly-fed induction generator (DFIG) has become one of mainstream model of wind-driven generator which connected with grid directly, and also the most com-mon types in all of the cascading disconnection. In order to explore the causes, op-eration and protection technology under the grid voltage dip were proposed in view of the existing problems.
     The analysis states that improving the control ability of DFIG under the volt-age dip is the key to deal with cascading disconnection. The method of instaneous sequence component to get the positive and negative sequence was improved and expanded to non-power frequency. The simulation result shows that this algorithm is more effective and efficient compared with the traditional method. The imple-mentation is broken down into four phases, and different objectives and strategies are presented during the voltage dip. Base on the rotor power variation, a novel feed forward control strategy is proposed for DIFG. The simulation results show that the proposed strategy can significantly improve control performance and realize unified control of grid side and rotor side converter.
     The cascading disconnection was revealed in the grid voltage recovering peri-od. The sudden changes of the phase angle and its impact on the vector orientation under grid voltage dip and recover, was deeply analyzed. The phase angle compen-sation theory and improved control strategy is proposed under voltage dip. In nor-mal operation stage (without crowbar), stator flux oriented control is used. In volt-age dip stage (with crowbar), deactive the rotor side converter and active grid-side converter. The phase angle compensation theory is adopted in grid voltage recover-ing period. The simulations and dynamic test shows that the improved control strategy effectively can decrease the rotor over-current and reduce the risk of cas-cading failures.
     Consequently, the crowbar is the most commonly method for DFIG to realize low voltage ride through. In order to study the reason of cascading disconnection and the influence among the DFIGs with crowbar, the resistance of crowbar was calculated based on the estimation formula of peak current on the stator and rotor side. The simulations show that complexity and tight coupling between DFIGs and the wind farms. Crowbar circuit has significant influence on dynamic feature of system. The resistance value and switching control strategy should account for the needs of electrical constraints and the reactive compensatory requirement for power system. The measurement of field-tests are carried out based on the SCR’s three-phase ac structure and IGBT’s three-phase rectifier structure of crowbar cir-cuit protection scheme. These data indicate that crowbar circuit should be disabled after1~2periods at the fault clearance, because its negative effects of reactive power consuming in the grid voltage recovering period. Active crowbar circuit can effectively strengthen the ability to resist grid failures, for its good controllability and enough stability margins.
     The real wind power delivery case with detailed power network topology and parameters is modeled, and based on it the transient process of large-scale wind turbines cascading disconnection is recurred. The dynamic reactive power response capabilities of wind turbines and reactive power compensation devices during the transient process are analyzed. A reactive power and voltage emergency control strategy with the consideration of above dynamic reactive power response capabili-ties is proposed. In the proposed emergency control strategy, the grid-side convert-ers of wind turbines are utilized to dynamically provide reactive power to the grid to mitigate voltage drop in real time. In addition, reactive power compensation devices are actively disconnected to the grid before fault removal to restrain the transient overvoltage, and then reconnected to the grid according to voltage level in recover-ing period to provide reactive power support. The simulation validates the feasibil-ity and effectiveness of the proposed control strategy.
引文
[1] Azmy A M, Erlich I. Impact of distributed generation on the stability ofelectrical power system[C]. IEEE Power Engineering Society GeneralMeeting, San Francisco, CA, USA, Jun.2005:12-16.
    [2] Erlich I, Rensch K, Shewarega F. Impact of Large Wind Power Generation onFrequency Stability[C]. IEEE Power Engineering Society General Meeting,Montreal, Canada, Jun.2006:18-22.
    [3] Hochheimer J P E. Wind Generation Integration&Operation-technicalChallenges/Issues[C]. IEEE Power Engineering Society General Meeting,Montreal, Canada, Jun.2006:18-22.
    [4]吕伟业.中国电力工业发展及产业结构调整[J].中国电力,2002,35(1):1-7.
    [5]郑宝森,郭日彩.中国互联电网的发展[J].电网技术,2003,27(2):1-3.
    [6]张永平,焦连伟,陈寿孙,等.电力市场阻塞管理综述[J].电网技术,2003,27(8):1-9.
    [7] J. Bialek. Tracing the Flow of Electricity[J]. IEE Proceedings:Generation,Transmission and Distribution,1996,143(4):313-320.
    [8] J.Morren, S.W.H.de Haan. Ride-through of Wind Turbines with Doubly-fedInduction Generator during a Voltage Dip[J]. IEEE Transactions on EnergyConversion,2005,20(2):435-441.
    [9]叶鹏,李晶,宋家骅.电力市场环境下阻塞问题研究综述[J].华北电力大学学报,2003,30(1):65-69.
    [10] J.Niiranen. Voltage Dip Ride Through of Doubly-fed Generator EquippedwithActive Crowbar[C]. Proceeding of Nordic Wind Power Conference, Gothen-burg, Sweden,2004:1-2.
    [11] A. Perdana, O.Carlson, J.Persson. Dynamic Response of Grid-connectedWind Turbine with Doubly Fed Induction Generator during Disturbances[C].Nordic Workshop on Power and Ind. Electron(NOR-PIE2004), Trondheim,Norway,2004:1-7.
    [12] Dittrich, A.Stoev, A. Comparison of Fault Ride-through Strategiesfor WindTurbines with dfim Generators[C].Power Electronics and Applications,2005European Conference on, Dresden, Germany, Sep.2005:1-8.
    [13]荆朝霞,段献忠,文福拴,等.输电系统固定成本分摊问题[J].电力系统自动化,2003,27(16):94-100.
    [14] F.D. Galiana, A.J. Conejo, I.Kockar. Incremental Transmission LossAllocation under Pool Dispatch[J]. IEEE Trans. on Power Systems,2002,17(1):26-23.
    [15]刘其辉,贺益康,张建华.并网型交流励磁变速恒频风力发电系统控制研究[J].中国电机工程学报,2006,26(23):109-114.
    [16] Datta R, Ranganathan V T. Variable-speed WindPower Generation UsingDoubly Fed Wind Rotor Induction Machine-a Comparison with AlternativeSchemes[J]. IEEE Trans. on Energy Conversion,2002,17(3):414-421.
    [17]常乃超,郭志忠.输电服务中的网损分摊[J].电力系统自动化,2002,26(17):19-23.
    [18] Oren S, P. Spiller, P.Varaiya, et al. Nodal Prices and Transmission Rights:ACritical Appraisal[J]. The Electricity Journal,1996,8(3):24–35.
    [19] Rau N S. Transmission Loss and Congestion Cost Allocation—an ApproachBased on Responsibility[J]. IEEE Trans. on Power Systems,2000,15(4):1401-1409.
    [20] Christie R D, Wollenberg B F, Wangensteen I. Transmission Management inthe Deregulated Environment[J]. IEEE Proceedings,2000,88(2):170-195.
    [21] Fang R S, David A K. Optimal Dispatch under Transmission Contracts[J].IEEE Trans. on Power Systems.1999,14(2):732-737.
    [22]李帆,朱敏.英国电力市场及输电系统简介[J].电力系统自动化.1999,23(2):33-40.
    [23] Erlich I, Bachmann U. Grid Code Requirements Concerning Connection andOperation of Wind Turbines in Germany[C]. IEEE Power EngineeringSociety General Meeting, San Francisco, United States,2005(2):1253-1257.
    [24] Petersson A., Lundberg S., Thiringer T.. A DFIG Wind-turbine Ride-throughSystem Influence on The Energy Production[C]. Nordic Wind PowerConference, Gothenburg, Sweden,2004:1-7.
    [25]周鹏.双馈异步风力发电系统低电压穿越技术研究[D].杭州:浙江大学学位论文,2011:20-24.
    [26] David A K. Dispatch Methodologies for Open Access TransmissionSystems[J]. IEEE Trans. on Power Systems.1998,13(1):46-53.
    [27] Abbey C, Joos G. Effect of Low Voltage Ride Through(LVRT)Characteristic on Voltage Stability[J]. IEEE Transactions on IndustryApplications,2005,41(3):1-7.
    [28] BingXie, BrendanFox, DamianFlynn. Study of Fault Ride-through for DFIGbasedWind Turbines[J]. IEEE International Conference on Electric UtilityDeregulation Restructuring and Power Technologies, Hong Kong,2004(1):411-416.
    [29] JohnaMorren, Sjoerd W HdeHaan. Ride Through of Wind Turbines withDoubly-fed Induction Generator during a Voltage Dip[J]. IEEE Transactionson Energy Conversion,2005,20(2):435-441.
    [30]李建林,朱颖,胡书举,等.风力发电系统中大功率变流器的应用[J].高电压技术,2009,35(1):169-175.
    [31] Schweppe F C, Caramanis M C, Tabors R D, et al. Spot Price of Electricity[J].Kuwer Academic Publishers,1998:50-51.
    [32] Marannino P, Vailati R, Zanellini F, et al. OPF Tools for Optimal Pricing andCongestion Management in a Two Sided Auction Market Structure[J]. PowerTech Proceedings, Porto,2001(1):7-14.
    [33]张琛,李征,高强,等.双馈风电机组的不同控制策略对轴系振荡的阻尼作用[J].中国电机工程学报,2013,33(27):135-144.
    [34]姚骏,廖勇,李辉.采用串联网侧变换器的DFIG风电系统低电压穿越控制[J].电力系统自动化,2010,34(6):98-115.
    [35]王宏胜,章玮,胡家兵,等.电网电压不对称故障条件下DFIG风电机组控制策略[J].电力系统自动化,2010,34(4):97-102.
    [36]欧阳金鑫,熊小伏,张涵轶电网短路时并网双馈风电机组的特性研究[J].中国电机工程学报,2011,31(22):17-25.
    [37]田野,王冕,张艺枥,等.基于机电储能的永磁同步发电机低电压穿越控制策略[J].电力系统自动化,2012,36(7):17-21.
    [38]黄伟煌,付勋波,胡书举,等.基于全功率变流器的失速型风电机组低电压穿越改造[J].电力系统自动化,2013,37(76):1-6.
    [39] T Sun, Z Chen, F Blaabjerg. Transient Analysis of Grid-Connected WindTurbines with DFIG After an External Short-Circuit Fault[C]. Nordic WindPower Conference, Sweden,2004:1-6.
    [40] Morren, J. deHaan. Short-Circuit Current of Wind Turbines With Doubly FedInduction Generators[J]. IEEE Transactions on Energy Conversion,2006,22(1):174-180.
    [41] Slavomir Seman. Transient Performance Analysis of Wind-power InductionGenerators[D]. Doctoral Dissertation, Helsinki University of Technology,2006:15-18.
    [42] Lopez J, Sanchis P, Roboam X, et al. Dynamic Behavior of the Doubly FedInduction Generator During Three-Phase Voltage Dips[J]. IEEE Transactionson Energy Conversion,2007,22(3):709-717.
    [43] Slavomir Seman, Jouko Niiranen, Antero Arkkio. Ride-Through Analysis ofDoubly Fed Induction Wind-Power Generator Under Unsymmetrical NetworkDisturbance[J]. IEEE Trans. on Power Systems,2006,21(4):1782-1789.
    [44] Andreas Dittrich, Alexander Stoev. Grid Voltage Fault Proof Doubly-FedInduction Generator System[C]. Proceedings of Power Electronics andApplications, Toulouse, France,2003:216-231.
    [45] Yi Wang, Lie Xu, Williams B W. Improved Operation of DFIG andFSIG-based Wind Farms during Network Unbalance[C]. IEEE Power andEnergy Society General Meeting, Pittsburgh, Pennsylvania,2008:1-7.
    [46] Teodorescu R, Blaabjerg F, Liserre M, et al. Proportional-resonant Controllersand Filters for Grid-connected Voltage-source Converters[J]. IEE Proceedingsof Electric Power Applications,2006,153(5):750-762.
    [47] Timbus A V, Ciobotaru M, Teodorescu R, et al. Adaptive Resonant Controllerfor Grid-Connected Converters in Distributed Power Generation Systems[C].IEEE Applied Power Electronics Conference and Exposition, Dallas, Texas,2006:1601-1606.
    [48] Hu Jiabing, He Yikang, NianHeng. Control of Back-to-Back PWMConverters for DFIG Wind Turbine Systems under Unbalanced GridVoltage[J]. Journal of Zhejiang University,2007,8(8):1330-1339.
    [49] Karimi-Davijani H, Sheikholeslami A, Livani H, et al.Fault ridethroughcapability improvement of wind farms using doubly fed inductiongenerator[C].43rd International Universities Power Engineering Conference,Padova, Italy,2008.
    [50] Xiang Dawei, Yang Shunchang, Ran Li. System Simulation of a Doubly FedInduction Generator Ride-through Control for Symmetrical Grid Fault[J].Proceedings of the Chinese Society for Electrical Engineering,2006,26(10):130-135.
    [51] Xiang D,Ran L,Tavner P J,et al. Control of a Doubly Fed Induction Generatorin a Wind Turbine During Grid Fault Ride-Through [J]. IEEE Transactions onEnergy Conversion,2006,21(3):652-662.
    [52] Anaya-Lara O,ZiFaLiu,Quinonez-Varela G,et al. Optimal DFIG CrowbarResistor Design under Different Controllers during Grid Faults[C]. ThirdInternational Conference on Electric Utility Deregulation and Restructuringand Power Technologies, China,2008:2580-2585.
    [53] Wei Zhang,Peng Zhou,Yikang He. Analysis of the By-Pass Resistance of anActive Crowbar for Doubly-Fed Induction Generator Based Wind Turbinesunder Grid Faults[C]. International Conference on Electrical Machines andSystems,China,2008:2316-2321.
    [54] Zhou Peng,He Yikang. Control Strategy of an Active Crowbar for DFIGBased Wind Turbine under Grid Voltage Dips[C]. International Conference onElectrical Machines and Systems, Seoul, Korea,2007:259-264.
    [55] Wenzhong Gao, Ge Wang, Jiaxin Ning. Development of Low VoltageRide-Through Control Strategy for Wind Power Generation Using Real TimeDigital Simulator[C]. IEEE/PES Power Systems Conference and Exposition,Washington, USA,2009:1-6.
    [56] Kasem A H, El-Saadany E F, El-Tamaly H H, et al. An Improved FaultRide-through Strategy For Doubly Fed Induction Generator-based WindTurbines[J].IET Renewable Power Generation,2008,2(4):201-214.
    [57] Yang Shuying.Converter and Control for Doubly Fed Induction GeneratorBased Wind Power Generation[D]. HeFei University of Technology,2007.
    [58] F.C. Schweppe, M.C. Caramanis, R.D. Tabors. Evaluation of Spot PriceBased Electricity Rates[J]. IEEE Trans. on PAS.1985,104(7):1644-1655.
    [59]宋海华,谢震,张兴,等.基于有源阻尼的DFIG低电压穿越控制研究[J].电力电子技术,2011,45(8):42-44.
    [60]张保会,王进,李光辉,等.具有低电压穿越能力的风电接人电力系统继电保护的配合[J].电力自动化设备,2012,32(3):1-6.
    [61] Kalantarian S.R., Heydari H. A new crowbar protection method forimprovement in performance of doubly fed induction generator under faultconditions[J]. Environment and Electrical Engineering (EEEIC),2011:1-4.
    [62] Okedu K.E., Muyeen S.M., Takahashi R., et al. Participation of facts instabilizing DFIG with crowbar during grid fault based on grid codes[J]. GCCConference and Exhibition (GCC),2011:365–368.
    [63]程孟增,窦真兰,蔡旭.基于三电平变换器励磁的双馈感应发电机低电压穿越性能研究[J].电力自动化设备,2012,32(1):14-19.
    [64]陈波,吴政球.基于约束因子限幅控制的双馈感应发电机有功功率平滑控制[J].中国电机工程学报,2011,31(27):130-137.
    [65]郑重,杨耕,耿华.配置STATCOM的DFIG风电场在不对称电网故障下的控制策略[J].中国电机工程学报,2013,33(19):27-38.
    [66] J. Kumar, G. Sheble. Auction Market Simulator for Price Based Operation[J].IEEE Trans. on Power Systems.1998,13(1):250-255.
    [67] L Cong, Y Wang, D J Hill. Transient Stability and Voltage RegulationEnhancement via Coordinated Control of Generator Excitation and SVC[J].International Journal of Electrical Power and Energy Systems.2005,27(2):12-130.
    [68] IEEE1547. IEEE Standard for Interconnecting Distributed Resources withElectric Power System[S].2003.
    [69]马浩淼,高勇,杨媛,等.双馈风力发电低电压穿越撬棒阻值模糊优化[J].中国电机工程学报,2012,32(34):17-23.
    [70]杜强,张惠娟,张同庆.双馈风力发电机组撬棒电路保护技术的研究[J].电力电子技术,2011,45(8):48-50.
    [71] Uphues A., Notzold K., Wegener R., et al. Inverter based test setup for LVRTverification of a full-scale2MW wind power converter[J]. Power Electronicsand Applications (EPE).201315th European Conference on,2013:1-5.
    [72] Alharbi Y.M, Yunus A.M.S, Abu Siada A. Application of UPFC to improvethe LVRT capability of wind turbine generator[J]. Universities Power Engi-neering Conference (AUPEC),2012:1-4.
    [73]彭思敏,王晗,蔡旭,等.含双馈感应发电机及并联型储能系统的孤网运行控制策略[J].电力系统自动化,2012,36(23):23-28.
    [74]李和明,张祥宇,王毅,等.基于功率跟踪优化的双馈风力发电机组虚拟惯性控制技术[J].中国电机工程学报,2012,32(7):32-39.
    [75] Hossain M.J., Pota H.R., Ugrinovskii V.A., et al. Simultaneous STATCOMand Pitch Angle Control for Improved LVRT Capability of Fixed-Speed WindTurbines[J]. Sustainable Energy, IEEE Transactions on2010:142-151.
    [76]熊小伏,欧阳金鑫,文安.电网故障时双馈风电机组定子电压特性及影响分析[J].电力系统自动化,2012,36(14):143-149.
    [77] Galiana F D, Ilic M. A Mathematical Framework for the Analysis andManagement of Power Transactions under Open Access[J]. IEEE Trans. onPower Systems.1998,13(2):681-687.
    [78] Galiana F D, Kockar I, Franco P C. Combined Pool/Bilateral Dispatch-Part I:Performance of Trading Strategies[J]. IEEE Trans. on Power Systems.2002,17(11):92-99.
    [79]施刚,蔡旭,程孟增.孤立系统的风电接入容量及低电压穿越特性的仿真分析[J].电力系统自动化,2010,34(16):87-91.
    [80]洪芦诚,魏应冬,姜齐荣,等.基于动态电压调节器的风电机组低电压穿越策略[J].电力系统自动化,2011,35(16):32-37.
    [81] Lo E.O., Xie Kai, Senthil J. Adjustable Inter-SC Trade Modeling inCongestion Management[C]. Power Engineering Society Summer Meeting,2001(2):1063-1069.
    [82] Wang X, Song Yonghua,Lu Qiang. Primal-dual Interior Point LinearProgramming Optimal Power Flow for Real-time Congestion Management[C].IEEE Power Engineering Society Winter Meeting,2000(3):1643-1649.
    [83] Wang X, Song Yonghua, Lu Qiang. A Coordinated Real-time OptimalDispatch Method for Unbundled Electricity Markets[J]. IEEE Trans. onPower Systems.2002,17(2):482-490.
    [84]朱晓东,石磊,陈宁,等.考虑Crowbar阻值和退出时间的双馈风电机组低电压穿越[J].电力系统自动化,2012,34(18):84-89.
    [85]黄涛,陆于平,凌启程,等.撬棒电路对风电场侧联络线距离保护的影响及对策[J].电力系统自动化,2013,37(17):30-36.
    [86] Oren S S,Ross A M. Economic Congestion Relief across Multiple RegionsRequires Tradable Physical Flow-gate Rights[J]. IEEE Trans. on PowerSystems.2002,17(1):159-165.
    [87] Lei J, Deng Y, Zhang R. Congestion Management for Generation Schedulingin a Deregulated Chinese Power System[C]. Power Engineering SocietyWinter Meeting.2001(3):1262-1265.
    [88]郎永强,张学广,徐殿国,等.双馈电机风电场无功功率分析及控制策略[J].中国电机工程学报,2007,27(9):77-82.
    [89]申洪,王伟胜,戴慧珠.变速恒频风力发电机组的无功功率极限[J].电网技术,2003,27(11):60-63.
    [90] Ruiz P A, Suaer P W. Voltage and reactive power estimation for contingencyanalysisusing sensitivities[J]. IEEE Trans on Power Systems.2007,22(2):639-647.
    [91]李晶.变速恒频双馈风电机组动态模型及并网控制策略的研究[D].北京:华北电力大学学位论文,2004:60-62.
    [92]王松岩.双馈感应发电机型风电场的无功电压控制问题研究[D].哈尔滨:哈尔滨工业大学学位论文,2009:45-47.
    [93]陈惠粉,乔颖,鲁宗相,等.风电场群的无功电压协调控制策略[J].电力系统自动化,2010,34(8):78-83.
    [94] Saiman K, Anital J. Modeling Consideration and Factors Influencing TheStability of a Grid-connected Wind Power-based Embedded Generator[J].IEEE Trans on Power Systems,2003,18(2):793-802.
    [95] TAMURA J, UENOM. Transient Stability Simulation of power system including wind generator by PSCAD/EMTDC[C]. Porto Power Tech Conference,2001(4):337-341.
    [96]迟永宁,李群英,李琰等.大规模风电并网引起的电力系统运行与稳定问题及对策[J].电力设备,2008,9(11):16-19.
    [97]迟永宁,王伟胜,刘燕华,等.大型风电场对电力系统暂态稳定性的影响[J].电力系统自动化,2006,30(15):10-14.
    [98] Go ksu O., Teodorescu R., Bak C.L., et al. Impact of wind power plantreactive current injection during asymmetrical grid faults[J]. RenewablePower Generation,2013:484-492.
    [99]王宾,董新洲.风电场电流保护动作特性等价低电压穿越容量性能分析[J].电力系统自动化,2011,35(24):23-27.
    [100] Teng Long, Shiyi Shao, Abdi, E., et al.Asymmetrical Low-Voltage RideThrough of Brushless Doubly Fed Induction Generators for the Wind PowerGeneration[J]. IEEE Transactions on Energy Conversion,2013:502-511.
    [101]施凯,黄文新,胡育文,等.定子双绕组感应电机风力发电系统的低电压穿越特性分析[J].电力系统自动化,2012,36(17):28-33.
    [102] Mohseni M, Islam S., Masoum M.A.S. Impacts of Symmetrical andAsymmetrical Voltage Sags on DFIG-Based Wind Turbines ConsideringPhase-Angle Jump, Voltage Recovery, and Sag Parameters[J]. IEEETransactions on Power Electronics,2011:1587-1598.
    [103] Rodriguez P., Luna A., Medeiros G., et al. Control of STATCOM in windpower plants based on induction generators during asymmetrical grid faults[J]. Power Electronics Conference (IPEC),2010:2066–2073.
    [104]蔚芳,刘其辉,谢孟丽,等.适应多类型故障的双馈风电机组低电压穿越综合控制策略[J].电力系统自动化,2013,37(5):23-28.
    [105] Shuai Xiao, Geng Yang, Hua Geng. Analysis of the control limit ofcrowbar-less LVRT methods for DFIG-based wind power systems underasymmetrical voltage dips[J]. Innovative Smart Grid Technologies Asia(ISGT),2011:1-7.
    [106]张艳霞,童锐,赵杰,等.双馈风电机组暂态特性分析及低电压穿越方案[J].电力系统自动化,2013,37(6):7-11.
    [107]朱颖,李建林,赵斌.双馈型风力发电系统低电压穿越策略仿真[J].电力自动化设备,2010,30(6):20-24.
    [108] Wessels C., Hoffmann N., Molinas M., et al. Stat Com control at wind farmswith fixed-speed induction generators under asymmetrical grid faults[J].IEEE Transactions on Industrial Electronics,2013:2864-2873.
    [109]张永斌.袁海文.双馈风电机组低电压穿越主控系统控制策略[J].电力自动化设备,2012,32(8):106-112.
    [110]迟永宁,王伟胜,刘燕华,等.大型风电场对电力系统暂态稳定性的影响[J].电力系统自动化,2006,30(15):10-14.
    [111] R. Cardenas, R. Pena. Sensorless Vector Control of Induction Machines forVariable-speed Wind Energy Applications[J]. IEEE Trans. on EnergyConversion,2004,19(1):196-205.
    [112]刘博如.不对称电网条件下双馈风电变流器控制策略研究[D].北京:北京交通大学学位论文,2012:62-65.
    [113]季健强.电压型PWM整流器(VSR)不平衡控制策略研究[D].合肥:合肥工业大学学位论文,2004:45-48.
    [114] HenkPolinder, Frank F A., van der Pijl, et al. Comparison of Direct-drive andGeared Generator Concepts for Wind Turbines[J]. IEEE Trans. on EnergyConversion,2006,21(3):725-733.
    [115] Andrew M. Knight, Glenn E. Peters. Simple Wind Energy Controller for AnExpanded Operating Range[J]. IEEE Trans. on Energy Conversion,2005,20(2):459-466.
    [116]杨淑英,张兴,张崇巍,等.变速恒频双馈风力发电机投切控制策略[J].中国电机工程学报,2007,27(17):103-108.
    [117] Li Tan. Digital Signal Processing:Fundamentals and Applications[J].Academic Press,2008:760-766.
    [118] Pedro Rodriguez. Decoupled Double Synchronous Reference Frame PLL forPowerConverters Control[J]. IEEE Transactionson Power Electronics,2007,22(2):584-592.
    [119]王鹿军,张冲,吕征宇.电网谐波背景下单相并网逆变器的锁相方法[J].电力系统自动化,2013,37(14):107-112.
    [120]杜雄,郭宏达,孙鹏菊,等.基于ANF-PLL的电网电压基波正负序分离方法[J].中国电机工程学报,2013,33(27):28-35.
    [121] Vidal J., Abad G., Arza J., et al. Single-Phase DC Crowbar Topologies forLow Voltage Ride Through Fulfillment of High-Power Doubly Fed InductionGenerator-Based Wind Turbines[J]. IEEE Transactions on Energy Conversion,2013,28(3):768-781.
    [122]侯树文,胡娅珂.变阻值Crowbar电路及其在提高双馈式风电机组低电压穿越能力中的应用[J].电力与能源,2012,33(2):159-173.
    [123] Soliman H., Marei M.I., El-Sharkawy R.M., et al. Analysis of the dynamicbehavior of a DFIG during grid disturbances using active crowbarprotection[J]. Environment and Electrical Engineering (EEEIC),2013:160–163.
    [124]马文龙. Crowbar保护在双馈异步风力发电系统电网故障穿越中的应用[J].电力自动化设备,2011,31(7):127-130.
    [125]李建林,许鸿雁,梁亮. VSCF-DFIG在电压瞬间跌落情况下的应对策略[J].电力系统自动化,2006,30(19):65-68.
    [126] Leborgne R C. Voltage Sags Characterisation and Estimation. Division ofElectric Power Engineering[D]. Charlmers University of Technology, Sweden,2005:35-39.
    [127]王成元,夏加宽,孙宜标.现代电机控制技术[M].机械工业出版社,2009.
    [128]李辉,杨顺昌,廖勇.并网双馈风机电网电压定向励磁控制的研究[J].中国电机工程学报,2003,23(8):159-162.
    [129]王茂海,孙元章.基于DFT的电力系统相量及功率测量新算法[J].电力系统自动化,2005,29(2):20-24.
    [130]贺益康,郑康,潘再平,等.交流励磁变速恒频风电系统运行研究[J].电力系统自动化,2004,28(13):55-60.
    [131]杨淑英.双馈型风力发电变流器及其控制[D].合肥:合肥工业大学学位论文,2007:44-48.
    [132]苑国锋.大容量变速恒频双馈异步风力发电机系统实现[D].北京:清华大学学位论文,2006:51-54.
    [133] Lie Xu, Yi Wang. Dynamic Modeling and Control of DFIG-based WindTurbines under Unbalanced Network Conditions[J]. IEEE Transactions onPower Systems,2007,22(1):314-323.
    [134]王大伟.双馈风力发电机运行控制技术研究[D].北京:华北电力大学学位论文,2011:52-54.
    [135]张禄,金新民,战亮宇.电网电压不对称跌落下双馈风电机组转子电压分析[J].电力系统自动化,2012,36(14):136-142.
    [136] Reza Kalantarian S., Heydari H. An analytical method for selecting optimizedcrowbar for DFIG with AHP algorithm[J]. Power Electronics, Drive Systemsand Technologies Conference (PEDSTC),2011:1-5.
    [137] Lie Xu. Enhanced Control and Operation of DFIG-Based Wind Farms DuringNetwork Unbalanced[J]. IEEE Transactions on Energy Conversion,2008,23(4):1073-1081.
    [138]刘其辉.变速恒频风力发电系统运行与控制研究[D].杭州:浙江大学学位论文,2005:56-61.
    [139] Beniuga O., Beniuga R., Bicleanu P., et al. Wind turbine crowbar reliabilityrelated on electric charge accumulation/discharge[J]. Electrical and PowerEngineering (EPE),2012:900–903.
    [140] Ling Peng, Francois, B., Yongdong Li. Improved Crowbar Control Strategyof DFIG Based Wind Turbines for Grid Fault Ride-Through[J]. AppliedPower Electronics Conference and Exposition,2009:1932-1938.
    [141]李华德.交流调速控制系统[M].电子工业出版社,2007.
    [142]郑重,杨耕,耿华.电网故障下基于撬棒保护的双馈风电机组短路电流分析[J].电力自动化设备,2012,32(11):7-15.
    [143] Chi Jin, Peng Wang. Enhancement of low voltage ride-through capability forwind turbine driven DFIG with active crowbar and battery energy storagesystem[J]. Power and Energy Society General Meeting,2010:1-8.
    [144]秦原伟,刘爽.基于Crowbar的双馈风力发电低电压穿越研究[J].电力电子技术,2011,45(8):51-53.
    [145] Pannell G., Atkinson D.J., Zahawi B. Minimum-Threshold Crowbar for aFault-Ride-Through Grid-Code-Compliant DFIG Wind Turbine[J]., IEEETransactions on Energy Conversion,2010,25(3):750-759.
    [146]翟佳俊,张步涵,谢光龙,毛承雄,王魁.基于撬棒保护的双馈风电机组三相对称短路电流特性[J].电力系统自动化,2013,37(3):18-23.
    [147]凌禹,高强,蔡旭.紧急变桨与撬棒协调控制改善双馈风电机组低电压穿越能力[J].电力自动化设备,2013,33(4):18-23.
    [148] Noubrik A., Chrifi-Alaoui L., Bussy P., et al. Analysis and simulation of a1.5MVA doubly fed wind-power in MATLAB SimPowerSystems using crowbarduring power systems disturbances[J]. Communications, Computing andControl Applications(CCCA),2011:1-6.
    [149]叶希,鲁宗相,乔颖,等.大规模风电机组连锁脱网事故机理初探[J].电力系统自动化,2012,36(8):11-17.
    [150]迟永宁,刘艳华,王伟胜,等.风电接入对电力系统的影响[J].电网技术,2007,31(3):77-81.
    [151]朱凌志,陈宁,韩华玲.风电消纳关键问题及应对措施分析[J].电力系统自动化,2011,35(22):29-34.
    [152] Mohseni M., Islam, Syed M. Comparing Technical Connection Requirementsfor Large Wind Power Plants[C]. Power and Energy Society General Meeting,IEEE,2011:1-8.
    [153] Mohseni M., Islam, Syed M. International Regulations on The TransientResponse of Large Wind Power Plants[C]. IECON37th Annual Conference onIEEE Industrial Electronics Society,2011:3164-3169.
    [154] Grunbaum, R.. FACTS for Grid Integration of Wind Power[J]. InnovativeSmart Grid Technologies Conference Europe(ISGT Europe), IEEE PES,2010:1-8.
    [155]迟永宁,关宏亮,王伟胜,等. SVC与桨距角控制改善异步机风电场暂态电压稳定性[J].电力系统自动化,2007,31(3):95-104.
    [156] Narimani M, Varma R K. Application of Static Var Compensator(SVC) withFuzzy Controller for Grid Integration of Wind Farm[C]. Electrical andComputer Engineering(CCECE),2010:1-6.
    [157]栗然,唐凡,刘英培,等.双馈风电场新型无功补偿与电压控制方案[J].中国电机工程学报,2012,32(19):16-23.
    [158] Dicorato M., Forte G., Trovato M., et al. Control Strategy for RegulatingReactive Power Exchange in Offshore Wind Farm[J]. Industrial Electronics(ISIE),2010:2363-2370.
    [159]李辉,付博,杨超,等.双馈风电机组低电压穿越的无功电流分配及控制策略改进[J].中国电机工程学报,2012,32(22):24-31.
    [160]陈宁,何维国,钱敏慧,等.风电场无功电压控制系统设计和应用[J].电力系统自动化,2011,35(23):32-36.
    [161]乔颖,陈惠粉,鲁宗相,等.双馈风电场自动电压控制系统设计及应用[J].电力系统自动化,2012,36(18):1-8.
    [162]崔杨,严干贵,孟磊,等.双馈感应风电机组异常脱网及其无功需求分析[J].电网技术,2011,35(1):158-163.
    [163]汪宁渤,马彦宏,丁坤,等.酒泉风电基地脱网事故频发的原因分析[J].电力系统自动化,2012,36(19):42-46.
    [164]孙华东,张振宇,林伟芳,等.2011年西北电网风机脱网事故分析及启示[J].电网技术,2012,36(10):76-80.
    [165]李丹,贾琳,许晓菲,等.风电机组脱网原因及对策分析[J].电力系统自动化,2011,35(22):41-44.
    [166]杨勇,秦睿,拜润卿,等.动态无功补偿装置在酒泉地区风电场的优化应用[J].电网与清洁能源,2012,28(4):81-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700