用户名: 密码: 验证码:
基于数值模拟及实验的贯流风扇气动噪声特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空调室内机的气动噪声问题引起了越来越多的关注,降低气动噪声在目前正变得越来越重要。
     本文针对空调室内机贯流风扇的气动流场及气动噪声展开研究。结合数值模拟及实验测量对样机在三档不同转速下的内流特征及噪声特性进行了模拟,实验及分析,总结了其内流特征,分析了气动噪声源产生的位置及机制,其气动噪声远场传播特点,最后给出了贯流风扇气动噪声的一个预测模型,并进行了验证。
     内流场的研究是进行气动噪声研究的基础。本文首先采用CFD技术对贯流风扇模型内流进行了模拟。采用二维及三维计算模型,在定常及非定常条件下对贯流风扇运行于三档不同转速(800rpm,1000rpm,1200rpm)时的内流情况进行了详细的分析及总结。这为进行气动噪声模拟及噪声模型的提出奠定了基础。
     结合CFD计算结果,对贯流风扇气动噪声产生机理进行了分析。采用Lighthill声学类比方法,线性欧拉方程中声源项分析,Lilly方程中声源项分析,Powell涡声方程中的声源项分析对其气动噪声源进行了定位及源特征总结。在频率域内采用“两步法”对噪声传播进行了数值模拟。模拟分别基于Ffowcs Williams-Hawkings方程积分求解方法及有限元模拟方法进行。比较了不同转速条件下的频谱特征,声压指向性,声压云图分布等,特别分析了基于有限元波动方程解法结合Lighthill声源项模拟了蜗壳的存在对噪声传播的影响。
     在时域内分别采用“两步法”及计算气动声学方法对气动噪声的产生及传播进行了数值模拟。基于CE/SE算法发展了计算流体力学及计算气动声学软件CFDCA。针对贯流风扇气动噪声传播特性,采用基于非结构网格的CE/SE算法对其气动流场进行数值模拟,并模拟了气动噪声的传播。湍流模拟采用大涡模型,搭接式滑移网格模型处理动静干涉。噪声传播采用完全欧拉方程作为控制方程,远场采用无反射边界条件。通过该软件对贯流风扇的模拟结果分析,总结了其时域模拟的特点。
     为了验证数值模拟的正确性,采用实验的手段研究了贯流风扇的气动噪声源特性。实验在本底噪声为19dB(A)的静音室中进行,采用高精度,高频响的声压传感器分别测量了室内机进口,蜗舌壁面,近叶轮出口,远场等位置的声压波动。对得到的原始压力脉动数据进行了快速傅里叶变换,基于FFT变换的联合时频分析,基于连续小波变换的联合时频分析。分别在时间域和频率域进行了不同测量点及不同运转条件下的对比分析。采用性能实验台测量了贯流风扇的外特性,并将流动及噪声数据与数值模拟结果进行了比较,检验并评判了数值模拟结果的准确性。
     基于贯流风扇内流场特点,本文提出了两级通流的模式来描述其内流特点;基于贯流风扇内流及气动噪声特点,参考离心风扇及轴流风扇气动噪声模型,根据已有的结论,本文提出了一种贯流风机气动噪声模型。模型采用本文实验结果进行参数确定,为了验证模型的适用性,本文对文献[165,166]中的实验风扇采用本文提出的模型进行了计算并与实验结果进行了比较,表明了本文模型的正确性。
The aeroacoustic noise reduction of an indoor unit in an air-conditioner has become an important issue and caused more attention at the present time.
     The purpose of this dissertation is to research the aerodynamic characteristics and aeroacoustics of an indoor unit in an air-conditioner, especially the cross-flow fans. For this purpose, both CFD simulation and experimental investigation are performed on the prototype fan under three different rotational speeds. The flow characteristics are summerized and the analysis of aerodynamic noise includes location of the source and mechanism of source generated and the characteristics of noise propagation. Finally a model for cross-flow fan aerodynamic noise prediction is put forward and verified eventually.
     The CFD technology is empoyed to simulate the internal aerodynamic flow in a cross-flow fan model. Both two-dimensional and three-dimensional calculation model are used under steady and unsteady condition at three different rotational speeds (800rpm, 1000rpm, 1200rpm). A detailed analysis and summary to the internal flow field are carried out.Such work lays the foundation of aerodynamic noise simulation and noise model.
     Combined with results of CFD simulation, noise mechanism of the cross-flow fan is analyzed. Using Lighthill's acoustic analogy method and the sound source item analysis in the linear Euler equations, Lilly equation and Powell vortex sound equations, the location of aerodynamic noise source and source characteristics are summerized.The simulation based on the Ffowcs Williams-Hawkings integral equation method and finite element simulate seperately, is carried out in the frequency domain by two-step method. The characteristics of the spectrum, directivity of sound pressure and contours of sound pressure are simulated and analysed at different rotational speed particularly; the sound propagation with the influence of volute is analysised using wave equation finite element method combined with Lighthill's acoustic source terms.
     In the time domain, generation and propagation of aerodynamic noise are simulated using the two-step method and CAA respectively .Based on the CE/SE method, a computational fluid dynamics and computational aeroacoustics software CFDCA is developed. In response to the characteristics in the cross-flow fan, both the flow and noise propagation are simulated based on the unstructured mesh CE/SE scheme. Using the Navier-Stokes equations as the governing equations, the large eddy simulation (LES) model and sliding mesh model are used in the simulation. By solving Euler equations and no-reflection boundary condition in the far field, the results of aeroacoustics field is obtained. Through analysis, the time-domain noise characteristics of the cross-flow fans are summerized.
     Experiment is carried out to study the characteristic of aeroacoustics source and propagation of noise caused by cross-flow fan. Pressure fluctuations near the inlet, stabilizer, outlet of rotor and sound-far field are measured with high precision microphones in an anechoic chamber with the blackground noise of 19dB (A). The FFT, time-frequency transform based on FFT and wavelet are performed in order to analize the results at time domain and frequency domain. The aerodynamic characteristic of the cross-flow fans is measured on the own-designed automatic testing instrument according to GB 1236-2000 standards.The calculated charactertics of flux-rotational speed and noise are compared with the results of experiments. Some agreementes and variances are detected and discussed.
     Based on the characteristics of the flow field in cross flow fan, this paper presents a "two stages through-flow model" to describe the characteristics of its influx. Given on the characteristics of internal flow and aerodynamic noise of the cross flow fans and consulting to centrifugal fans and axial fan aerodynamic noise model, an aeroacoustics model of cross-flow fan is presented. On the basis of the conclusions of this paper, the parameteres of the model are determined according to experimental data of this paper. In order to verify the applicability of the model, a corss flow fan on the reference [165,166] is computed using this model, the comparision between the experimental results and the simulated results show that the model is correct.
引文
[1] 李林凌,黄其柏,汤双.内藏式空调室内机噪声控制研究.振动,测试与诊断,2003,23(4):287-309.
    [2] 杨爱玲,谢翠丽,陈康民.气动声学直接数值模拟的空间差分格式分析.航空动力学报,2004,19(5):630-635.
    [3] Marilyn, J.S., Robert, W.S. Extension of CFD techniques to computational aero acoustics (CAA): a comparative evaluation. AIAA 1993-0150.
    [4] Mankbadi, R.R., Hixon, R., Shih, S.H. et al. Use of linearized Euler equations for supersonic jet noise prediction. AIAA Journal, 1998, 36 (2): 140-147.
    [5] Djambazovm, G., Lai, C. H., Pericleous, K. Development of numerical techniques for near field aerodynamic computations. International Journal for Numerical Method in Fluids, 1999, 29:719-731.
    [6] 李晓东,高军辉.二维平行剪切层声波产生和辐射的数值模拟.航空学报,2003,24(1):5-9.
    [7] Shen, H., Tam, C.K.W. Numerical simulation of the generation of axisymmetric mode jet screech tones. AIAAjournal, 1998, 36(10): 1801-1807.
    [8] Detandt,Y.,Degrez,G.,Schram,C. Jet flow aeroacoustics at Re=14000 comparison between experimental and numerical simulations. AIAA 2007-3590.
    [9] Reese,H.,Kato,C.,Thomas, H.et al. Large eddy simulation of acoustical sources in a low pressure axial flow fan encountering highly turbulent inflow. Journal of Fluids Engineering, 2007, 129: 263-272.
    [10] Makoto, L., Oliver, F.,Arakawa, C.C. et al. Wind turbine flow and noise prediction by large eddy simulation.In:43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno Nevada: 2005.
    [11] Boersma, B.J .Numerical simulation of the noise generated by a low mach number low Reynolds nttmber j et.Fluid Dynamics Research,2004,35:425-447.
    [12] Ahlman, D., Brethouwer, G., Johansson, A.V. A numerical method for simulation of turbulence and mixing in a compressible wall jet. Technical Report of Department of Mechanics, KTH, Stockholm Sweden, 2006.
    [13] Boersma, B.J., Lele, S.K. Large eddy simulation of compressible turbulent jets.Center for Turbulence Research Annual Research Briefs, 1999:365-376.
    [14] Curie, N. The influence of solid boundaries upon aerodynamic sound. Proc. Royal Society, 1955, 231:505-514.
    [15] Ffowcs Williams, J.E., Hawkings, D.L. Sound generation by turbulence and surfaces in arbitrary motion. Philosophical Trans. of the Royal Society, 1969, A264:321-342.
    [16] 韩忠华,宋文萍,王立群等.旋翼前飞气动噪声高效数值方法研究.西北工业大学学报,2003,21(1):95-98.
    [17] 李晓东,段传波,于潮.三维FW-H方程与CAA数值模拟匹配技术研究.工程热物理学报,2005,26(1):56-58.
    [18] Powell,A. The theory of vortex sound. Journal of the Acoustical Society of America,1964,33:177-195.
    [19] Wang.J.Z. High order spectral volume method for benchmark aero acoustic problems. AIAA 2003-0880.
    [20] Patera, A.T. A spectral element method for fluid dynamics: laminar flow in a channel expansion. Journal of Computational Physics, 1984, 54: 468-488.
    [21] Leung, R.C.K., So, R.M.C., Kam, E.W.S. et al. Attempt to calculate acosutic directivety using LBM. AIAA 2006-2574.
    [22] Li, X.M., Leung, R.C.K., So, R.M.C. One-step aeroacoustics simulation using lattice Boltzmann method. AIAA Journal, 2006, 44(1):78-89.
    [23] Kam,E.W.S.,So,R.M.C.,Leung,R.C.K. Noreflecting boundary conditions for one step LBM simulation of aeroacoutics. In: 12th AIAA/CEAS Aeroacoustics Conference, Canbridge, Massachusetts: 2006.
    [24] Leung, R.C.K, Li, X.N., So, R.R.C. Comparative study of nonreflecting boundary condition for one step duct aeroacoustic simulation. AIAA Journal, 2006, 44(3): 664-667.
    [25] Lele, S. K. Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics, 1992, 103:16-42.
    [26] Visbal, M.R., Rizzetta, D.P. Large-eddy simulation on general geometries using compact differencing and filtering schemes. In: 40th AIAA Aerospace Sciences Meeting & Exhibit.Reno, United States: 2002.
    [27] Kim, J.W., Lee, D.J. Optimized compact finite difference schemes with maximum resolution. AIAA Journal, 1996, 34(5):887-893.
    [28] 傅德薰,马延文.高精度差分格式及多尺度流场特性的数值模拟.空气动力学学报,1998,16(1):24-35.
    [29] Tam, C.K.W., Webb, J.C. Dispersion-relation-preserving finite difference schemes for computational acoustics. Journal of Computational Physics, 1993, 107:262-281.
    [30] Hu, F. Q., Hussaini, M. Y., Manthey, J. Low dissipation and dispersion Runge-Kutta schemes for computational acoustics. Journal of Computational Physics, 1996, 124:177-191.
    [31] Wang, Z.J., Chen, R.F. Optimized weighted essentially nonoscillatory schemes for linear waves with discontinuity. Journal of Computational Physics, 2001, 174:381-404.
    [32] Tam, C.K.W., Aganin, A. Computation of transonic nozzle sound transmission and rotor problems by the dispersion relation preserving scheme. In: 3th Computational Aeroacoustics Workshop on Benchmark Problems. Ohio Aerospace Institute: 2000, 191-202.
    [33] Ronny, W., Andrew, O. Computational aeroacoustics using the B-spline collocation method. Comptes rendus M(?)canique, 2005, 33(9):726-731.
    [34] Bailly, C., Juve, D. Aeroacoustic simulations and stochastic approach using linearized Euler's equations. The Journal of the Acoustical Society of America, 1999, 105(2): 1066-1079.
    [35] Popescu,M.,Shyy, W.,Garbey, M. Finite volume treatment of dispersion relation preserving and optimized prefactored compact schemes for wave propagation,Journal of Computational Physics,2005,210: 705-729.
    [36] Craik A.D.D. Wave interactions and fluid flows. Cambridge: Cambridge University Press, 1985.
    [37] Blake, W.K. Mechanics of flow induced sound and vibration. New York: Academic Press Inc, 1986.
    [38] Gutin, L. On the sound field of a rotating propeller.NACA tech. Memo, 1948, No.1195.
    [39] Leverton, J.W. The noise characteristics of a large clearn rotor. Journal of Sound and Vibration, 1973, 27(3):357-376.
    [40] Morfey, C.L. Rotating blades and aerodynamic sound. Journal of Sound and Vibration, 1973, 28(3):587-617.
    [41] Widnall, S.E. A correlation of vortex noise data from helicopter main rotors. Journal of Aircraft, 1969, 6:279-281.
    [42] Stuckey, T.J., Goddard, J.O. Investigation and prediction of helicopter rotor noise.Journal of Sound and Vibration, 1967, 5(1):50-80.
    [43] 欧阳华,李杨,杜朝辉等.周向弯曲方向对弯掠叶片气动-声学性能影响的实验.航空动力学报,2006,21(4):668-674.
    [44] 蔡娜,钟芳源.弯掠动叶旋转失速工况下气动声学的试验分析与计算.空气动力学学报,1999,15(4):479-483.
    [45] Yasuhiko,O.,Takashi,G.,Yutaka, O.et al. Aerodynamic perfprmance and noise characteristics of a centrifugal compressor with modified vaned diffusers. In: Yu, S., editor.Proceeding of the Asian Joint Workshop on Thermophysics and Fluid Science.QuFu, China: 2006.1-6.
    [46] http://www.ahd.tudelft.nl/-bendiks/nwo-vidi/form2/node9.html.
    [47] Polacsek, C., Desbois, F.L. Fan interaction noise reduction using a wake generator: experiments and computational aeroacoustics. Journal of Sound and Vibration, 2003, 265(4):725-743.
    [48] Meelan,M,C.,David,P.L,,Michele,G,M. et al. Aeroaocustic experiments in the langley low turbulence pressure tunnel. NASA/TM-2002-211432.
    [49] Kochz, L.D., Mark, P.W., Gary, G.R An assessment of NASA Glenn's aero acoustic experimental and predictive capabilities for installed cooling fans part2: source identification and validation.NASA, TM-2006-214450.
    [50] Ovenden, N.C., Rienstra, S.W.Mode-matching strategies in slowly varying engine ducts. AIAA Journal, 2004, 42:1832-1840.
    [51] Montgomery, M.D., Verdon, J.M. A three-dimensional linearized unsteady Euler analysis for turbomachinery blade rows. NASA CR-4770, 1997.
    [52] Caro, S., Ploumhans, P., Gallez, X. Implementation of Lighthill' s acoustic analogy in a finite/infinite elements framework. AIAA 2004-2891.
    [53] 王同庆,吴怀宇,彭锋.高速压气机不稳定流动声测量技术研究.工程热物理学报,2004,25(1):56-58.
    [54] KANTE Mansa,李永,李萌等.水泵吸水池内部流动非定常信号的小波分析.工程热物理学报,2004,25(2):244-246.
    [55] Fukano, T., Kodama, Y., Senoo, Y. Noise generated by low pressure axial fans. Journal of Sound and Vibration, 1977, 50(1):68-74.
    [56] 孙立群,李亮,林山弘.贯流风扇内部流场流动特征及流速分布的研究.大连铁道学院学报,1999,20(4):37-42.
    [57] Lazzaretto, A. A criterion to define cross flow fan design parameters. Journal of Fluids Engineering, 2003, 125:680-683.
    [58] Fukano, T., Senoo, Y.Similarity of the cross flow fan on aerodynamic and noise Characteristics. Turbomachinery, 1997, 25(2):9-17.
    [59] Arai, Y. Flow Visualization and LDV inverstigations of flow characteristics of cross Flow Fan. JSME (B), 1995, 61(538):183-189.
    [60] Lazzarotto, A., Lazzaretto, A.D., Martegani, A.M. On cross-flow fan similarity: effects of casing shape. Journal of Fluids Engineerig, 2001, 123:523- 531.
    [61] Tanaka, S., Murata, S.Scale effects in cross flow fans (effects of fan dimensions on flow details and the universal representation of performances).JSME (B), 1995, 38(3):388-396.
    [62] Toffolo, A. Cross flow fan theoretical performance and efficiency curves: an energy loss analysi on experimental Data. Journal of Fluids Engineerig, 2004, 126:743-751.
    [63] B.埃克.通风机.北京:机械工业出版社,1983.
    [64] Tsurusaki,H.,Tsujimoto, Y.,Yoshida,Y. et al. Visualization measure and numerical analysis of internal flow in cross flow fan. Journal of Fluids Engineering, 1997, 119:633-638.
    [65] Tsurusaki,H.,Tsujimoto,Y.,Yoshida,Y .et al. Study of cross-flow fan internal flow by flow visualization (discussion of measured results by particle-tracking velocimetry. Journal of Fluids Engineering, 1996, 39(3):540-545.
    [66] 杨波,钟芳源,袁辉清.横流风机内部流动试验研究.机械工程学报,2000,36(6):68-70.
    [67] Tanaka, S.,Murata, S. Scale effects in cross flow fans (effects of fan dimentions on flow details and the universal representation of performances). JSME, 1995, 38(3): 388-397.
    [68] 游斌,吴克启.贯流风机内部旋涡非定常演化的数值模拟.工程热物理学报,2004,25(2):238-240.
    [69] 游斌,吴克启.贯流风机变斜式叶轮和常规直叶轮的对比研究.工程热物理学报,2005,26(1):58-60.
    [70] Akaike, S. Internal flow and fan characteristics of a cross flow fan. JSME (B), 1997, 63(606):583-589.
    [71] 葛住军,陈卓,许文斌等.一种嵌入式空调室内机噪声分析.制冷,24(2):67-71.
    [72] 伍先俊,李志明.贯流风机气动噪声机理及降噪机理研究.风机技术,2002,3:11-13.
    [73] 孙立群,杉山弘.空调用贯流风扇出口处紊流及流体噪声的实验研究.流体机械,2000,28(8):8-11.
    [74] Koo, H.M. Experimental study of the noise and the performance of cross flow fans in room air on air conditioning systems. Noise Control Engineering Journal, 2000, 48(2): 41-47.
    [75] Koo, H.M. Discrete frequency noise reduction of the cross flow fan of the split type roon air conditioners using the skewed stabilizers. JSME, 2000, 43(1): 104-109.
    [76] Takuro, H., Youichiro, K. Low noise design of cross flow fan based on frequency modulation. JSME, 1996, 601 (62):3446-3451.
    [77] 陈次昌.横流式风机气动和噪声特性相似定律的研究.农业机械学报,1997,28(4):96-101.
    [78] 李栋,顾建明.阶梯蜗舌蜗壳的降噪分析和实验.流体机械,2004,32(2):10-12.
    [79] Chen, P.H., Lee, D.S. Effect of tongue shape on the performance curve and the acoustic noise of cross flow fan. Journal of the Chinese Society of Mechanical Engineers, 1995, 16(5):445-455.
    [80] 秦国良,闻苏平,李景银.多翼离心通风机倾斜蜗舌降噪的实验与分析.流体机械,1997,25(6)8-10.
    [81] LEE, D.S., Chen, P.H. Noise reduction of a cross flow fan. Journal of the Chinese Society of Mechanical Engineers, 1997, 20(3):265-273.
    [82] 王树立,纪维礼.低噪声离心通风机最佳蜗壳结构的确定.风机技术,1997,5:3-6.
    [83] Young, J.M., Cho, Y., Nam, H.S. Compution of unsteady viscous flow and aeroacoustic noise of cross flow fans. Computers&Fluids, 2003, 32(7):995-1015.
    [84] Young, J.M., Cho, Y. Discrete noise predictions of variable pitch cross flow fans by unsteady navier-stokes computations. Journal of Flids Egineering, 2003, 125(3): 543-550.
    [85] 刘敏,王嘉冰,吴克启.数值模拟不等距叶片对贯流风机的影响.工程热物理学 报,2007,28(2):211-214.
    [86]王嘉冰,刘飞,刘敏等.贯流风扇偏心涡非定常特性研究.工程热物理学报,2008,29(7):1141-1143.
    [87]刘飞,王嘉冰,胡亚涛等.贯流风机涡结构与噪声特性的数值研究.工程热物理学报,2009,30(1):44-46.
    [88]Morfey, C.L. The acoustic of axial flow machines.Journal of Sound and Vibration, 1972, 22(4):445-466.
    [89]李林凌,黄其柏,乔宇锋.轴流风机叶片紊流噪声模型及其特性研究.中国机械工程,2006,17(10):1056-1059.
    [90]Karthikeyan, S., Shiv, G.K., Richard, E.D. Modeling and prediction of cutting noise in the face-milling process. Journal of Manufacturing Science and Engineering, 2007, 129(3):527-530.
    [91]刘秋洪,祁大同,曹淑珍等.离心风机气动声学分析的一个理论模型和计算方法.西安交通大学学报,2004,38(3):313-316.
    [92]Pimshtein, V. G. Disturbance generation in supersonic jets under acoustic excitation. AIAA Journal, 1994, 32(7): 1345-1349.
    [93]Zaman, K.B. Effect of acoustic excitation on stalled flow over an airfoil. AIAA Journal 1992, 30(6): 1492-1499.
    [94]邢改兰,周邵萍,苏永升等.两种κ-ε湍流模型对贯流风机内流场模拟的对比分析.见:中国工程热物理学会论文集.绍兴:2008.
    [95]Wan, H.J., Cho, J.H. Numerical analysis of unsteady flow field and flow noise of a fan system. In: The 33th International Congress and Exposition on Noise Control Engineering. Prague :2004.
    [96]Salesky, A.Hennemand,V.,Kouidri,S.et al. Modeling the aeroacoustics of axial fans from CFD calculations. The Journal of the Acoustical Society of America, 2002, 112(5): 2427-2427.
    [97]Maaloun, A., Kouidri, S., Rey, R. Aeroacoustic performance evaluation of axial flow fans based on the unsteady pressure field on the blade surface. Applied Acoustics, 2004, 65(4):367-384.
    [98]Rafael, B.T., Sandra, V.S., Juan, P.H.C. Noise prediction of a centrifugal fan: numerical results and experimental validation. Journal of Fluids Engineering, 2008, 130:2-11.
    [99] Michel, T., Zoubida, E.H, Alex, R. Investigation of the tonal noise radiated by subsonic fans using the aero-acoustic analogy. In: Fan Noise 2003 International Symposiun senlis, 2003:23-25.
    [100] Flavien, D., Saidnaji, M.L.Prediction of aeroacoustic noise in automotive centrifugal fans: validation of cfd and acoustic simulation techniques. AIAA 2005-2921.
    [101] Sherry, M.G, Douglas, L.S. Hybrid prediction of fan tonal noise. AIAA 2008-2992.
    [102] Algermissen, G., Siegert, R., Spindler, T. Numerical simulation of aeroacoustic sound generated by fans under installation conditions. AIAA 2001-02174.
    [103] Claus W., Thomas, H., Pierre, S. Large eddy simulation for acoustics. New York: Cambridge University Press, 2007.
    [104] Mendonca, F., Allen, R., Charentenay, D.et al.Towards understanding LES and DES for industrial aeroacoustics prediction. In: International Workshop on LES for Acoustics. DLR Gottinggen, Germany: 2002.
    [105] Combes, J.F., Marie, L. Numerical modelling of the flow in a cross flow fan .ASME Fluids Engineering Division, 1994, 195:23-34.
    [106] 王红雨,区颖达.贯流风机内流场的有限元计算及对偏心涡旋度的分析.风机技术,2002,1:38-40.
    [107] Tohru, F., Cichang, C., Yoshinori, H. Numerical analysis of flow in a cross flow fan. ASME fluids Engineering Division, 1995, 227:53-58.
    [108] Kitagawa, K.,Tatsuke,H.,Tsujimoto,Y.,et al. Numerical simulation of cross flow fan. In: International Conference on Computer Modelling of Seas and Coastal Regions and Boundary Elements in Fluid Dynamics. 1992:3-20.
    [109] 陈次昌.横流式风机内部非定常流的数值计算.农业机械学报,1996,27(1):30-35.
    [110] Gabi, M., Dornstetter, S., Klemm, T. Flow field and performance of cross flow fans-experimental and theoretical investigations. Journal of Thermal Science, 2003, 12(3):234-239.
    [111] Nakamura, Y. Vortex shedding from bluff bodies and a universal strouhal number. Journal of Fluids and Structures, 1998, 12(7):159-171.
    [112] Neise, W. Review of fan noise generation mechanisms and control methods. An International INCE Symposium of Fan Noise, 1992:45-56.
    [113] Robert.C.C. Basic mechanisms of noise generation by fluids. In: Noise and Fluids Engineering Presented at the Winter Ann Meet of ASME, 1977:45-50.
    [114] Edmane, E, Alexander, G.W, Dennis, L.H. Fan noise: A challenge to CAA. International Journal of Computational Fluid Dynamics, 2004, 18(6):471-480.
    [115] Rumsey, C.L., Biedron, R, T.Farassat, F.et al. Ducted-fan engine acoustic predictions using a navier stoke code. Journal of Sound and Vibration, 1998, 213(4):643-664.
    [116] Bechara,W.,Bailly, C.,Lafon,P.et al. Stochastic approach to noise modeling for turbulent flows. AIAA Journal, 1994, 32(3):455-463.
    [117] Proudman, I.The generation of noise by isotropic turbulence. Proceedings of the Royal Society of London, Mathematical and Physical Sciences, 1952,214 (1116):119-132.
    [118] Lilly, G.M. The radiated noise from isotropic turbulence revisited. NASA Contract Report 93-75, 1993.
    [119] Kraichnan, R. Diffusion by a random velocity field. Physics of Fluids, 1970, 13: 22-31.
    [120] Bailly, C., Lofan, R Computation of noise generation and propagation for free and confined turbulent flows. AIAA 1996-1782.
    [121] Billson, M., Eriksson, L., Davidson, L. Jet noise prediction using stochastic turbulence modeling. AIAA 2003-3282
    [122] Ewert, R., Edmunds, R. CAA slat noise studies applying stochastic sound sources based on splenoidal digital filters. AIAA 2005-2862.
    [123] 赖焕新,周邵萍,罗开红.空腔的非定常可压缩过流及相关气动声学问题.工程热物理学报,2007,28(5):755-758.
    [124] Ashcroft, G. Zhang, X. Optimized prefactpred compact schemes. Journal of Computational Physics, 2003, 190:459-477.
    [125] Hixon, R. Prefactored small-stencil compact schemes. Journal of Computational Physics, 2000, 165:522-541.
    [126] Clarke, D.K., Salas, M.D., Hassan H.A. Euler calculations for multielement airfoils using Cartesian grids. AIAA Journal, 1986, 24(3):353-361.
    [127] Tam, C.K.W., Zhong, D. Wall boundary conditions for high order finite difference schemes in computational aeroacoustics. Theoretical and Computational Fluid Dynamics, 1994, 6:303-322.
    [128] Barakos G., Morvant, R. An efficient approximate method for calculating farfield BVI noise. Aerospace Engineering Report 0401.
    [129] Zhang, M.J, Yu, S.T. Solving the Navier Stokes equations by the CE/SE method. AIAA 2004-75.
    [130] Wang X.Y.,Chang S.C.,Jorgenson P.C.E. Accuracy study of the space-time CE/SE method for computational aeroacoustics problems involving shock waves. AIAA 2000-0475.
    [131] Ching Y.L. Near field trailing edge tone noise computation. AIAA 2003-0365.
    [132] Rai, M, M. Navier stokes simulation of rotor/stator interaction using patched and overlaid grids. Journal of Propulsion and Power, 1987, 3(5):387-396.
    [133] Sanjay, M. Unsteady flow simulations using unstructured sliding meshes. AIAA 94-2333.
    [134] Chang, S.C. Courant number insensitive CE/SE method. AIAA 2002-3890.
    [135] Pope, D.S. A viscous/acoustic splitting technique for aeolian tone prediction. NASA CP-3352.
    [136] Andrea, T. On cross-flow fan theoretical performance and efficiency curves: An energy loss analysis on experimental data. Journal of Fluids Engineering, 2004, 126(5): 743-751.
    [137] 田春,张强,谷嘉锦.横流风机流场与声场综合研究用装置的研制.噪声与振动控制,2002,1:24-26.
    [138] Clifford, A.B. Analysis of rotor stator interaction noise during a rotor speed transient. AIAA 2002-4078.
    [139] Lin, F., Chen, J.Y., Li, M. Wavelet analysis of rotor tips disturbances in an axial flow compressor. Journal of Propulsion and Power, 2004, 20(2):45-58.
    [140] Grilliat,J.,Jondeau,E.,Jacob,M.C. et al. Broadband noise prediction models and measurements of tip leakang flows. AIAA 2008-2845.
    [141] 吕建伟,李军.基于时频-小波分析的压气机失速过程研究.航空动力学报,2004,19(4):490-494.
    [142] Jang, C.M., Furukawa, M., Inoue, M. Frequency characteristics of fluctuating pressure on rotor blade in a propeller fan. JSME, 2003, 46(1): 163-172.
    [143] 白存儒,何克敏,武延祥等.翼型边界层及近场尾流的湍流特性与气动噪声特性相关规律试验研究.流体力学实验与测量,2000,14(1):81-84.
    [144] Amiet, R.K. Acoustic Radiation from an airfoil in a turbulent stream. Journal of Sound and Vibration, 1975,41(4): 407-420.
    [145] Brooks, T.M., Pope, D.S., Macolini, M.A. Airfoil self noise and prediction. NASA RP-1218,1989.
    [146] Howe, M.S.A. Review of the theory of trailing edge noise. Journal of Sound and Vibration, 1978, 61(3):437-465.
    [147] Moreau, S., Roger, M. Competing broadband noise mechanisms in low speed axial fans. AIAA 2004-3039.
    [148] Sharland, I.J. Sources of noise in axial flow fans. Journal of Sound and Vibration,1964,1(3):21-43.
    [149] Fukano, T. An estimate of the noise level in low pressure type axial and mixed flow fan. JSME, 1985, 51(466):1825-1837.
    [150] Heidmann, M. F. Interim prediction method for fan and compressor source noise. NASATMX-71763, 1979.
    [151] Caro, S., Moreau, S. Aeroacoustic modeling of low pressure axial flow fans. AIAA 2000-2094.
    [152] Wright, S.E. The acoustic spectrum of axial flow machines Journal of Sound and Vibration, 1976,45(2):165-223.
    [153] Weidemann, J. Analysis of the relation between acoustic and aerodynamic parameters for a series of dimensionally similar centrifugal fan rotors. NASA TT F-13,1971.
    [154] Watanabe, M., Takada, Y., Sato, Y. Predicton model for aeroacoustic noise from low-speed fans. AIAA 1999-1983.
    [155] Venkatrayulu, N., Prithvi, D., Raj, S.A. Some aerodynamic and noise studies of flow in centrifugal fans. AIAA 1983-7063.
    [156] Rice, E.J. Multimodal far-field acoustic radiation pattern using mode cutoff ratios. AIAA Journal, 1978, 16(9):906-911.
    [157] Dunn, M.H., Tweed, J., Farassat, F. The prediction of ducted fan engine noise via a boundary integral equation method. AIAA 1996-1770.
    [158] Rienstra, S.W., Eversman, W. A numerical comparison between multiple scales and FEM solution for sound propagation in lined flow ducts. AIAA 1999-1821.
    [159] Rice, E.J. Broadband noise radiation models for aircraft engines. AIAA 1999-1953.
    [160] Moreland, J.B. Housing effects on centrifugal blower noise. Journal of Sound and Vibration, 1974, 102(1):191-205.
    [161]余文龙,张秀霞,林保.轴流压气机静子声辐射场的理论分析.空气动力学报,1994,12(1):60-65.
    [162]王智平,朱之樨.具有旋涡的翼型绕流辐射声场的数值研究.声学学报,1995,20(3):183-190.
    [163]Grosveld, F.W. Prediction of broadband noise from horizontal axis wind turbines. Journal of Propulsion, 1985, 1 (4):292-299.
    [164]Shigehisa, F.,Yasushi,S.,Masatoshi,W. et al. Prediction of aerodynamic noise level of cross flow fans for air conditioner (1st report, study of dependence of aerodynamic noise on relative velocity. JSME, 2003, 687:2472-2478.
    [165]#12
    [166]#12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700