用户名: 密码: 验证码:
氨基修饰的碳纳米材料的一步合成法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,碳纳米材料的合成、性质与应用研究倍受关注。但由于碳纳米材料表面具有疏水性,不适合在水溶液体系中使用。为了扩展碳纳米材料的应用范围,必须对碳纳米材料的表面进行修饰和改性。目前,对碳纳米材料的表面进行修饰和改性主要采用共价修饰和非共价修饰两种方法。一般对碳纳米材料表面修饰和改性都是在材料合成之后进行,但这种改性方法往往会造成碳纳米材料结构的破坏,从而影响碳纳米材料的性能。如何在材料合成的过程中同步完成对碳纳米材料的表面修饰和改性是改善碳纳米材料性质和拓宽其应用领域的重要方向。
     本文尝试用十氯代芘、八氯苊烯、六氯代苯和六溴代苯作为碳源反应物,在溶剂热条件下发生脱氯反应,在不同反应条件下分别制备了表面氨基修饰的核-壳结构碳包覆纳米颗粒、碳微米管和空心碳球。采用TEM、HRTEM、SEM、XRD、XPS、EDS和UV-vis等分析方法对所制备的各种碳材料的形貌、尺寸、结构以及性质等进行了表征,并初步探索了碳纳米材料的形成机理,进行了相关应用研究。主要研究结果如下:
     1.溶剂热法一步制备了表面氨基修饰的核-壳结构碳包覆氧化铁纳米颗粒。反应以三价铁和十氯代芘为原料,氨水为氨基来源,通过调控反应温度、时间、溶剂和原料配比等参数优化了反应条件,得到了表面氨基修饰的核-壳结构产物。表征了产物的尺寸、组成和结构,确定了该产物为碳包覆的氧化铁纳米颗粒;对碳壳层的结构和表面组成进行了研究,确定了碳壳层表面具有氨基修饰基团并探讨了产物的形成机理。通过表面氨基与修饰分子中羧基的偶联反应提高了该产物的亲水性。
     2.以制备碳包覆氧化铁纳米颗粒的反应条件为基础,考察了影响氯代碳化合物脱氯反应的因素,包括反应时间、温度、溶剂和催化剂的影响。研究结果证明,提高反应温度可以提高脱氯效率;改变反应溶剂和催化剂可以在一定范围内改变反应体系的脱氯效率和产物的形念。尝试了用甲酸和甲酸铵代替氨水的反应体系,研究发现,该两种反应体系也可以产生催化脱氯反应,但不能得到表面羧基修饰的碳壳层。比较了几种氯代芳烃的脱氯反应活性,为反应碳源的选择提供了依据。
     3.溶剂热法一步制备了表面氨基修饰的碳微米管,发现管的内部填充了四氧化三铁。反应以二茂铁和六溴代苯为原料,氨水为氨基来源。系统考察了反应条件对产物形态的影响,研究结果证明,延长反应时间、提高反应温度有利于碳微管的形成;调控反应溶剂可以得到不同形态的碳纳米材料;改变氨水的用量可以得到粗糙或光滑表面的碳微管。表征了产物的组成和结构,确定了产物为填充了四氧化三铁的碳微米管;对碳管的结构和表面组成进行了研究,确定了碳管表面具有氨基修饰的基团并探讨了产物的形成机理,研究结果发现,产物的表面氨基可以还原氯金酸,得到负载金纳米颗粒的碳微管。
     4.溶剂热法一步制备了表面氨基修饰的空心碳球。反应以二茂铁和六溴代苯为原料,硫脲为氨基来源。探讨了反应条件对产物形态的影响,研究结果证明,延长反应时间、提高反应温度有利于得到空心的碳球:调控反应溶剂的用量可以得到不同尺寸的空心碳球和其他形态的产物;反应体系中加入氨水不利于得到空心碳球,以尿素或硫化钠代替硫脲反应也不能得到空心碳球。用二茂铁与硫脲反应可以得到表面没有氨基修饰的空心碳球。推测形成的空心碳球可能是以硫脲作为模板产物。该空心碳球表面的氨基可以还原氯金酸得到金纳米颗粒。
     5.研究了碳包覆三氧化二铁纳米颗粒作为磁共振成像造影剂的可行性。研究发现,碳包覆三氧化二铁纳米颗粒可以显著改变溶液的磁共振响应信号强度;不同粒径的碳包覆三氧化二铁纳米颗粒具有不同的造影效果。通过进一步表面改性,如氨基-羧基缩和反应引入叶酸和聚乙二醇基团可以提高纳米颗粒的造影效果。
     6.研究了实心碳微管和空心碳微管的电化学活性,比较了二者对多巴胺和抗坏血酸的氧化-还原行为的影响。研究发现,在空心碳微管修饰的电极上,由于多巴胺和抗坏血酸的氧化峰位置相差220毫伏,所以能够在抗坏血酸存在的情况下选择性检测多巴胺且最低检测限可达到1.0μM,检测的线性范围在5.0μM到0.1 mM.之间。
The application of carbon materials has been slowed due to their insolubility and incompatibility,which can be improved through surface modification. Functional-group-mediated covalent-modification has been utilized in CNTs.The use of covalent chemistry to link DNA to CNTs is also expected to provide excellent stability,accessibility,and selectivity compared with noncovalent bonding.In general, the surface modification of carbon nanomaterials was all post-treatment after functionalizing the surfaces with acid sites,such as refluxed with nitric acid or treated byγ-irradiation.These acid sites are composed of carboxylic groups or hydroxyl groups.However,the intrinsic electrical and mechanical properties of the carbon nanomaterials would be affected by these harsh treatments due to the many damages on carbon nanomaterials.Strategies of functionalization carbon nanomaterials through their synthesis process might overcome this problem.
     Higher reaction temperature takes advantages in graphitization of carbon nanomaterials,however,generally that is a disadvantage to introduce functional groups through the synthesis process.Relative lower reaction temperature and suitable reaction precurors are important to obtain functionalized carbon materials in one-step process.
     The main goal of the present work is to develop a simple and effective solvothermal method to synthesize amino-modified carbon nanomaterials,such as core-shell sructure nanoparticles,carbon microtubes and hollow carbon nanospheres. Their morphology,size,structure and properties were characterized systemically by TEM,HRTEM,SEM,XRD,XPS,EDS and UV-vis spectroscopy.The growth mechanism of the carbon nanomaterials with different shapes was discussed.The major results of the thesis are outlined as follows:
     1.Core-shell structure Fe_2O_3@C nanoparticles with amino groups modified were synthesized in one-pot process by solvothermal method.Exiperiments were performed to optimize the reaction conditions.Further linking with hydrophilic molecules by well-established carboxyl-coupling chemistries will enhance the hydrophilicity and extend the potential application of these core-shell structure nanoparticles.
     2.Dechlorination effect of solvothermal process to prepare Fe203@C nanoparticles in various reaction conditions,such as reaction time,temperature,solvents and catalysts,was investigated.
     3.Magnetite encapsulated carbon microtubes with amino groups modified were synthesized in one-pot process by solvothermal method.The effect of reaction condition on the morphology of the products was investigated.
     4.Hollow carbon nanospheres with amino groups modified were synthesized in one-pot process by solvothermal method.The effect of reaction condition on the morphology of the products was investigated.
     5.The feasibility of the core-shell structure Fe_2O_3@C nanoparticles used as MRI contrast agents was investigated.
     6.The electrochemistry properties of the amino-modified carbon microtubes were also investigated.Dopamine can be selectively detected in the presence of ascorbic acid.The minimal detection limit of dopamine is 1.0μM and the linear range of detection is 5.0μM-0.1 mM.
引文
[1].朱屯,王福明,王习东等.国外纳米材料技术进展与应用[M].化学工业出版社,2002.
    [2].徐国财,张立德.纳米复合材料[M].化学工业出版社,2002.
    [3].黄惠忠等.纳米材料分析[M].化学工业出版社,2003.
    [4].张立德,牟其美.纳米材料和纳米结构[M].科学出版社,2001.
    [5].张璐.碳纳米管的制备技术[J].宁夏石油化工,2004,1,7-10.
    [6].Journet C.,Maser W.K.,Bernier P.,et al.,Large-scale production of single-walled carbon nanotubes by the electric-arc technique[J].Nature,1997,388,756-757.
    [7].Thess A.,Nikolaev P.,Dai H.J.,et al.,Crystalline ropes of metallic carbon nanotubes[J].Science,1996,273,483-484.
    [8].Kong J.,Sob H.T.,Cassell A.M.,et al.,Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers[J].Nature,1998,395,878-879.
    [9].Zheng B.,Lu C.G.,Gu G.,et al.,Efficient CVD growth of single-walled carbon nanotubes on surfaces using carbonmonoxide precursor[J].Nano Lett.,2002,2,895-898.
    [10].Hofmann S.,Ducati C.,Robert son J.,et al.,Low-temperature groth of carbon nanotubes by plasma-enhanced chemical vapor deposition[J].Appl.Phys.Lett.,2003,83,135-137.
    [11].Kohno M.,Orii T.,Hirasawa M.,et al,Growth of single-walled carbon nanotubes from size-selected catalytic metal particles[J].Appl.Phys.A,2004,79,787-790.
    [12].Li Y.,Liu J.,Wang Y.Q.,et al.,Preparation of monodispersed Fe-Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes[J].Chem.Mater.,2001,13,1008-1014.
    [13].Hoffman W.P.,Phan H.T.,Wapner P.G.,The far-reaching nature of microtube technology [J].Mater.Res.Innov.,1998,2,87-96.
    [14].Han C.C.,Lee J.T.,Yang R.W.,et al.Formation mechanism of micrometer-sized carbon tubes [J]. Chem. Mater., 2001, 13, 2656~2665.
    [15]. Libera J. A., Gogotsi Y., Hydrothermal synthesis of graphite tubes using Ni catalyst [J]. Carbon, 2001,39, 1307~1318.
    [16]. Hu J. Q., Bando Y., Xu F. F., et al., Growth and field-emission properties of crystalline, thin-walled carbon microtubes [J]. Adv. Mater., 2004, 16, 153~156.
    [17]. Bhimarasetti G., Cowley J. M., Sunkara M. K., Carbon microtubes: tuning internal diameters and conical angles [J]. Nanotechnology, 2005, 16, S362~S369.
    [18]. Xu L. Q., Du J., Li P., et al., In situ synthesis, magnetic property, and formation mechanism of Fe_33O_4 particles encapsulated in 1D bamboo-shaped carbon [J]. J. Phys. Chem. B, 2006, 110,3871~3875.
    [19]. Shen G. Z., Bando Y., Zhi C. Y., et al., Tubular carbon nano-/microstructures synthesized from graphite powders by an in situ template process [J]. J. Phys. Chem. B, 2006, 110, 10714~10719.
    [20]. Luo T., Chen L. Y., Bao K. Y., et al., Solvothermal preparation of amorphous carbon nanotubes and Fe/C coaxial nanocables from sulfur, ferrocene, and benzene [J]. Carbon, 2006, 44, 2844~2848.
    [21]. Kroto H. W., McKay K., The formation of quasi-icosahedral spiral shell carbon particles [J]. Nature, 1988,331,328~331.
    [22]. Nolan P. E., Lynch D. C, Cutler A. H., Graphite encapsulation of catalytic metal nanoparticles [J]. Carbon, 1996, 34, 817~819.
    [23]. Song H. H., Chen X. H., Large-scale synthesis of carbon-encapsulated iron carbide nanoparticles by co-carbonization of durene with ferrocene [J]. Chem. Phys. Lett., 2003, 374, 400~404.
    [24]. Harris P. J. F., Tsang S. C., A simple technique for the synthesis of filled carbon nanoparticles [J]. Chem. Phys. Lett., 1998, 293, 53~58.
    [25]. Wu W., Zhu Z., Liu Z.. Preparatin of carbon-encapsulated iron carbide nanoparticles by an explosion method [J]. Carbon, 2003, 41, 317~321.
    [26]. Sun X. M., Liu J. F., Li Y. D., Oxides@C core-shell nanostructures: one-pot synthesis, rational conversion, and Li storage property [J]. Chem. Mater., 2006, 18, 3486~3494.
    [27]. Baranauskas V. V., Zalich M. A., Saunders M., et al., Poly (styrene-b-4- vinylphenoxy phthalonitrile)-Cobalt complexes and their conversion to oxidatively stable cobalt nanoparticles [J]. Chem. Mater., 2005, 17, 5246~5254.
    [28]. Lu A. H., Li W. C., Salabas E. L., et al., Low temperature catalytic pyrolysis for the synthesis of high surface area, nanostructured graphitic carbon [J]. Chem. Mater., 2006, 18, 2086~2094.
    [29]. Miao J. Y., Hwang D. W., Chang C. C., et al., Uniform carbon spheres of high purity prepared on kaolin by CCVD [J]. Diam. Relat. Mater., 2003, 12, 1368~1372.
    [30]. Yang X. G., Li C., Wang W., et al., A chemical route from PTFE to amorphous carbon nanospheres in supercritical water [J]. Chem. Commun., 2004, 342~343.
    [31]. Jang J., Lim B., Selective fabrication of carbon nanocapsules and mesocelluiar foams by surface-modiried colloidal silica templating [J]. Adv. Mater., 2002, 19, 1390~1393.
    [32]. Yoon S. B., Sohn K., Kim J. Y., et al., Fabrication of carbon capsules with hollow macroporous core/mesoporous shell structures [J]. Adv. Mater., 2002, 14, 19~21.
    [33]. Li F. B., Huang J., Zou J., et al., Preparation and characterization of porous carbon beads and their application in dispersing small metal crystallites [J]. Carbon, 2002, 40,2871~2877.
    [34]. Wang Z. X., Yu L. P., Zhang W., et al., Carbon spheres synthesized by ultrasonic treatment [J]. Phys. Lett. A, 2003, 307, 249~252.
    [35]. Qiu J. S., Li Y F., Wang Y P., et al., High-purity single-wall carbon nanotubes synthesized from coal by arc discharge [J]. Carbon, 2003. 41, 2170~2173.
    [36]. Zou G F., Yu D. B., Lu J., et al., A self-generated template route to hollow carbon nanospheres in a short time [J]. Solid State Commun., 2004, 131, 749~752.
    [37]. Balasubramanian K., Burghard M., Chemically functionalized carbon nanotubes [J]. Small,2005, 1, 180~192.
    [38]. Britz D. A., Khlobystov A. N., Noncovalent interactions of molecules with single walled carbon nanotubes [J]. Chem. Soc. Rev., 2006, 35, 637~659.
    [39]. Gomez F. J., Chen R. J., Wang D. W., et al., Ring opening metathesis polymerization on non-covalently functionalized single-walled carbon nanotubes [J]. Chem. Commun., 2003, 190~191.
    
    [40]. Wang X. B., Liu Y. Q.. Qiu W. F.. et al., Immobilization of tetra-tert- butylphthalocyanines on carbon nanotubes: a first step towards the development of new nanomaterials [J]. J. Mater. Chem., 2002, 12, 1636~1639.
    [41]. Bahr J. L., Yang J. P., Kosynkin D. V., et al., Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode [J]. J. Am. Chem. Soc, 2001, 123, 6536~6542.
    [42]. Singh R., Pantarotto D., McCarthy D., et al., Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors [J]. J. Am. Chem. Soc, 2005, 127, 4388~4396.
    [43]. Ramanathan T., Fisher F. T., Ruoff R. S., et al., Amino-functionalized carbon nanotubes for binding to polymers and biological systems [J]. Chem. Mater., 2005, 17, 1290~1295.
    [44]. Li Q. W., Zhang J., Yan H., et al., Thionine-mediated chemistry of carbon nanotubes [J]. Carbon, 2004,42,287~291.
    [45]. Huang W. J., Taylor S., Fu K. F., et al., Attaching proteins to carbon nanotubes via diimide-activated amidation [J]. Nano Lett., 2002, 2, 311~314.
    [46]. Williams K. A., Veenhuizen P. T. M., de la Torre B. G, et al., Nanotechnology-Carbon nanotubes with DNA recognition [J]. Nature, 2002, 420, 761.
    [47]. Baker S. E., Cai W., Lasseter T. L., et al., Covalently bonded adducts of deoxyribonucleic acid (DNA) oligonucleotides with single-wall carbon nanotubes: synthesis and hybridization [J]. Nano Lett., 2002, 2, 1413~1417.
    [48]. Zhang D. S., Shi L. Y, Fang J. H., et al., Preparation and modification of carbon nanotubes [J]. Mater. Lett., 2005, 59, 4044~4047.
    
    [49]. Tsang S. C., Harris P. J. F., Green M. L. H., Thinning and opening of carbon nanotubes by oxidation using carbon-dioxide [J]. Nature, 1993, 362, 520-522.
    [50]. Gomez-Navarro C, De Pablo P. J., Gomez-Herrero J., et al., Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime [J]. Nat. Mater., 2005, 4, 534~539.
    [51]. Jiang H. J., Zhu L. B., Moon K. S., et al., The preparation of stable metal nanoparticles on carbon nanotubes whose surfaces were modified during production [J]. Carbon, 2007, 45, 655~661.
    
    [52]. Georgakilas V., Kordatos K., Prato M., et al., Organic functionalization of carbon nanotubes [J]. J. Am. Chem. Soc, 2002, 124, 760~761.
    [53]. Alvaro M., Atienzar P., Cruz P., et al., Sidewall functionalization of single-walled carbon nanotubes with nitrile imines. Electron transfer from the substituent to the carbon nanotube [J]. J. Phys. Chem. B, 2004, 108, 12691~12697.
    [54]. Holzinger M., Abraha J., Whelan P., et al., Functional ization of single-walled carbon nanotubes with (R-)oxycarbonyl nitrenes [J]. J. Am. Chem. Soc, 2003, 125, 8566~8580.
    [55]. Coleman K. S., Bailey S. R., Fogden S., et al., Functionalization of single-walled carbon nanotubes via the Bingel reaction [J]. J. Am. Chem. Soc, 2003, 125, 8722~8723.
    [56]. Mickelson E. T., Huffman C. B., Margrave J. L., et al., Fluorination of single-wall carbon nanotubes [J]. Chem. Phys. Lett., 1998, 296, 188~194.
    [57]. Khabashesku V. N., Billups W. E., Margrave J. L., Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions [J]. Acc Chem. Res., 2002, 35, 1087~1095.
    [58]. Gu Z., Peng H., Hauge R. H., et al., Cutting single-wall carbon nanotubes through fluorination [J]. Nano Lett., 2002, 2, 1009~1013.
    [59]. Saini R. K., Chiang I. W., Peng H. Q., et al., Covalent sidewall functionalization of single wall carbon [J]. J. Am. Chem. Soc, 2003, 125, 3617~3621.
    [60]. Hattori Y., Kanoh H., Okino F., et al., Direct thermal fluorination of single wall carbon nanohorns [J]. J. Phys. Chem. B, 2004, 108, 9614~9618.
    [61]. Stevens J. L., Huang A. Y., Peng H. Q., et al., Sidewall amino-functionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines [J]. Nano Lett., 2003, 331~336.
    [62]. Dyke C. A., Tour J. M., Solvent-free functionalization of carbon nanotubes [J]. J. Am. Chem. Soc, 2003, 125, 1156~1157.
    [63]. Umek P., Seo J. W., Hernadi K., et al., Addition of carbon radicals generated from organic peroxides to single wall carbon nanotubes [J]. Chem. Mater., 2003, 15, 4751~4755.
    [64]. Holzinger M., Vostrowsky O., Hirsch A., et al., Sidewall functionalization of carbon nanotubes [J]. Angew. Chem. Int. Ed., 2001, 40, 4002~4005.
    [65]. Treacy M. M. J., Ebbesen T. W., Gibson J. M., Exceptionally high Young's modulus observed for individual carbon nanotubes [J]. Nature, 1996, 381, 678~680.
    [66].Ebbesen T.W.,Ajayan P.M.,Large-scale synthesis of carbon nanotubes[J].Nature,1992,358,220-222.
    [67].Ruoff R.S.,Lorents D.C.,Mechanical and thermal-properties of carbon nanotubes[J].Carbon,1995,33,925-928.
    [68].Zhu W.,Bower C.,Zhou O.,et al.,Large current density from carbon nanotube field emitters[J].Appl.Phys.Lett.,1999,75,873-875.
    [69].Heller I.,Kong J.,Heering H.A.,et al.,Individual single-walled carbon nanotubes as nanoelectrodes for electrochemistry[J].Nano Lett.,2005,5,137-142.
    [70].Poggi M.A.,Bottomley L.A.,Lillehei P.T.,Scanning probe microscopy[J].Anal.Chem.,2002,74,2851-2862.
    [71].Sotiropoulou S.,Chaniotakis N.A.,Carbon nanotube array-based biosensor[J].Anal.Bioanal.Chem.,2003,375,103-105.
    [72].Britto P.J.,Santhanam K.S.V.,Ajayan P.M.,Carbon nanotube electrode for oxidation of dopamine[J].Bioelectrochem.Bioenerg.,1996,41,121-125.
    [73].吴峻青,周仕学,杨敏建等.碳材料的储氢作用[J].煤炭科学技术,2006,34,75-78.
    [74].Sun X.M.,Li Y.D.,Ga_2O_3 and GaN semiconductor hollow spheres[J].Angew.Chem.Int.Ed.,2004,43,3827-3831.
    [75].梁国宪,王尔德,王晓林.高能球磨制备非晶态合金研究进展[J].材料科学与工程.1994.12.47-49.
    [76].Uenura T.,Ohba M.,Kitagawa S.,Size and surface effects of Prussian blue nanoparticles protected by organic polymers[J].Inorg.Chem.,2004,43,7339-7345.
    [77].Kobayashi M.,Saraie J.,Matsunami H.,Hydrogenated amorphous silicon films prepared by an ion-beam-sputtering technique[J].Appl.Phys.Lett.,1981,38,696-697.
    [78].Wang Q.,Yang H.B.,Shi J.L.,et al.,One-step synthesis of the nanometer particles of γ-Fe_2O_3 by wire electrical explosion method[J].Mater.Res.Bull.,2001,36,503-509.
    [79].Sen D.,Deb P.,Mazumder S.,et al.,Microstructural investigations of ferrite nanoparticles prepaerd by nonaqueous precipitation route[J].Mater.Res.Bull.,2000,35,1243-1250.
    [80].Yu D.,Yam V.W.W.,Hydrothermal-induced assembly of colloidal silver spheres into various nanoparticles on the basis of HTAB-modified silver mirror reaction[J].J.Phys.Chem.B,2005,109,5497-5503.
    [81].李文翠,郭树才.溶胶-凝胶技术在新型纳米气凝胶合成中的应用[J].化工进展,2001,2.34-36.
    [82].Yin J.L.,Qian X.F.,Yin J.,et al.,Preparation of polystyrene/zirconia core-shell microspheres and zirconia hollow shells[J].Inorg.Chem.Commun.,2003,6,942-945.
    [83].Kawahashi N.,Shiho H.,Copper and copper compounds as coatings on polystyrene particles and as hollow spheres[J].J.Mater.Chem.,2000,I0,2294-2297.
    [84].Hentze H.P.,Raghavan S.R.,Silica hollow spheres by templating of catanionic vesicles[J].Langmuir,2003,19,1069-1074.
    [85].Kercher A.K.,Nagle D.C.,AC electrical measurements support microstructure model for carbonization:a comment on 'Dielectric relaxtion due to interfacial polarization for heat-treated wood'[J].Carbon,2004,42,219-221.
    [86].Bao J.,Liang Y.,Xu Z.,et al.,Facile synthesis of hollow nickel submicrometer spheres[J].J.Mater.Chem.,2002,12,2426-2429.
    [87].Iijima S.,Helical microtubules of graphitic carbon[J].Nature,1991,354,56-58.
    [88].Zhu H.W.,Jiang B.,Xu C.L.,et al.,Synthesis of high quality single-walled carbon nanotube silks by the arc-discharge technique[J].J.Phys.Chem.B,2003,107,6514-6518.
    [89].Sugai T.,Yoshida H.,Shimada T.,et al.,New synthesis of high-quality double-walled carbon nanotubes by high-temperature pulsed arc discharge[J].Nano Lett.,2003,3,769-773.
    [90].Yacaman M.J.,Yoshida M.M.,Rendon L.,Catalytic growth of carbon microtubules with fullerene structure[J].Appl.Phys.Lett.,1993,62,202-204.
    [91].Lourie O.R.,Jones C.R.,Bartlett B.M.,et al.,CVD growth of boron nitride nanotubes[J].Chem.Mater.,2000,12,1808-1810.
    [92].Yu J.,Zhang Q.,Ahn J.,et al.,Growth and structure of aligned B-C-N nanotubes[J].J.Vacuum.Sci.Techn.A,2001,19,671-674.
    [93].Chen H.,Lin J.,Yi J.,et al.,Novel silicon nanotubes.Chin.Chem.Lett.,2001,12,1139-1140.
    [94].Omi H.,Ogino T.,Self-assembled Ge nanowires grown on Si(113)[J].Appl.Phys.Lett.,1997,71,2163-2165.
    [95].Li H.X.,Wu J.,Wang Z.G.,et al.,High-density InAs nanowires realized in situ on(100) InP[J].AppL Phys.Lett.,1999,75,1173-1175.
    [96].Lee H.G.,Jeon H.C.,Kang T.W.,et al.,Gallium arsenide crystalline nanorods grown by molecular-beam epitaxy[J].Appl.Phys.Lett.,2001,78,3319-3321.
    [97].张立德,解思深等.纳米材料和纳米结构-国家重人基础研究项目新进展[M].化学工业出版社,2005.
    [98].苏勉曾,谢高阳.固体化学及应用[M].复旦大学出版社,1989.
    [99].Wells R.L.,Gladfelter W.L.,Pathways to nanocrystalline Ⅲ-Ⅴ compound semiconductors [J].J.Cluster Sci.,1997,8,217-221.
    [100].Bibby D.M.,Dale M.P.,Synthesis of silica-sodalite from non-aqueous systems[J].Nature,1985,317,157-158.
    [101].Xie Y.,Wang W.,Qian Y.T.,et al.A benzene thermal synthetic route to nanocrystalline GaN[J].Science,1996,272,1926-1927.
    [102].Li Y.D.,Qian Y.T.,Liao H.W.,et al.,A reduction-pyrolysis-catalysis synthesis of diamond [J].Science,1998,281,246-247.
    [103].Inoue M.,Tanino H.,Kondo Y.,et al.,Formation of microcrystalline a-Alumina by glycothermal treatment of gibbsite[J].J.Am.Ceram.Soc.,1989,72,352-353.
    [104].Komarneni S.,D'Arrigo M.C.,Leonelli C.,et al.,Microwave-hydrothermal synthesis of nanophase ferrites[J].J.Am.Ceram.Soc.,1998,81,3041-3043.
    [105].Jia C.J.,Sun L.D.,Yah Z.G.,et al.,Iron oxide nanotubes - Single-crystalline iron oxide nanotubes[J].Angew.Chem.Inter.Ed.,2005,44,4328-4333.
    [106].Cao M.H.,Liu T.F.,Gao S.,et al.,Single-crystal dendritic micro-pines of magnetic alpha-Fe_2O_3:Large-scale synthesis,formation mechanism,and properties[J].Angew.Chem.Inter.Ed.,2005,44,4197-4201.
    [107].Katsuki H.,Komarneni S.,Microwave-hydrotherma[synthesis of monodispersed nanophase alpha-Fe_2O_3[J].J.Am.Ceram.Soc.,2001,84,2313-2317.
    [108].Wang X.,Li Y.D.,Synthesis and formation mechanism of manganese dioxide nanowires/nanorods[J].Chem.Eur.J.,2003,9,300-306.
    [109].Liu B.,Zeng H.C.,Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50nm[J].J.Am.Chem.Soc.,2003,125,4430-4431.
    [110].Zhang J.,Sun L.D.,Pan H.Y.,et al.,ZnO nanowires fabricated by a convenient route[J]. New J. Chem., 2002, 26, 33~34.
    [111]. Sun Y., Fuge G. M., Fox N. A., et al., Synthesis of aligned arrays of ultrathin ZnO nanotubes on a Si wafer coated with a thin ZnO film [J]. Adv. Mater., 2005, 17, 2477~2481.
    [112]. Liu J. F., Li Q. H., Wang T. H., et al., Metastable vanadium dioxide nanobelts: Hydrothermal synthesis, electrical transport, and magnetic properties [J]. Angew. Chem. Inter. Ed., 2004, 43, 5048~5052.
    [113]. Krumeich F., Muhr H. J., Niederberger M., et al., Morphology and topochemical reactions of novel vanadium oxide nanotubes [J]. J. Am. Chem. Soc, 1999, 121, 8324~8331.
    [114]. Muhr H. J., Krumeich R, Schonholzer U. P., et al., Vanadium oxide nanotubes - A new flexible vanadate nanophase [J]. Adv. Mater., 2000, 12, 231~234.
    [115]. Wang X., Li Y. D., Selected-control hydrothermal synthesis of alpha- and beta-MnO_2 single crystal nanowires [J]. J. Am. Chem. Soc, 2002, 124, 2880~2881.
    [116]. Zhang D. R, Sun L. D., Yin J. L., et al., Low-temperature fabrication of highly crystalline SnO_2 nanorods [J]. Adv. Mater., 2003, 25, 1022~1025.
    [117]. Zhan B. Z., White M. A., Sham T. K., et al., Zeolite-confined nano-RuO_2: A green, selective, and efficient catalyst for aerobic alcohol oxidation [J]. J. Am. Chem. Soc, 2003, 125, 2195~2199.
    [118]. Yu S. H., Liu B., Mo M. S., et al., General synthesis of single-crystal tungstate nanorods /nanowires: A facile, low-temperature solution approach [J]. Adv. Funct. Mater., 2003, 13, 639~647.
    [119]. Cao M. H., Hu C. W., Wang Y. H., et al., A controllable synthetic route to Cu, Cu_2O, and CuO nanotubes and nanorods [J]. Chem. Commun., 2003, 1884~1885.
    [120]. Sun X. M., Li Y D., Synthesis and characterization of ion-exchangeable titanate nanotubes [J]. Chem. Eur. J., 2003,9, 2229~2238.
    [121]. Wang X., Li Y. D., Rare-earth-compound nanowires, nanotubes, and fullerene-like nanoparticles: Synthesis, characterization, and properties [J]. Chem. Eur. J., 2003, 9, 5627~5635.
    [122]. Cabanas A., Darr J. A., Lester E., et al.. Continuous hydrothermal synthesis of inorganic materials in a near-critical water flow reactor; the one-step synthesis of nano-particulate Ce_(1-x)Zr_xO_2 (x=0-1) solid solutions [J]. J. Mater. Chem., 2001, 11, 561~568.
    [123]. Riwotzki K., Haase M., Wet-chemical synthesis of doped colloidal nanoparticles: YVO_4: Ln (Ln = Eu, Sm, Dy) [J]. J. Phys. Chem B, 1998, 102, 10129~10135.
    [124]. Liu Z. P., Li S., Yang Y., et al., Complex-surfactant-assisted hydrothermal route to ferromagnetic nickel nanobelts [J]. Adv. Mater., 2003, 15, 1946~1948.
    [125]. Komarneni S., Li D. S., Newalkar B., et al., Microwave-polyol process for Pt and Ag nanoparticles [J]. Langmuir, 2002, 18, 5959~5962.
    [126]. Sun X. M., Li Y. D., Cylindrical silver nanowires: Preparation, structure, and optical properties [J]. Adv. Mater., 2005, 17, 2626~2630.
    [127]. Mo M. S., Zeng J. H., Liu X. M., et al., Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes [J]. Adv. Mater., 2002, 14, 1658~1662.
    [128]. Gautam U. K., Rao C. N. R., Controlled synthesis of crystalline tellurium nanorods, nanowires, nanobelts and related structures by a self-seeding solution process [J]. J. Mater. Chem., 2004, 14,2530~2535.
    [129]. Gogotsi Y., Libera J. A., Yoshimura M., Hydrothermal synthesis of multiwall carbon nanotubes [J]. J. Mater. Res., 2000, 15, 2591~2594.
    [130]. Moreno J. M. C, Yoshimura M., Hydrothermal processing of high-quality multiwall nanotubes from amorphous carbon [J]. J. Am. Chem. Soc, 2001, 123, 741~742.
    [131]. Sun X. M., Li Y. D., Ag@C core/shell structured nanoparticles: Controlled synthesis, characterization, and assembly [J]. Langmuir, 2005, 21, 6019~6024.
    [132]. Lu Q. Y., Gao F., Zhao D. Y, One-step synthesis and assembly of copper sulfide nanoparticles to nanowires, nanotubes, and nanovesicles by a simple organic amine-assisted hydrothermal process [J]. Nano Lett., 2002, 2, 725~728.
    [133]. Kuang D. B., Xu A. W., Fang Y. P., et al., Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process [J]. Adv. Mater., 2003, 15,1747~1750.
    [134]. Holmes S. M., Markert C, Plaisted R. J., et al., A novel method for the growth of silicalite membranes on stainless steel supports [J]. Chem. Mater., 1999.11, 3329~3332.
    [135]. Kim S. S., Zhang W. Z., Pinnavaia T. J., Ultrastable mesostructured silica vesicles [J]. Science, 1998,282, 1302~1305.
    [136]. Han Y., Ying J. Y., Generalized fluorocarbon-surfactant-mediated synthesis of nanoparticles with various mesoporous structures [J]. Angew. Chem. Inter. Ed., 2005, 44, 288~292.
    [137]. Niederberger M., Pinna N., Polleux J., et al., A general soft-chemistry route to perovskites and related materials: Synthesis of BaTiO_3, BaZrO_3, and LiNbO_3 nanoparticles [J]. Angew. Chem. Inter. Ed., 2004,43, 2270~2273.
    [138]. Cao M. H., Hu C. W., Wang E. B., The first fluoride one-dimensional nanostructures: Microemulsion-mediated hydrothermal synthesis of BaF_2 whiskers [J]. J. Am. Chem. Soc, 2003, 125, 11196~11197.
    [139]. Rao C. N. R. , Deepak F. L., Gundiah G., et al., Inorganic nanowires [J]. Progress in Solid State Chem., 2003, 31, 5~147.
    [140]. Cushing B. L., Kolesnichenko V. L., O'Connor C. J., Recent advances in the liquid-phase syntheses of inorganic nanoparticles [J]. Chem. Rev., 2004, 104, 3893~3946.
    [141]. Stein A., Advances in microporous and mesoporous solids - Highlights of recent progress [J]. Adv. Mater., 2003, 15, 763~775.
    [142]. Kang M., Lee S. Y., Chung C. H., et al., Characterization of a TiO_2 photocatalyst synthesized by the solvothermal method and its catalytic performance for CHCl_3 decomposition [J]. J. Photochem. Photobio. A-Chem., 2001, 144, 185~191.
    [143]. Gou X. L., Cheng F. Y., Shi Y. H., et al., Shape-controlled synthesis of ternary chalcogenide ZnIn_2S_4 and CuIn(S,Se)_2 nano-/microstructures via facile solution route [J]. J. Am. Chem. Soc, 2006, 128,7222~7229.
    [144]. Xu X. X., Wei W., Qiu X. M., et al., Synthesis of InAs nanowires via a low-temperature solvothermal route [J]. Nanotechnology, 2006, 17, 3416~3420.
    [145]. Du W. M., Qian X. F., Ma X. D., et al., Shape-controlled synthesis and self-assembly of hexagonal covellite (CuS) nanoplatelets [J]. Chem. Eur. J., 2007, 13, 3241~3247.
    [146]. Yang L. X., Zhu Y. J., Li L.. et al., A facile hydrothermal route to flower-like cobalt hydroxide and oxide [J]. Eur. J. Inorg. Chem., 2006, 4787~4792.
    [147]. Yu D. B., Yu S. H., Zhang S. Y., et al., Metastable hexagonal In_2O_3 nanofibers templated from InOOH nanofibers under ambient pressure [J]. Adv. Funct. Mater., 2003, 13, 497~501.
    [148]. Chen X. Y, Zhang Z. J., Zhang X. F., et al., Single-source approach to the synthesis of In_2S_3 and In_2O_3 crystallites and their optical properties [J]. Chem. Phys. Lett., 2005, 407,482-486.
    
    [149]. Lu J., Qi P. F., Peng Y. Y., et al., Metastable MnS crystallites through solvothermal synthesis [J]. Chem. Mater., 2001, 13, 2169~2172.
    [150]. Suchanek W. L., Libera J. A., Gogotsi Y, et al., Behavior of C-60 under hydrothermal conditions: transformation to amorphous carbon and formation of carbon nanotubes [J]. J. Solid State Chem., 2001, 160, 184~188.
    [151]. Wang W. Z., Huang J. Y, Wang D. Z., et al., Low-temperature hydrothermal synthesis of multiwall carbon nanotubes [J]. Carbon, 2005, 43, 1328~1331.
    [152]. Zhang W., Ma D. K., Liu H. W., et al.., Solvothermal synthesis of carbon nanotubes by metal oxide and ethanol at mild temperature [J]. Carbon, 2004, 42, 2341~2343.
    [153]. Jiang Y, Wu Y, Zhang S. Y, et al., A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature [J]. J. Am. Chem. Soc, 2000, 122, 12383~12384.
    [154]. Hu G, Cheng M. J., Ma D., et al., Synthesis of carbon nanotube bundles with mesoporous structure by a self-assembly solvothermal route [J]. Chem. Mater., 2003, 15, 1470~1473.
    [155]. Wang X. J., Lu J., Xie Y, et al., A novel route to multiwalled carbon nanotubes and carbon nanorods at low temperature [J]. J. Phys. Chem. B, 2002, 106, 933~937.
    [156]. Smith D. K., Lee D. C, Korgel B. A, High yield multiwall carbon nanotube synthesis in supercritical fluids [J]. Chem. Mater., 2006, 18, 3356~3364.
    [157]. Yu J. C., Hu X. L., Li Q., et al., Synthesis and characterization of core-shell selenium/carbon colloids and hollow carbon capsules [J]. Chem. Eur. J., 2006, 12,548~552.
    [158]. Wang Q., Li H., Chen L. Q., et al., Monodispersed hard carbon spherules with uniform nanopores [J]. Carbon, 2001, 39, 2211~2214.
    [159]. Huang X. H., Tu J. P., Zhang C. Q., et al., Net-structured NiO-C nanocomposite as Li-intercalation electrode material [J]. Electrochem. Commun., 2007, 9, 1180~1184.
    [160]. Caiulo N., Yu C. H., Yu K. M. K., et al., Carbon-decorated FePt nanoparticles [J]. Adv. Funct. Mater., 2007, 17, 1392~1396.
    [161]. Kim P., Joo J. B., Kim W.. et al., Graphitic spherical carbon as a support for a PtRu-alloy catalyst in the methanol electro-oxidation [J]. Cataly. Lett., 2006, 112, 213~218.
    [162]. Sun X. M., Liu J. F., Li Y D., Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles [J]. Angew. Chem. Inter. Ed., 2004, 43, 597~601.
    [163].Basavalingu B.,Byrappa K.,Yoshimura M.,et al.,Hydrothermal synthesis and characterization of micro to nano sized carbon particles[J].J.Mater.Sci.,2006,41,1465-1469.
    [164].Dimovski S.,Nikitin A.,Ye H.H.,et al.,Synthesis of graphite by chlorination of iron carbide at moderate temperatures[J].J.Mater.Chem.,2004,14,238-243.
    [165].Li Z.J.,Yah W.F.,Dai S.,A novel vesicular carbon synthesized using amphiphilic carbonaceous material and micelle templating approach[J].Carbon,2004,42,767-770.
    [166].Demazeau G.,Solvothermal processes:a route to the stabilization of new materials[J].J.Mater.Chem.,1999,9,15-18.
    [167].程立强,刘应亮,张静娴等.球形碳材料的研究进展[J].化学进展,2006,18,1298-1304.
    [168].Huang R.B.,Huang W.J.,Wang Y.H.,et al.,Preparation of decachlorocorannulene and other perchlorinated fragments of fullerenes by electrical discharge in liquid chloroform[J].J.Am.Chem.Soc.,1997,119,5954-5955.
    [1].Lu A.H.,Salabas E.L.,Schuth F.,Magnetic nanoparticles:synthesis,protection,functionalization,and application[J].Angew.Chem.Int.Ed.,2007,46,1222-1244.
    [2].曹宏,王学华,宾晓蓓等.石墨包覆纳米铁镍材料的制备及表征[J].矿物学报,2005,25.75-80.
    [3].米常焕,曹高劭,赵新兵.碳包覆LiFePO_4的一步固相法制备及高温电化学性能[J].无机化学学报,2005,21,556-560.
    [4].霍俊平,宋怀河,陈晓红.碳包覆纳米金属颗粒的合成研究进展[J].化学通报,2005,1,23-29.
    [5].邱介山,安玉良,李杞秀等.生物基碳包覆纳米材料(Mn,Co)的制备[J].物理化学学报,2004.20.260-264.
    [6].俞开潮,万福贤,杨献等.靶向性磁共振成像造影剂的研究进展[J].化学试剂,2004,26,329-332.
    [7].林红霞,陈骐.磁共振成像造影剂的研究进展[J].沈阳药科大学学报.2002,19,138~142
    [8].Hu F.Q.,Wei L.,Zhou Z.,et al.,Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer[J].Adv.Mater.,2006,18,2553-2557.
    [9].Liu S.R,Wei X.H.,Chu M.Q.,et al.,Synthesis and characterization of iron oxide/polymer composite nanoparticles with pendent functional groups[J].Col.and Surf.B-Biointerfaces,51,101-106.
    [10].Shu C.Y.,Gan L.H.,Wang C.R.,et al.,Synthesis and characterization of a new water-soluble endohedral metallofullerene for MRI contrast agents[J].Carbon 44,496-500.
    [11].Qu L.,Cao W.B.,Xing G.M.,et al.,Study of rare earth encapsulated carbon nanomolecules for biomedical uses[J].J.Alloy.Compound.,408,400-404.
    [12].Seo W.S.,Lee J.H.,Sun X.M.,et al.,FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents[J].Nat.Mater.,5,971-976.
    [13].Sun X.M.,Liu J.F.,Li Y.D.,Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J].Angew.Chem.Inter.Ed.,2004,43,597-601.
    [14].许并社,孙瑞平,韩培德等.洋葱状富勒烯的表面化学修饰[J].高等学校化学学报,2006,27,1404-1408.
    [15].曹春华,李家麟,贾志杰等.用二氨在碳纳米管上引入氦基团的研究[J].新型炭材料,2004,19,137-140.
    [16].陈宪宏,陈小金,钟文斌等.多壁碳纳米管侧壁的功能化与表征[J].湖南大学学报(自然科学版),2006,33,87-90.
    [1].Wang C.B.,Zhang W.X.,Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs[J].Environ.Sci.Technol.,1997,31,2154-2156.
    [2].Zhang W.X.,Wang C.B.,Lien H.L.,Treatment of chlorinated organic contaminants with nanoscale bimetallic particles[J].Catalysis Today,1998,40,387-395.
    [3].Zhang W.X.,Nanoscale iron particles for environmental remediation:An overview[J].J.Nanoparticle Res.,2003,5,323-332.
    [4].He F.,Zhao D.Y.,Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water[J].Environ.Sci.Technol.,2005,39,3314-3320.
    [5].Zhou D.L.,Njue C.K.,Rusling J.F.,Covalently linked scaffold of cobalt corrins on graphite for electrochemical catalysis in microemulsions[J].J.Am.Chem.Soc.,1999,121,2909-2914.
    [6].Nutt M.O.,Hughes J.B.,Wong M.S.,Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination[J].Environ.Sci.Technol.,2005,39,1346-1353.
    [7].Lin C.J.,Lo S.L.,Liou Y.H.,Degradation of aqueous carbon tetrachloride by nanoscale zerovalent copper on a cation resin[J].Chemosphere,2005,59,1299-1307.
    [8].Bae E.,Choi W.,Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO_2 under visible light[J].Environ.Sci.Technol.,2003,37,147-152.
    [9].Wada Y.,Yin H.B.,Kitamura T.,et al.,Photoreductive dechlorination of chlorinated benzene derivatives catalyzed by ZnS nanocrystallites [J]. Chem. Commun., 1998, 2683~2684.
    [10]. McCormick M. L., Adriaens P., Carbon tetrachloride transformation on the surface of nanoscale biogenic magnetite particles [J]. Environ. Sci. Technol., 2004, 38, 1045~1053.
    [11]. Van der Avert P., Podkolzin S. G., Manoilova O., et al., Low-temperature destruction of carbon tetrachloride over lanthanide oxide-based catalysts: From destructive adsorption to a catalytic reaction cycle [J]. Chem. -A Eur. J., 2004, 10, 1637~1646.
    [12]. Xu X. H., Liu Y., Wei J. J., et al.. Catalytic dechlorination of 2,4-dichlorophenol in water by nanoscale Pd/Fe bimetallic system [J]. Chin. J. Catal, 2004, 25, 138~142.
    [13]. Zhu B. W., Lim T. T., Feng J., Reductive dechlorination of 1,2,4-trichlorobenzene with palladized nanoscale Fe-0 particles supported on chitosan and silica [J]. Chemosphere, 2006, 65, 1137~1145.
    [14]. Paknikar K. M., Nagpal V., Pethkar A. V., et al., Degradation of lindane from aqueous solutions using iron sulfide nanoparticles stabilized by biopolymers [J]. Sci. & Tech. Adv. Mater., 2005, 6, 370~374.
    [15]. Ma X. D., Zheng M. H., Liu W. B., et all, Synergic effect of calcium oxide and iron(Ⅲ) oxide on the dechlorination of hexachlorobenzene [J]. Chemosphere, 2005, 60, 796~801.
    [1].Iijima S.,Helical microtubules of graphitic carbon[J].Nature,1991,354,56-58.
    [2].Ebbesen T.W.,Lezec H.J.,Hiura H.,et al.,Electrical conductivity of individual carbon nanotubes[J].Nature,1996,382,54-56.
    [3].Saito R.,Fujita M.,Dresselhaus G.,et al.,Electronic structure and growth mechanism of carbon tubules[J].Mater.Sci.Eng.,1993,B19,185-191.
    [4].Dai H.,Wong E.W.,Lieber C.M.,Probing electrical transport in nanomaterials:conductivity of individual carbon nanotubes[J].Science,272,523-256.
    [5].de Heer W.A.,Bacsa W.S.,Ugarte D.,et al.,Aligned carbon nantubes films:production ang optical and electrical properties[J].Science,1995,268,845-847.
    [6].Huang Y.H.,Okada M.,Tanaka K.,et al.,Estimation Iof superconducting transitioin temperature in metallic carbon nanotubes[J].Phys.Rev.B,1996,53,5129-5132.
    [7].Pan Z.W.,Xie S.S.,Lu L.,et al.,Tensile tests of ropes of very long aligned multiwall carbon nanotubes[J].Appl.Phys.Lett.,1999,74.3152-3154.
    [8].Zhu H.W.,Xu C.L.,Wu D.H.,et al.,Direct synthesis of long single-walled carbon nanotube strands[J].Science,2002,296,884-886.
    [9].Brodie I.,Spindt C.A..Vacuum Microelectronic[M].Academic Press Inc.,1992.
    [10].Zhu W.,Bower C.,Zhou O.,et al.,Large current density from carbon nanotube field emitters[J].Appl.Phys.Lett.,1999,75,873-875.
    [11].Collins P.G.,Zettl A.,Unique characteristics of cold cathode carbon nanotube-matrix field emitters[J].Phys.Rev.B,1997,55,9391-9399.
    [12].de Heer W.A.,Chatelain A.,Ugarte D.,A carbon nanotube field-emission electron source [J].Science,1995,270,1179-1180.
    [13].Saito Y.,Uemura S.,Hamaguchi K.,Cathode ray tube lighting elements with carbon nanotube field emitters[J].Jpn.J.Appl.Phys.,1998,37,L346-L348.
    [14].Journet C.,Maser W.K.,Bernier P.,et al.,Large-scale production of single-walled carbon nanotubes by the electric-arc technique[J].Nature,1997,388,756-758.
    [15].Ebbesen T.W.,Ajayan P.M.,Large-scale synthesis of carbon nanotubes[J].Nature,1992,358,220-222.
    [16].Cassell A.M.,Raymakers J.A.,Kong J.,et al.,Large scale CVD synthesis of singke-walled carbon nanotubes[J].J.Phys.Chem.B,1999,103,6484-6492.
    [17].Dai H.,Wong W.,Lu Y.,et al.,Synthesis and characterization of carbide nanorods[J].Nature,1995,375,769-772.
    [18].Kang Z.H.,Wang E.B.,Mao B.D.,et al.,Controllable fabrication of carbon nanotube and nanobelt with a polyoxometalate-assisted mild hydrothermal process[J].J.Am.Chem.Soc.,2005,127,6534-6535.
    [19].Lee D.C.,Mikulec F.V.,Korgel B.A.,Carbon nanotube synthesis in supercritical toluene [J].J.Am.Chem.Soc.,2004,126,4951-4957.
    [20].Wang W.Z.,Poudel B.,Wang D.Z.,et al.,Synthesis of multiwalled carbon nanotubes through a modified Wolff-Kishner reduction process[J].J.Am.Chem.Soc.,2005,127,18018-18019.
    [21].Xiao Q.,Wang P.H.,Si Z.C.,Covalent functionalization of carbon nanotubes[J].Progr.Chem.,2007,19,101-106.
    [22].朱宏伟,吴德海,徐才录.碳纳米管[M].机械工业出版社,2003.
    [23].Zhang D.S.,Shi L.Y.,Fang J.H.,et al.,Preparation and modification of carbon nanotubes [J].Mater.Lett.,2005,59,4044-4047.
    [24].Singh R.,Pantarotto D.,McCarthy D.,et al.,Binding and condensation of plasmid DNA onto functionalized carbon nanotubes:Toward the construction of nanotube-based gene delivery vectors [J]. J. Am. Chem. Soc, 2005, 127, 4388~4396.
    [25]. Bahr J. L., Tour J. M., Highly functionalized carbon nanotubes using in situ generated diazonium compounds [J]. Chem. Mater., 2001, 13, 3823~3824.
    [26]. Price B. K., Hudson J. L., Tour J. M., Green chemical functionalization of single-walled carbon nanotubes in ionic liquids [J]. J. Am. Chem. Soc, 2005, 127, 14867~14870.
    [27]. Jiang H. J., Zhu L. B., Moon K. S., et al., The preparation of stable metal nanoparticles on carbon nanotubes whose surfaces were modified during production [J]. Carbon, 2007, 45, 655~661.
    [28]. Hoffman W. P., Phan H. T, Wapner P. G, The far-reaching nature of microtube technology [J]. Mater. Res. Innov.,1998, 2, 87~96.
    [29]. Hu J. Q., Bando Y., Xu F. F., et al., Growth and field-emission properties of crystalline, thin-walled carbon microtubes [J]. Adv. Mater., 2004, 16, 153~156.
    [30]. Bhimarasetti G., Cowley J. M., Sunkara M. K.., Carbon microtubes: tuning internal diameters and conical angles [J]. Nanotechnology, 2005, 16, S362~S369.
    [31]. Xu L. Q., Du J., Li P., et al., In situ synthesis, magnetic property, and formation mechanism of Fe_3O_4 particles encapsulated in 1D bamboo-shaped carbon [J]. J. Phys. Chem. B, 2006, 110,3871-3875.
    
    [32]. Shen G. Z., Bando Y., Zhi C. Y, et al., Tubular carbon nano-/microstructures synthesized from graphite powders by an in situ template process [J]. J. Phys. Chem. B, 2006, 110, 10714~10719.
    [33]. Luo T., Chen L. Y, Bao K. Y, et al., Solvothermal preparation of amorphous carbon nanotubes and Fe/C coaxial nanocables from sulfur, ferrocene, and benzene [J]. Carbon, 2006,44. 2844~2848.
    [1].Serp P.,Feurer R.,Kalck P.,et al.,A chemical vapour deposition process for the production of carbon nanospheres[J].Carbon,2001,39,621-626.
    [2].Hu G.,Ma D.,Cheng M.,et al.,Direct synthesis of uniform hollow carbon spheres by a self-asembly template approach[J].Chem.Commun.,2002,1948-1949.
    [3].Wang Q.,Li H.,Chen L.Q.,et al.,Monodispersed hard carbon spherules with uniform nanopores[J].Carbon,2001,39,2211-2214.
    [4].Yao J.F.,Wang H.T.,Liu J.,et al.,Preparation of colloidal microporous carbon spheres from furfuryl alcohol[J].Carbon,2005,43,1709-1715.
    [5].Sun X.M.,Li Y.D.,Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J].Angew.Chem.Int.Ed.,2004,43,597-601.
    [6].Lee K.T.,Jung Y.S.,Oh S.M.,Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries[J].J.Am.Chem.Soc.,2003,125,5652-5653.
    [7].Jang J.,Lira B.,Selective fabrication of carbon nanocapsules and mesocellular foams by surface-modified colloidal silica templating[J].Adv.Mater.,2002,14,1390-1393.
    [8].Ni Y.B.,Shao M.W.,Tong Y.H.,et al.,Preparation of hollow carbon nanospheres at low temperature via new reaction route[J].J.Solid States Chem.,2005,178,908-911.
    [9].许宗祥,林敬东,欧延,廖代伟.催化裂解C_2H_2制备空心碳球[J].物理化学学报,2003,19.1035-1038.
    [1].Hrapovic S,Liu Y.L.,Male K.B.,et al.,Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes[J].Anal.Chem.,2004,76,1083-1088.
    [2].Rubianes M.D,,Rivas G,A.,Carbon nanotubes paste electrode[J].Electrochem.Commun.,2003,5,689-694.
    [3].Phillips P.E.M.,Stuber G.D.,Heien M.L.A.V.,et al.,Subsecond dopamine release promotes cocaine seeking[J].Nature,2003,422,614-618.
    [4].Weng J,Xue J.M,,Wang J.,et al.,Gold-cluster sensors formed electrochemically at boron-doped-diamond electrodes:Detection of dopamine in the presence of ascorbic acid and thiols[J].Adv.Funct.Mater.,2005,15,639-647.
    [5].Wang Z.H.,Liu J.,Liang Q.L.,et al.,Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid[J].Analyst,2002,127,653-658.
    [6].Zhao Y.F.,Gao Y.Q.,Zhan D.R,et al.,Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode[J].Talanta,2005,66,51-57.
    [7].Zhang M.N.,Gong K.R,Zhang H.W.,et al.,Layer-by-layer assembled carbon nanotubes for selective determination of dopamine in the presence of ascorbic acid[J].Biosensor.&Bioelectron.,2005,20,1270-1276.
    [8].Zhang P.,Wu F.H.,Zhao G.C.,et al.,Selective response of dopamine in the presence of ascorbic acid at multi-walled carbon nanotube modified gold electrode[J].Bioelectrochem.,2005,67,109-114.
    [9].Wang J.X.,Li M.X.,Shi Z.J.,et al.,Investigation of the electrocatalytic behavior of single-wall carbon nanotube films on an Au electrode[J].Microchem.J.,2002,73,325-333.
    [10].Britto P.J.,Santhanam K.S.V.,Ajayan P.M.,Carbon nanotube electrode for oxidation of dopamine[J].Bioelectrochem.Bioenerg.,1996,41,121-125.
    [17].许乙凯.磁共振造影剂及临床应用[M].人民卫生出版社,2003,26-35.
    [18].Lu A.H.,Salabas E.L.,Schuth F.,Magnetic nanoparticles:synthesis,protection,functionalization,and application[J].Angew.Chem.Int.Ed.,2007,46,1222-1244.
    [19].曹宏,王学华,宾晓蓓等.石墨包覆纳米铁镍材料的制备及表征[J].矿物学报,2005,25,75-80.
    [20].米常焕,曹高劭,赵新兵.碳包覆LiFePO_4的一步固相法制备及高温电化学性能[J].无机化学学报,2005,21,556-560.
    [21].霍俊平,宋怀河,陈晓红.碳包覆纳米金属颗粒的合成研究进展[J].化学通报,2005,1,23-29.
    [22].邱介山,交玉良.李杞秀等.生物基碳包覆纳米材料(Mn,Co)的制备[J].物理化学学报,2004.20.260-264.
    [23].俞开潮,万福贤,杨献等.靶向性磁共振成像造影剂的研究进展[J].化学试剂,2004,26,329-332.
    [24].林红霞,陈骐.磁共振成像造影剂的研究进展[J].沈阳药科大学学报.2002,19,138-142.
    [25].Hu F.Q.,Wei L.,Zhou Z.,et al.,Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer[J].Adv.Mater.,2006,18,2553-2557.
    [26].Liu S.P.,Wei X.H.,Chu M.Q.,et al.,Synthesis and characterization of iron oxide/polymer composite nanoparticles with pendent functional groups[J].Col.and Surf.B-Biointerfaces,51,101-106.
    [27].Shu C.Y.,Gan L.H.,Wang C.R.,et al.,Synthesis and characterization of a new water-soluble endohedral metallofullerene for MRI contrast agents[J].Carbon 44,496-500.
    [28].Qu L.,Cao W.B.,Xing G.M.,et al.,Study of rare earth encapsulated carbon nanomolecules for biomedical uses[J].J.Alloy.Compound.,408,400-404.
    [29].Seo W.S.,Lee J.H.,Sun X.M.,et al.,FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents[J].Nat.Mater.,5,971-976.
    [30].许并社,孙瑞平,韩培德等.洋葱状富勒烯的表面化学修饰[J].高等学校化学学报,2006.27.1404-1408.
    [31].曹春华,李家麟,贾志杰等.用二氨在碳纳米管上引入氨基团的研究[J].新型炭材料,2004.19.137-140.
    [32].陈宪宏,陈小金,钟文斌等.多壁碳纳米管侧壁的功能化与表征[J].湖南大学学报(自然科学版),2006,33,87-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700