用户名: 密码: 验证码:
玫瑰黄链霉菌Men-myco-93-63活性组分的制备及相关基因克隆研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玫瑰黄链霉菌Men-myco-93-63是一种分离自马铃薯疮痂病自然衰退土壤中的重要生防菌,对黄瓜白粉病、棉花黄萎病等多种重要植物病害均有良好的防治效果。本文对玫瑰黄链霉菌Men-myco-93-63的生物活性组分及其相关基因进行了研究。
     玫瑰黄链霉菌Men-myco-93-63在燕麦液体培养基进行摇瓶发酵培养,每1000ml发酵液可提纯获得172-2mg粗提抗生素,采用牛津杯法活性检测表明对棉花黄萎病菌、马铃薯疮痂病菌抑菌活性稳定。定量测定表明马铃薯疮痂病菌最敏感,0.3mg/ml粗提抗生素即可完全抑制其生长;粗提抗生素对变铅青链霉菌(TK24和TK54)的抑菌活性较低。薄层分析表明甲醇∶氯仿为1∶6时是粗提抗生素薄层层析的最佳展开条件,可分离出7个组分,其中组分Ⅲ、Ⅳ、Ⅶ对马铃薯疮痂病菌具有抑菌活性,组分Ⅶ还对棉花黄萎病菌有抑菌活性。抗生素组分Ⅲ对马铃薯疮痂病菌的抑菌活性最强。采用制备型薄层硅胶板对抗生素组分Ⅲ进行了大量制备,TLC和HPLC分析表明薄层分离制备的抗生素组分Ⅲ纯度较高,紫外光谱最大吸收波长为198.1nm和274.5nm,与先前用HPLC制备的组分13近似。
     玫瑰黄链霉菌Men-myco-93-63对自身抗生素组分Ⅲ具有较高的耐受性,因而其基因组中有相应的抗性基因。采用鸟枪法基因克隆技术在变铅青链霉菌中克隆了玫瑰黄链霉菌Men-myco-93-63抗生素组分Ⅲ的抗性基因,定位于1.7kb基因片段上,该基因片段有4个ORFs,ORF1编码386aa,与灰色链霉菌和天蓝色链霉菌的β-半乳糖苷酶高度同源;ORF2编码83aa,与除虫链霉菌MA-4680、天蓝色链霉菌、山丘链霉菌核糖体大亚基L2蛋白RNA结合域以及南昌链霉菌、除虫链霉菌的葡聚糖内切酶高度同源,可能是链霉菌尚未发现的新基因。ORF3编码氨基酸与动球菌(Kineococcus radiotolerans SRS30216)的醛/酮还原酶一致性和相似性均为66%。在ORF3相应位置的互补链上(1697-1352bp)存在一个ORF4,编码115aa,与除虫链霉菌的分泌蛋白(multidrug resistance protein,SpcT-like efflux protein,450aa)有较低的同源性,这一编码区应进一步亚克隆研究其功能。
     采用鸟枪法以质粒pIJ702为载体在链霉菌常用宿主菌中建立了玫瑰黄链霉菌Men-myco-93-63合成相关基因克隆文库,以马铃薯疮痂病菌为指示菌从6000个转化
Streptomyces roseoflavus Men-myco-93-63, which isolated from the potato scab decline field, was an excellent strain to control some plant diseases such as cucumber powdery mildew, cotton verticillium wilt and so on. The research was carried out to extract the active agent to inhibit the Streptomyces scabies from the fermentation and clone the genes related to antibiotic biosynthesis.S. roseoflavus Men-myco-93-63 was shake-flask culture in oatmeal medium and could produce 172.2 mg crude antibiotic in 1000 ml fermentation. The activity of the crude antibiotic was detected with oxford cup and the results showed that it could inhibit S. scabies S87 and Verticillium dahliaeV41 invariably. The quantitative assays also showed that 0.3mg/ml crude antibiotic was enough to inhibit S. scabies S87, but not to S. lividans. The crude antibiotic was analyzed by TLC and the results showed that it was the suitable developing solvent while the ratio of methyl alcohol and chloroform was 1:6 and 7 components could be separated on silica gel plate. The component Ⅲ, Ⅳ, Ⅶ had the antibacterial action to S. scabies S87 and the component Ⅲ was the most active agent. The component Ⅶ had the fungistatic action to V. dahliae V41 yet. Then the component III was prepared largely on preparative silica gel plate and the analysis of TLC and HPLC expressed it was very purity. The UV spectrum of the component Ⅲ showed that the maximum absorb wavelength (λmax) was 198.1nm and 274.5nm.The value of MIC (minimum inhibitory concentration) was determined and the results showed that S. lividans TK54 with pIJ702 could be inhibited when one milliliter MM medium had 80μl component Ⅲ. S. roseoflavus Men-myco-93-63 could be resistant higher concentration component III and the resistance gene was cloned by the shotgun method in S. lividans TK54 which located in the 1.7kb DNA fragment. This fragment had 4 ORFs, ORF1 encoded 386aa which was homologous to beta-galactosidase from S. grieus and S. colicolor. ORF2 which may be a new gene in streptomyces encoded a putative protein comprising 83aa. N-terminal of the putative protein was high homologous to RNA binding domain of ribosomal protein L2 from S. avermitilis MA-4680, S. collinus, S. coelicolor and C-terminal was very homologous to the endoglucanase from S. nanchangensis and S. avermitilis MA-4680. ORF3 encoded a putative protein
    homologous to aldehyde/ ketone reductase from Kimococcus radiotolerans SRS30216. ORF4 was located in the complementary strand corresponding to ORF3 and encoded 115aa which was homologous lowly to multidrug resistance protein (SpcT-like efflux protein, 450aa) from S. avermitilis MA-4680. The coding sequence should be subcloned and identify the function.The clone library to isolate the gene related to the antibiotic biosynthesis was constructed by cloning Sau3A I partial-digested genomic DNA fragments ofS. roseoflavus Men-myco-93-63 into the plasmid pIJ702 in the host S. lividans TK54. This library was screened by inhibition to the indicate strain S. scabies S87. It was found that 3 clones had the ability to antagonize to S. scabies S87 and SA-3 was the strongest antagonist. The plasmid isolated from SA-3 was named pSA3 and about 8.5kb extrinsic fragment was detected. The function of pSA3 was identified and it was proved that S. lividans TK54 transformed by pSA3 could inhibit S. scabies S87, but no active to V. dahliaeWAl. The fermentation was prunosus when the transformant was shake-flask culture in oatmeal medium and the extraction with ethyl acetate could inhibit S. scabies S87. The HPLC analysis of the extraction demonstrated that they were very different between S. lividans TK54 transformed by pSA3 and by pIJ702. The analysis of sequence with Frameplot2.3 showed that the fragment included 10 ORFs and 2 incomplete ORFs. The results of blastp showed 2 ORFs were homologous to whiB (transcriptional regulator) and RNA/DNA helicase which had DEXDc (DEAD-like helicases superfamily) conserved domain and another ORF had HTHXRE (Helix-turn-helix, xenobiotic respohse element family of transcriptional regulators) and COG 1426 conserved domain, which was homologous lowly to DNA-binding protein. The putative proteins encoded by other 7 ORFs which had not homologous sequence were unknown about the functions. The fragment was likely related to regulation of the antibiotic biosynthesis. The extrinsic fragment gene sequence and the HPLC analysis of the transformant fermentation showed that this fragment was involved in the biosynthesis of the antibiotic in S. roseoflavus Men-myco-93-63.
引文
[1] Garrity G M. Bergey's manual of systematic bacteriology[M]. Springer-Verlag, New York. 2002
    [2] Kieser T, Bibb, M J, Buttner M J, et al. General introduction to actinomycete biology. In Practical Streptomyces genetics[M]. The John Innes Foundation, Norwich, UK. 2000, pp. 1~42.
    [3] Bibb M, Schottel, J L, Cohen, S N. A DNA cloning system for inter-species gene transfer in antibiotic-producing Streptomyces[J]. Nature, 1980, 284: 526~531.
    [4] 蒋细良,朱昌雄,姬军红,等.中生菌素对水稻白叶枯病的防治机制[J].中国生物防治,2003,19(2):69~72.
    [5] 蒋细良,谢德龄,倪楚芳,等.中生菌素对真菌作用机理的研究[J].中国生物防治.1997,13(2):69~71.
    [6] 张穗.井冈霉索A诱导水稻防御纹枯病反应机理研究[D].北京:中国农业大学图书馆,2001.
    [7] 韩巨才,刘慧平,高计青,等.农抗120对西瓜枯萎病作用方式的研究[J].西北农业大学学报,1995,15(2):122~125.
    [8] Trejo-Estrada S R, Paszczynski A, Crawford D L. Antibiotics and enzymes produced by the biocontrol agent Streptomyces violaceusniger YCED-9[J]. Journal of Industrial Microbiology and Biotechnology, 1998, 21: 81~90.
    [9] Nair M G, Chandra A, Thorogood D L. Gopalamicin, anantifungal macrotide produced by soil actinomycete[J]. J. Agric. Food Chem. 1994, 42: 2308~2310.
    [10] Eckwall E C, Schottel J L. Isolation and characterization of an antibiotic produced by the scab disease-suppressive Streptomyces diastatochromogenes strain PonSSII[J]. Journal of Industrial Microbiology and Biotechnology, 1997, 19(3): 220~225.
    [11] 薛德林,胡江春,马成新,等.海洋放线菌MB-97生物制剂在克服大豆连作障碍中的应用[J].现代化农业,2003,(12):19-21.
    [12] 沈寅初.新农药研究与开发[M].北京:化学工业出版社,1995.308~320.
    [13] Knight S C, Anthony V M, Brady A M, et al. Rationale and Perspectives on the development of fungicides[J]. Annu. Rev. Phytopnthol., 1997, 35: 349~372.
    [14] 洪华珠,杨红.杀虫微生物纲要[M].武昌:华中师范大学出版社,1997.
    [15] Aoki A R, Fukuda Nkayabu T, Ishibeshi K, et al. DE Pat 2329486 (Sankyo Co. Ltd) [P]. 1973, (Priority, 08, June 1972).
    [16] Bentley S D, Chater K F, Cerdeno-Tarraga A M, et al. Complete genome sequence of the model actinomycete Streptomyces coelicolorA3(2)[J]. Nature, 2002, 417(6885): 141~147.
    [17] Ikeda H, lshikawa J, Hanamoto A, et al. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis[J]. Nature Biotechnol, 2003, 21(5): 526~531.
    [18] Rudd B A, Hopwood D A. A pigmented mycelial antibiotic in Streptomyces coelicolor: control by a chromosoma gene cluster[J]. J Gen Microbiol, 1980, 119(2): 333~340.
    [19] Chater K F, Bruton C J. Resistance, regulatory and production genes for the antibiotic methylenomycin are clustered[J]. Embo J., 1985, 4(7): 1893~1897.
    [20] 刘志恒,姜成林.放线菌现代生物学与生物技术[M].科学出版社,2004.
    [21] Baltz R H. Genetic manipulation of antibiotic-producing Streptomyces[J]. Trends in Microbiology, 1998, 6(2): 76~83.
    [22] Gusek T W, Kinsella J E. Review of the Streptomyces lividans/vector plJ702 system for gene cloning[J]. Crit Rev Microbiol. 1992, 18(4): 247~60.
    [23] Kieser T, Moss M T, Dale J W, et al. Cloning and expression of Mycobacterium bovis BCG DNA in "Streptomyces lividans"[J]. J Bacteriol., 1986, 168(1): 72~80.
    [24] Hopwood D A, Bibb M J, Chater K F, et al. Genetic manipulation of Streptomyces: A laboratory manual[M]. 1985.
    [25] Thompson C J, Ward J M, Hopwood D A. DNA cloning in Streptomyces: resistance genes from antibiotic-producing species[J]. Nature. 1980, 286(5772): 525~527.
    [26] Hopwood D A, Bibb M J, Bruton C J, et al. Cloning streptomyces genes for antibiotic production[J]. Trends Biotechnol.1983, (1): 42~48.
    [27] Rudd B A, Hopwood D A. Genetics of actinorhodin biosynthesis by Streptomyces coelicolor A3(2)[J]. J Gen Microbiol. 1979, 114(1): 35~43.
    [28] Marti T, Hu Z, Pohl N L, et al. Cloning, nucleotide sequence, and heterotogous expression of the biosynthetic gene cluster for R1128. a non-steroidal estrcgen receptor antagonist. Insights into an unusual priming mechanism[J]. J. Biol. Chem., 2000, 275(43): 33443~33448.
    [29] Zazopoulos E, Huang Kexue, Stafa A, et al. A genomics-guided approach for discovering and expressing cryptic metabolic pathways. Nature Biotechnology, 2003, 21: 187~190.
    [30] Malpartida F, Hopwocd D A. Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression in a heterologous host[J]. Nature, 1984, 309: 462~464.
    [31] Malpartida F, Niemi J, Navarrete R, et al. cloning and expression in a heterologous host of the complete set of genes for biosynthesis of the S. coelicolor antibiotic undecylprodigiosin[J]. Gene, 1990.
    [32] Malpartida F, Hallam S E, Hopwood D A, et al. Homology between Streptomyces genes coding for synthesis of different polyketides used to clone antibiotic biosynthetic genes[J]. Nature, 1987, 325, 818~821.
    [33] 沈金花.吸水链霉菌10-22的5102-Ⅲ号素生物合成基因簇的定位与克隆[D].华中农业大学.2001
    [34] 曾红梅.圈卷产色链霉菌尼可霉素生物合成相关基因的研究进展[D].中国科学院微生物所博士论文.2002.
    [35] Donadio S, Sosio M, Lancini G. Impact of the first Streptomyces genome sequence on the discovery and production of bioactive substances[J]. Applied Microbiology and Biotechnology, 2002, 60(4): 377~380.
    [36] Hopwood D A. The Streptomyces genome-beprepared. Nature Biotechnology, 2003, 21:505~506.
    [37] Petkovic H, Hrauneli D, Raspor P, et al. The use of molecular biology to reprogram Streptomyces to make polyketide antibiotics more eficiently, and create novel secondary m etabolites[J]. Pflugers Arch. 2000, 439(3 Suppl): R87~9.
    [38] Sven-Eric Wohlert, Natalia Lomovskaya, Kerry Kulowski, et al. Insights about the biosynthesis of the avermectin deoxysugar L-oleandrose through heterologous expression of Streptomyces avermitilis deoxysugar genes in Streptomyces lividans[J]. Chemistry & Biology, 2001, 8: 681~700.
    [39] Thompson C J, Fink D, Nguyen L D. Principles of microbial alchemy: insight from the Streptomyces coelicolor genome sequence[J]. Genome Biology, 2002, 3(7): 10201~10204.
    [40] Butler M J, Bruheim P, Jovetic S, et al. Engineering of primary carbon metabolism for improved antibiotic production in Streptomyces lividans[J]. Applied and Environmental Microbiology. 2002, 68(10): 4731~4739.
    [41] Challis G L, Hopwood D A. Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species[J]. PNAS. 2003, 100(2): 4555~4561.
    [42] Chen C W, Huang C H, Lee H H, et al. Once the circle has been broken: dynamics and evolution of Streptomyces chromosomes[J]. Trends in Genetics, 2002, 18(10): 522~529.
    [43] Paradkar A S, Mosher R H, Anders C, et al. Applications of gene replacement technology to Streptomyces clavuligerus strain development for clavulanic acid production[J]. Appllied Environmental Microbiology, 2001, 67(5): 2292~2297.
    [44] Wang G J, Tan H R. Enhanced production of nikkomycin X by over-expression of SanO, a non-ribosomal peptide synthetase in Streptomyces ansochromogenes[J]. Biotechnol Lett, 2004, 26(3): 229~233.
    [45] Okamoto S, Lezhava A, Hosaka T, et al. Enhanced expression of S-adenosylmethionine synthetase causes Overproduction of actinorhodin in Streptomyces coelicolor A3(2)[J]. Journal of Bacteriology, 2003, 185(2): 601~609.
    [46] Hwang Y S, Kim E S, Birb S, et al. Cloning and analysis of a DNA fragment stimulating avermectin production invarious Streptomyces avermitilis strains[J]. Applied and Environmental Microbiology, 2003, 69(2): 1263~1269.
    [47] 张艳娟,洪斌.链霉菌次级代谢调控机制进展[J].中国生物工程杂志,2004,12(24):39~47
    [48] Horinouchi S, Hara O, Beppu T. Cloning of a pleiotropic gene that positively controls biosynthesis of A-factor, actinorhodin, and prodigiosin in Streptomyces coelicolor A3(2) and Streptomyces lividans[J]. J Bacteriol., 1983, 155(3): 1238~48.
    [49] Romero N M, V Parro, R P Mellado. Expression of a heterologousgene activating actinorhodin biosynthesis in Streptomyces lividans and Streptomyces coelicolor[J]. FEMS Microbiol. Lett., 1994, 116: 301~306.
    [50] Bohdan Ostash, Uwe Rix, Lily L, et al. Generation of New Landomycins by Combinatorial Biosynthetic Manipulation of the LndGT4 Gene of the Landomycin E Cluster in S. globisporus[J] Chemistry and Biology, 2004, 11: 547-555.
    [51] Leticia Rodriguez, Ignacio Aguirrezabalaga, Nerea Allende, et al. Engineering Deoxysugar Biosynthetic Pathways from Antibiotic-Producing Microorganisms: A Tool to Produce Novel Glycosylated Bioactive Compounds[J]. Chemistry & Biology, 2002,9: 721-729.
    [52] Patricia J. Solenberg, Patt(?) Matsushima, Douglas R. Stack, et al. Production of hybrid glycopeptide antibiotics in vitro and in Streptomyces toyocaensis[J]. Chemistry & Biology, 1997, 4: 195-202.
    [53] Hopwood D A, Malpartida F, Kieser H M, et al. Production of 'hybrid' antibiotics by genetic engineering[J]. Nature, 1985,314(6012): 642-644.
    [54] Cortes J, Wiesmann K. E, Roberts G A, et al. Repositioning of a domain in a modular polyketide synthase to promote specific chain cleavage[J]. Science, 1995, 268(5216): 1487-9
    [55] Hopwood D A. Genetic contributions to understanding polyketide synthases[J]. Chemistry Review, 1997, 97(7): 2465.
    [56] Vivian Miao, Marie-Francois, Coeffet-Le Gal, et al. Genetic Engineering in Streptomyces roseosporus to produce hybrid lipopeptide[J]. Antibiotics, 2006,13(3): 269-276.
    [57] Sun Y, Zhou X, Dong H. et al. A complete gene cluster from Streptomyces nanchangensis NS3226 encoding biosynthesis of the polyether ionophore nanchangmycin[J]. Chem Biol., 2003,10(5): 431-41.
    [58] Arai, T. Studies of flavomycin Taxonomic investigations on the strain, production of the antibiotic and application of cup method to the assay[J]. J. Antibiot. 1951, 4: 215-220.
    [59] Lanoot B, Vancanneyt M, Dawyndt P, et al. BOX-PCR fingerprinting as a powerful tool to reveal synonymous names in the genus Streptomyces. Emended descriptions are proposed for the species Streptomyces cinereorectus, S. fradiae, S. tricolor, S. colombiensis, S. filamentosus, S. vinaceus and S. phaeopurpureus[J]. Syst Appl Microbiol., 2004,27(1): 84-92.
    [60] Aiso K, Arai T, Washida K, et al. Mycelin, a new antifungal substance extracted from the mycelium of a Streptomyces[J]. J. Antibiot., 1952, 5: 218-219.
    [61] Utahara R, H. Yamazaki, Y. Okami, et al. A new source of fradicinmycelin like antifungal antibiotic[J]. J. Antibiot., 1959, 12 A: 73-74.
    [62] Schlegel R, H Thrum. A new polyeneantibiotic, flavomycin Structural investigations I [J]. J. Antibiot. 1971,24: 360-367.
    [63] Schlegel R, H Thrum. A new polyeneantibiotic, flavomycoin. Structural investigations II [J]. J. Antibiot., 1971,24: 368-374.
    [64] Taptykova S D, Cherni N E, Tikhonenko A S, et al. Production of tubular structures from the aerial mycelium of Actinomyces roseoflavus var. roseofungini[J]. Antibiotiki., 1976, 21(7): 587-91.
    [65] Vetlugina L A. Antibiotic roseofungin. Its isolation and physicochemical properties[J]. Antibiotikii, 1968, 13: 992-997.
    [66] Fourati-Ben Fguira L, Fotso S, Ben Ameur-Mehdi R, et al. Purification and structure elucidation of antifungal and antibacterial activities of newly isolated Streptomyces sp. strain US80[J]. Res Microbiol., 2005, 156(3): 341~7.
    [67] Hee J P, Jung Y L, In S H, et al. Isolation and Antifungal and Antioomycete Activities of Staurosporine from Streptomyces roseoflavus Strain LS-A24[J]. J. Agric. Food Chem., 2006, 54: 3041~3046.
    [68] 黄文彩,夏湛恩.农用抗生素633研究—产生菌分类鉴定[J].中国抗生素杂志,1991,16(3):209~212.
    [69] Liu D Q. Biological control of Streptomyces scabies and other plant pathogens[D]. PhD Thesis, The University of Minnesota, USA, 1992.
    [70] 李永亮.链霉菌Men-myco-93-63抗生素提取纯化及生防制剂的研究[D].河北农业大学.2004.
    [71] 刘大群,田世民,肖昆,等.链霉菌对植物病原菌抑制作用的研究[A].刘仪.植物病害研究与防治[C].北京:中国农业科技出版社,1997,512~515.
    [72] 刘大群,杨文香,祁碧菽,等.拮抗链霉菌Men-myco-93-63及其发酵液对棉花黄萎病菌生长的影响[J].河北农业大学学报,1999,22(4):127~130.
    [73] Yang W X, Zhang T and Liu D.Q. Biological Control cucumber powdery mildew using culture filtrate of antagonistic Streptomyces in green house[C]. The 2nd International Workshop on White Agriculture. 2004, 85.
    [74] 魏学军,杨文香,张汀,等.蔬菜根结线虫生防链霉菌的筛选[C].第二届全国绿色环保农药新技术、新产品交流会论文集.2003,410~415
    [75] Meng Q F, Yang W X, Zhang Q L, et al. Field Evaluation of antagonistic Streptomyces Men-myco-93-63 preparation in biocontrol of cotton Verticillium Wilt [C]. Proceedings of the 15th International Plant Protection Congress. Beijing: Foreign Languages Press, 2004, 153.
    [76] 张汀,赤国彤,杨文香,等.Men-myco-93-63发酵液不同剂型防治茄子黄萎病的田间小区药效研究[C].第二届全国绿色环保农药新技术、新产品交流会论文集.2003,420~423
    [77] Watve M I, Tickoo R, Jog M I, et al. How many antibiotics are produced by the genus Streptomyces? Archives of Microbiology, 2001, 176, (5): 386~390.
    [78] Takeuchi S, Hirayama K, Ueda K, et al. Blasticidin S, a new antibiotic. J Antibiot (Tokyo). 1958, 11(1): 1~5.
    [79] 刘占良.棉花黄萎病菌拮抗链霉菌分类鉴定及几丁质酶基因的研究[D].河北农业大学博士论文,2003..
    [80] Cramer I R, Davlas J E. Increased production of aminoglycosides associated with amplified resistace genes[J]. J. Antibiotic., 1986, 39: 128.
    [81] Jun Ishikawa, Kunimoto Hotta. FramePlot: a new implementation of the Frame analysis for predicting protein-coding regions in bacterial DNA with a high G+C content [J]. FEMS Mierobiology Letters, 1999, 174(2): 251~253.
    [82] Bibb M J, Findlay P R, Johnson M W. The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences[J]. Gene, 1984, 30(1~3): 157~66.
    [83] Karel Mikulik, Petr Man, Pert Halada. Characterization of the rplB Gene from Streptomyces collinus and Its Protein Product by Mass Spectrometry[J]. Biochemical and Biophysical Research Communications, 2001, 285(5): 1344~1349.
    [84] Olano C, Rodriguez A M, Mendez C, et al. Topological studies of the membrane component of the OleC ABC transporter involved in oleandomycin resistance in Streptomyces antibioticus[J]. FEMS Microbiol Lett., 1996, 143(2~3): 133~9.
    [85] Thomas E, Strickler J, Gorniak L, et al. Characterization of the Promoter, Signal Sequence, and Amino Terminus of a Secreted 3-Galactosidase from "Streptomyces lividans" [J]. J. of Bacteriology, 1987, 4249~4256.
    [86] Wilson V T, Cundliffe E. Molecular analysis of tlrB, an antibiotic-resistance gene from tylosin-producing Streptomyces fradiae, and discovery of a novel resistance mechanism[J]. J Antibiot (Tokyo), 1999, 52(3): 288~96.
    [87] Liu M F, Kirpekar F, G P van Weze, et al. The tylosin resistance gene tlrB of Streptomyces fradiae encodes a methyltransferase that targets G748 in 23S rRNA[J]. Molecular Microbiology, 2000, 37: 811.
    [88] Douthwaite S, Crain P F, Liu M, et al. The tylosin-resistance methyltransferase RlmA(Ⅱ) (TlrB) modifies the N-1 position of 23S rRNA nucleotide G748[J]. Mol. Biol., 2004, 337(5): 1073~7.
    [89] Martin M F, Liras P. Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites[J]. Annu Rev Microbiol., 1989, 43:173~206.
    [90] 李永泉,吴丹,岑沛霖,等.天蓝链霉菌抗生素次生代谢过程的调控因子研究进展[J].浙江大学学报(理学版),2004,31(4):446~449.
    [91] Davis N K, and Chater K F. The Streptomyces coelicolor whiB gene encodes a small transcription factor-like protein dispensable for growth but essential for sporulation[J]. Molecular Genetics and Genomics, 1992, 232(3:351~358
    [92] Kormanec J, Sevcikova B, Sprusansky O, et al. The Streptomyces aureofaciens homologue of the whiB gene is essential for sporulation and its expression correlates with the developmental stage[J]. Folia Microbiol, 1998, 43: 605~o12.
    [93] Kormanec J, Sevcikow. B, Sprusansky O. The Streptomyces aureofaciens homologue of the whiB gene is essential for sporulation;its expression correlates with the developmental stage[J]. Folia Microbiol (Praha), 1998, 43(6): 605~12.
    [94] Soliveri J A, Gomez J, Bishai W R. Multiple paralogous genes related to the Streptomyces coelicolor developmental regulatory gene whiB are present in Streptomyces and other actinomycetes[J]. Microbiology, 2000, 146: 333~343.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700