用户名: 密码: 验证码:
拟南芥4CL3基因在类黄酮合成代谢中的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光照能够强烈的影响植物的初生代谢,同时也影响着植物次生代谢产物的积累。苯丙酸盐途径是植物中非常重要的次生代谢途径,4-香豆酸:辅酶A连接酶(4CL)位于该途径中的分支点上,是控制碳流进入不同苯丙酸盐代谢支路的关键酶。4CL蛋白及其基因在木质素合成调控中的研究较多,而在类黄酮的合成调控中的研究较少,甚至其对类黄酮合成的调控机理都不是十分清楚。本文以拟南芥野生型(Col-4)和光受体突变体为材料,系统地研究了蓝光对4CL3的表达和类黄酮合成的调控分子机制,以及初步研究了4CL3在拟南芥中的其它生理功能。论文的具体研究结果如下:
     (1)通过对拟南芥各种光受体突变体木质素含量的测定及茎的组织化学分析结果发现,当红光和远红光受体光敏素(PhyA,PhyB)突变后,植株的木质素含量降低;当蓝光受体隐花素(CRY1,CRY2)突变后,植株的木质素含量升高。该结果说明,光敏素(PhyA,PhyB)对拟南芥木质素合成起正调控作用,隐花素(CRY1,CRY2)对拟南芥木质素合成起负调控作用。
     (2)拟南芥幼苗在不同光质处理下,通过半定量RT-PCR和QPCR对苯丙酸盐代谢途径的相关酶基因的表达分析,结果发现4CL3的表达受各种光质的诱导明显,尤其受蓝光的诱导最为强烈,并且与已知的类黄酮合成的关键酶基因CHS表达趋势基本一致。同时还发现,在蓝光受体突变体中,4CL3的表达量显著降低,特别是在蓝光受体双突变体cry1cry2的降低幅度最大。另外,通过4CL::GUS在不同光质下的GUS活性的检测分析发现,4CL3的表达受不同光质的不同程度的正调节,尤其是受蓝光的正调节非常明显。随后,通过对各种光受体突变体在黑暗和蓝光下的类黄酮含量的检测发现,在蓝光条件下野生型中的三种黄酮苷元含量都比在黑暗条件下成倍增加,而且比各光受体突变体中的含量高出几倍,结果说明蓝光受体隐花素(CRY1和CRY2)和光敏素PhyA(吸收部分蓝光)介导蓝光促进了类黄酮的生物合成和在植物体内的积累。这些结果证实,蓝光促进拟南芥4CL3的表达和类黄酮的累积。
     (3)通过对Col-4、蓝光受体突变体(cry1,cry2,cry1cry2)和过表达转基因株系(35S::GFP-CRY1,35S::GFP-CRY2)中的以对-香豆酸辅酶A为中心呈十字形排列于苯丙酸盐代谢途径中的各种酶基因在持续蓝光下的表达分析,发现主要是4CL3和CHS的表达受由CRY介导的蓝光信号传导途径的诱导非常明显。同时还发现,4CL3的表达和类黄酮的累积主要受CRY1介导的蓝光信号传导途径的正调节,而CRY2起协同作用。
     (4)通过采用可控条件限制的核定位方法对CRY1进行的研究,当用DEX处理后35S::CRY1-GR中4CL3和CHS的转录水平成倍增加,并达到与35S::GFP-CRY1的同一水平,说明CRY1在核内正调节4CL3和CHS的表达。该结果证明了4CL3和CHS受核内CRY1的正调节,而不受胞质CRY1的调节。同时通过类黄酮含量的检测发现,当有DEX存在时,35S::CRY1-GR中类黄酮含量均成倍增加。该结果说明,CRY1在核内促进了类黄酮的合成。另外,通过检测35S::GFP-CRY1中CRY1与GFP形成的融合蛋白的绿色荧光强度和亚细胞定位发现,蓝光可以促进CRY1由细胞质向细胞核转移。根据这些实验结果我们可以得出这样的初步结论,当植物接受到蓝光时促进CRY1由细胞质进入细胞核,然后在细胞核内促进4CL3和CHS等类黄酮合成的关键酶基因的表达,从而促进类黄酮的合成和累积。根据这些实验结果,我们初步揭示了蓝光对类黄酮合成代谢进行调控的分子机理。
     (5)在研究中我们发现一个有趣的现象,不论在何种处理条件下,4CL3的表达趋势总是与CHS高度一致,并且4CL3的表达量始终与类黄酮的含量呈正相关性。由此我们推测4CL3不参与木质素的合成,很可能参与类黄酮的合成,是类黄酮合成的关键酶。随后通过对4CL3缺失突变体S894的研究发现,4CL3缺失或表达量的降低会导致植株中类黄酮含量的降低。该结果首次以直接证据证实了4CL3是参与类黄酮合成的关键酶。同时我们也发现,当4CL3缺失仅导致突变体类黄酮含量下降20-40%,并没有出现完全缺失的结果。因此可以推测,4CL3并非是苯丙酸盐代谢途径中催化香豆酸盐形成相应的CoA硫酯用于类黄酮合成的唯一的酶,而只是起主要作用,当其缺失时其它4CL酶(4CL1,4CL2和4CL5)也能行使部分催化功能。因此,我们认为4CL3催化通路是类黄酮合成的主要通路,并且是苯丙酸盐代谢途径中控制碳流进入类黄酮代谢途径的关键酶。根据这些实验结果,我们修正了苯丙酸盐代谢途径。
     (6)通过对4CL3在长日照(16 h光照/8 h黑暗)或短日照(8 h光照/16 h黑暗)光周期条件下4CL1和4CL3表达变化的生物节律性分析发现,4CL基因家族中已知的参与木质素合成的4CL1具有一定的昼夜节律性,但是不是特别明显。相反,4CL3的表达具有明显的昼夜节律性,即使转移至白光下2 d后仍然保持着这种节律性。该实验结果证明了参与类黄酮合成的4CL3的表达具有明显的昼夜节律性。
     (7)通过对4CL3的缺失突变体S894和过表达转基因株系35S::GFP-4CL3的表型分析发现,与野生型相比S894的开花时间稍微提前,而35S::GFP-4CL3的开花时间却比Col-4延迟了约6-10 d。另外还发现,S894的植株较野生型Col-4矮小,而35S::GFP-4CL3的植株明显比Col-4高大。这些结果初步证明4CL3对拟南芥开花时间和生物产量有着重要的调节作用。
     综上所述,本研究从分子水平上初步阐明了隐花素CRY1介导的蓝光信号传导途径对4CL3的表达和类黄酮合成的调控机制,首次以直接证据证实了4CL3是参与类黄酮合成的关键酶,并修正了植物次生代谢途径中重要的苯丙酸盐代谢途径,为将来利用基因工程方法调控类黄酮和木质素的合成提供了理论依据,具有重要的理论和现实指导意义。
Light illumination strongly influences not only the primary metabolism of plants, but also the accumulation of secondary metabolites. The phenylpropanoid pathway is a very important secondary metabolic pathway in plants. The 4-coumarate:CoA ligase (4CL) located in the pathway branch point is the key enzyme to control the carbon flow into the various branches of phenylpropanoid pathway. Although extensive research works have been carried out on the regulations of lignin biosynthesis by 4CL protein and gene, much fewer works have been devoted to the flavonoid biosynthesis. As a result, even its regulation mechanism is not very clear. In this paper, the wild-type (Col-4) and photo receptor mutants of Arabidopsis thaliana were used as the experimental materials. The regulation molecular mechanism of the expression of 4CL3 and flavonoid biosynthesis by blue light was systematically studied. Moreover, a preliminary study on other physiological functions of 4CL3 was also carried out. The results were listed as follows:
     (1) Through the analysis of lignin content and the histochemical assay of stems in the various Arabidopsis photo receptor mutants, it was found that the mutation of the red light and far-red light receptor Phytochrome (PhyA, PhyB) decreased the lignin contents; while the mutation of the blue light receptor cryptochrome (CRY1, CRY2) increased the lignin contents. It suggested that Phytochrome (PhyA, PhyB) played a positive role in the regulation of lignin biosynthesis in Arabidopsis, whereas the cryptochrome (CRY1, CRY2) played a negative role.
     (2) The Arabidopsis seedlings were treated with different light qualities, and the expressions of the related enzyme genes in the phenylpropanoid pathway were analyzed by semi-quantitative RT-PCR and QPCR. The results showed that the expression of 4CL3 was induced apparently by different light qualities, particularly by blue light. The expression trend of 4CL3 was basically similar to that of CHS, a known key enzyme gene in flavonoid biosynthesis. Moreover, it was found that the expression of 4CL3 reduced significantly in the blue light receptor mutants, especially in the double-mutant cry1cry2 which showed the maximum reduction. The histochemical assay of GUS activity in the 4CL::GUS treated with different light qualities indicated that the expression of 4CL3 was regulated at different levels by different light qualities, with blue light having the most significant positive regulation effects. Subsequently, the flavonoids contents of different photo receptor mutants under dark and blue light conditions were analyzed. The contents of three flavonoid aglycones of wild type in blue light increased several times compared with those kept in dark, and were several times higher than those of photo receptor mutants. These results showed that the blue light receptor cryptochrome (CRY1 and CRY2) and Phytochrome PhyA (part of blue light absorption) mediated blue light to promote flavonoid biosynthesis and accumulation in plants. Therefore, it was confirmed that the blue light promoted 4CL3 expression and flavonoids accumulation in Arabidopsis thaliana.
     (3) The expressions of the various enzyme genes (taking the p-coumarate:CoA as the center and located in the phenylpropanoid pathway in the form of a cross) in the Col-4, blue light receptor mutants (cry1, cry2, cry1cry2) and over-expression transgenic lines (35S:: GFP-CRY1, 35S:: GFP-CRY2) under continuous blue light were analyzed. The results showed that 4CL3 and CHS were the main genes whose expression were obviously induced by CRY-mediated blue light signal transduction pathway; and 4CL3 expression and flavonoids accumulation were positively regulated mainly by the CRY1-mediated blue light signal transduction pathway and synergistically by CRY2.
     (4) A conditional nuclear localization approach was employed to investigate the exact subcellular compartment where CRY1 action and regulation take place. When 35S:: CRY1-GR was treated with DEX, the transcription levels of 4CL3 and CHS increased several times and reached the same levels of 35S:: GFP-CRY1, indicating that CRY1 in the nucleus positively regulated the expression of 4CL3 and CHS. It demonstrated that the expression of 4CL3 and CHS were positively regulated by nuclear CRY1 rather than cytoplasmic CRY1. The experimental results also showed that the flavonoids content in 35S::CRY1-GR increased several times in the presence of DEX. All these results suggest that CRY1 in the nucleus promoted the flavonoid biosynthesis. In addition, the results obtained during the analysis of the green fluorescence intensity and subcellular localization of the GFP-CRY1 fusion proteins in 35S:: GFP-CRY1 revealed that blue light can promote CRY1 to transfer from the cytoplasm to the nucleus. Based on these results we can draw the preliminary conclusion that when the plants receive the blue light, CRY1 is promoted to transfer from the cytoplasm into the nucleus, and then the nuclear CRY1 induces the expressions of the key enzyme genes such as 4CL3 and CHS in the flavonoid biosynthesis pathway and thereby promotes flavonoid biosynthesis and accumulation in plants. Based on these experimental results, we preliminarily revealed the regulation molecular mechanism of flavonoid biosynthesis metabolism by blue light.
     (5) In this study, an interesting phenomenon was found that the expression trend of 4CL3 always had a high degree of consistency with CHS, regardless of the conditions in which the seedlings were treated. There was a positive correlation between the expression of 4CL3 and the flavonoids content. So it was speculated that 4CL3 did not participate in the lignin biosynthesis, it might be involved in the flavonoid biosynthesis and was the key enzyme of flavonoid biosynthesis. The analysis of the 4CL3 mutant S894 showed that the absent or reduced expression of 4CL3 in plants would lead to the reduction of flavonoids content. It was the first direct evidence confirming that 4CL3 is a key enzyme of flavonoid biosynthesis. At the same time, the experimental results revealed that the 4CL3 deletion resulted in only 20-40% reduction of flavonoids content rather than completely absence of flavonoids. Therefore, one can speculate that 4CL3 is not the only enzyme but plays a major role in the conversion of p-coumaric acid into the corresponding CoA ester for the flavonoid biosynthesis in the phenylpropanoid pathway. When the function of 4CL3 is lost, other 4CL enzymes (4CL1, 4CL2 and 4CL5) are also able to execute the part of the catalytic function. Therefore, it can be concluded that the 4CL3 catalytic route is the main channel of flavonoid biosynthesis, and 4CL3 is the key enzyme controlling the carbon flow into the flavonoid biosynthesis branch in the phenylpropanoid pathway. Based on these results, the phenylpropanoid pathway has been modified.
     (6) The diurnal or circadian rhythmic expression of 4CL1 and 4CL3 genes under both long-day (16-h light/8-h dark) and short-day (8-h light/16-h dark) photoperiods were investigated. It was found that among the 4CL gene family, 4CL1 (a known gene participating in the lignin biosynthesis) had a diurnal or circadian rhythm but not very significant. In contrast, 4CL3 showed the most significant and robust diurnal or circadian rhythm that could even sustain in seedlings transferred from the photoperiod conditions to continuous white light for at least 2 d. These results demonstrated that the 4CL3 involved in the flavonoid biosynthesis had the obvious circadian rhythm.
     (7) Phenotypic analysis of the 4CL3 mutant S894 and the 4CL3 overexpression transgenic lines 35S::GFP-4CL3 revealed that S894 flowered a little earlier, compared with the wild-type, while the flowering time of 35S:: GFP-4CL3 was delayed about 6-10 d. Moreover, the plant stature of S894 was shorter and smaller than the wild-type Col-4, whereas the plant stature of 35S:: GFP-4CL3 was significantly higher and bigger than Col-4. These results indicated that the Arabidopsis 4CL3 played an important role in the regulation of the floral initiation and biomass production.
     In conclusion, our studies preliminarily clarified at the molecular level the regulation molecular mechanism of the 4CL3 expression and flavonoid biosynthesis by CRY1-mediated blue light signal transduction pathway, provided the first direct evidence confirming that 4CL3 was a key enzyme of flavonoid biosynthesis, and modified the phenylpropanoid pathway, a very important secondary metabolic pathway in plants. The results obtained during this research project provide a theoretical basis for the controlling of flavonoids and lignin biosythesis by the genetic engineering method, which has an important theoretical and practical significance.
引文
[1] Jorgensen K, Rasmussen A V, Morant M, et al. Metabolon formation and metabolic channeling in the biosynthesis of plant natural products [J]. Curr Opin Plant Biol, 2005, 8(3): 280-291.
    [2] Deavours B E, Dixon R A. Metabolic engineering of isoflavonoid biosynthesis in alfalfa [J]. Plant Physiol, 2005, 138(4): 2245-2259.
    [3] Yu O, Jez J M. Nature's assembly line: biosynthesis of simple phenylpropanoids and polyketides [J]. Plant J, 2008, 54(4): 750-762.
    [4]周三,周明,张硕等.盐生野大豆的异黄酮积累及其生态学意义[J].植物生态学报, 2007, 31(5): 930-936.
    [5] Stapleton A E, Walbot V. Flavonoids can protect maize DNA from the induction of ultraviolet radiation damage [J]. Plant Physiol, 1994, 105(3): 881-889.
    [6] Ormrod D, Landry L, Conklin P. Shot term UV-B radiation and ozone exposure effect on aromatic secondary metabolite accumulation of flavonoid-deficient arabidopsis mutants [J]. Physiol Plantarum, 1995, 93(4): 602-610.
    [7] Li J, Qu L T, Rabar M, et al. Arabidophsis flavonoid mutants are hypersensistive of UV-B radiation[J]. Plant Cell, 1993, 2(5): 171-179.
    [8]邹凤莲,寿森炎,叶纨芝等.类黄酮化和物在植物胁迫反应中作用的研究进展[J].细胞生物学杂志, 2004, 26(1): 39-44.
    [9] Harborne J B. The comparative biochemistry of phytoalexin induction in plants [J]. Biochemical Systematica and Ecology, 1999, 27(4): 335-368.
    [10] Mo Y, Nagel C, Taylor L P. Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen[J]. Proc Natl Acad Sci USA, 1992, 89: 7213-7217.
    [11] Kosslak R M, Bookland R, Barkei J, et al. Induction of Bradyrhizobium japonicum common nod genes by isoflavones isolated f rom Glycine max [J]. Proc Natl Acad Sci USA, 1987, 84: 7428-7432.
    [12] Peters N K,Verma D P. Phenolic compounds as regulators of gene expression in plant microbe interactions [J]. Molecular Plant Microbe Interactions, 1990, 3(1): 4-8.
    [13] Fisher R F, Long S R. Interactions of NodD at the nod box: NodD binds to two distinct sites on the same face of the helix and induces a bend in DNA [J]. J Mol Biol, 1993, 233: 336-348.
    [14] Antunes M P ,Varennes D A, Rajcan I, et al. Accumulation of specific flavonoids in soybean (Glycine max L Merr) as a function of the early tripartite symbiosis with arbuscular mycorrhizal fungi and Brady rhizobium japonicum (Kirchner) Jordan [J]. Soil Biol Biochem, 2006, 38:1234-1242.
    [15] Pedro M A, Rajcan I, Michael J G. Specific flavonoids as interconnecting signals in the t ripartite symbiosis formed by arbuscular mycorrhizal fungi, Bradyrhizobium j ponicum (Kirchner) Jordan and soybean (Glycine max L Merr) [J]. Soil Biol Biochem, 2006, 38: 533-543.
    [16] Jacobs M, Rubery P H. Naturally occurring auxin t ransport regulators [J]. Science, 1988, 241: 346-349.
    [17] Brown D E, Rashotte A M, Murphy A S, et al. Flavonoids Act as Negative Regulators of Auxin Transport in Vivo in Arabidopsis [J]. Plant Physiol, 2001, 126: 524-535.
    [18] Habtemariam S. Flavonoids as inhibitors or enhancers of the cytotoxicity of tumor Necrisis factwra in L-929 tumor cells [J]. J Nat Prod, 1997, 60 (8): 775-778.
    [19] Hu C Q, Chen K, Shi Q, et al. Anti-A D sagents, 10, acacetin-7-O-β-D-galactopyranoside, an anti-HIV principle from chrysanthemum morifolivm and a structure activity correlation with some related flavonoids [J]. J Nat Prod, 1994, 57 (1): 42-51.
    [20] Brenda W S. Flavonoid biosynthesis: A colorfulmodel for genetics, biochemistry, cell biology, and biotechnology [J]. Plant Physiol, 2001, 126: 485-493.
    [21] Hess D. Chemogenetische Untersuchungen an Strep tocarpus hybrida: intermedi are Vererbung von Anthocyanen [J]. Z Pflanzen physiol, 1968 (39): 46-55.
    [22] Birch A J, Donovan F W. Studies in relation to biosynthesis I: Some possible routes to derivatives of oricnol and phloroglucinol [J]. Aust J Chem, 1953, 6: 360-368.
    [23] Robinson R. The Structural Relations of Natural Products [M]. Oxford: Charendon Press, 1955: 44.
    [24] Neff L. Quantitative determination of biochanin A in red clover samples by means of an isotope dilution method [J]. J South African Vet Med Assoc, 1957, 39 (1): 73-75.
    [25] Besseau S, Hoffmann L, Geoffroy P, et al. Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plantgrowth [J]. Plant Cell, 2007, 19(1): 148-162.
    [26] Pla J, Ville A, Pacheco H. Biogenesis of plant pigments Comparative study of the incorporation of 1, 2-14C shikimic and 3-14C trans-cinnamic acids in two anthocyanic pigment derivatives of delphinidine and cyanidine [J]. Bull Soc Chim Biol, 1967, 49 (4): 395-413.
    [27] Zaprometov M N, Bukhlaeva V I. Efficiency of use of various C14-p recursors for the biosynthesis of flavonoids in the tea plant [J]. Biokhimiia, 1971, 36(2): 270-276.
    [28] Meier H, Zenk M H. Biosynthese von vanillin in Vanilla planifolia [J]. Z Pflanzen physiol, 1965, 53: 415.
    [29] Stafford H A. Possible multi-enzyme comp lexes regulating the formation of C6-C3 phenolic compounds and lignins in higher plants [J]. Rec Adv Phytochem, 1974 (8): 53-79.
    [30] Stafford H A. Flavonoid evolution: an enzymic approach [J]. Plant Physiol, 1991 (96): 680-685.
    [31]方从兵,宛晓春,江昌俊.黄酮类化合物生物合成的研究进展[J].安徽农业大学学报, 2005, 32(4): 498-504.
    [32] Christendat D, Saridakis V C, Jurnbull J L. Use of site-directed mutagensis to identify residues specific for each reaction catalyzed by chorismate mutase-prephenate dehydrogenase from Escherichia coli [J]. Biochemistry, 1998, 37 (45): 15703-15712.
    [33] Koch G L E, Hhaw D C. Tyrosine biosynthesis in Aerobacter aerogenes: Purification and properties of chorismate mutase-prephenate dehydrogenase [J]. Biochem Biophys Acta, 1970, 212 (2): 375-386.
    [34] Stenmark S L, Pierson D L, Jensen R A, et al. Blue-green bacteria synthesise L-tyrosine by the pretyrosine pathway [J]. Nature (Lond.), 1974 (247): 290-292.
    [35] Rubin J L, Jensen R A. Enzymology of 1-tyrosine in Mung Bean (Vigna radiata L Wilczek) [J]. Plant Physiol, 1979, 64: 727-734.
    [36] Turnbull J, Cleland W W, Morrison J F. Chorismate mutase-prephenate dehydorgenase from Escherichia coli: Kinetic characterization of the dehydrogenase reaction by use of alternative substrates [J]. Biochemistry, 1990, 29 (44): 10245-10254
    [37] Christendat D, Saridakis V C, Turnbull J L. Use of site-directed mutagenesis to identify residues specific for each reaction catalyzed by chorismatemutase-prephenate dehydrogenase from Escherichia coli [J]. Biochemistry, 1998, 37 (45): 15703-15712.
    [38] Christopherson R I. Partial inactivation of chorismatemutase-prephenate dehydrogenase from Escherichia coli in the presence of analogues of chorismate [J]. Int J Biochem Cell Biol. 1997, 29 (4): 589-594.
    [39] Kim K H, Petersen M. Cloning and functional expression of hydroxyphenylpyruvate dioxygenase from Coleus blumei [J]. Phyto-chemistry, 1997, 45: 1165-1172.
    [40] Petersen M, Simmonds M S J. Molecules of interest: rosmarinic acid [J]. Phytochemistry, 2003 (62): 121-125.
    [41]诸姮,胡宏友,卢昌义等.植物体内的黄酮类化合物代谢及其调控研究进展[J].厦门大学学报(自然科学版), 2007, 46(Sup.1): 136-143.
    [42] Koukol J, Conn K. The metabolism of aromatic compounds in higher plants [J]. J Biol Chem, 1961, 236: 2692-2698.
    [43]宛晓春.茶叶生物化学(第三版)(M).北京:中国农业出版社, 2003: 68-76.
    [44]刘传飞,于树宏,李玲等.发根农杆菌对葛属药用植物的遗传转化[J].植物学报, 2000, 42 (9): 936-939.
    [45] Reinold S, Hahlbrock K. Biphasic temporal and spatial induction patterns of defense-related mRNA and protein in fungus-infected parsley leaves [J]. Plant Physiol, 1996, 112: 131-140.
    [46] Mauch M B, Slusarenko A. Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora pa rasitica [J]. Plant Cell, 1996, 8: 203-212.
    [47] Sablowski R W M, Baulcombe D C, Bevan M. Expression of a flower-specific Myb p rotein in leaf cells using a viral vector causes ectopic activation of a target promoter [J]. Proc Natl Acad Sci USA, 1995, 92: 6901-6905.
    [48] Yamada T, Tanaka Y, Sriprasertsak P, et al. Phenylalanine ammonia-lyase genes from Pisum sativum: structure, organ-specific expression and regulation by fungal elicitor and suppressor [J]. Plant Cell Physiol, 1992, 33: 715-725.
    [49] Fukasawa A T, Kung S, Verma D P S. Phenylalanine ammonia-lyase gene structure, exp ression, and evolution in Nicotiana [J]. Plant Mol Biol, 1996, 30: 711-722.
    [50] Lee S W, Robb J, Nazar R N. Truncated phenylalanine ammonia-lyase expression in tomato (Lycopersicon esculentum) [J]. J Biol Chem, 1992, 267:11824-11830.
    [51] Matsumoto S, TakeuchiA, HayatsuM, et al. Molecular cloning of phenylalanine ammonia-lyase cDNA and classification of varieties and cultivars of tea plants (Cam ellia sinensis) using the rice PAL cDNA probe [J]. Theor Appl Genet, 1994, 89 (6): 671-675.
    [52] Schuler M A. Plant cytochrome P450 monooxygenases [J]. Crit Rev Plant Sci, 1996, 15: 235-284.
    [53] Stefan O, Frauke H, Wolfgang B. Cloning and characterization of eight cytochrome P450 cDNAs from chickpea (Cicer a rietinum L) cell suspension cultures [J]. Plant Sci, 2000, 155: 101-108.
    [54] Russell D W, Conn E E. The cinnamic acid 4-hydroxylase of pea seedlings [J]. Arch Biochem Biophys, 1967, 122: 256-258.
    [55] Potts J R M, Richard W, Conn E E. The 4-hydroxylation of cinnamic acid by Sorghum microsomes and the requirement for cytochrome P450 [J]. J Biol Chem, 1974, 249: 5019-5026.
    [56] Russell D W. Themetabolism of aromatic compounds in higher plants X Properities of the cinnamic acid 4-hydroxylase of pea seedlings and some aspects of itsmetabolic and developmental control [J]. J Biol Chem, 1971, 246: 3870-3878.
    [57] Fahrendorf T, Dixon R A. Stress responses in alfalfa (Meicago sativa L)Ⅷ: Molecular cloning and expression of the elicitor-inducible cinnamic acid 4-hydroxylase cytochrome P450 [J]. Arch Biochem Biophys, 1993, 305: 509-515.
    [58] Mizutani M, Ward E, DiMaio J, et al. Molecular cloning and sequencing of a cDNA encoding mung bean cytochrome P450 (P450 C4H) possessing cinnamate 4-hydroxylase activity [J]. Biochem Biophys Res Commun, 1993, 190: 875-880.
    [59] Teutsch H G, Hasenfratz M P, Lesot A, et al. Isolation and sequence of a cDNA encoding the Jerusalem artichke cinnamate 4-hydroxylase, a major plant cytochrome P450 involved in the general phenylpropanoid pathway [J]. Proc Natl Acad Sci USA, 1993, 90: 119-126.
    [60] Bell-Lelong D A, Cusumano J C, Meyer K, et al. Cinnamate-4-hydroxylase expression in Arabidopsis Regulation in response to development and the environment [J]. Plant Physiol, 1997, 113(3): 729-738.
    [61]范丙友,陆海,蒋湘宁.维管植物4-香豆酸:辅酶A连接酶(4CL)研究进展[J].林业科学, 2007(02): 96-103.
    [62] Costa M A, Bedgar D L, Moinuddin S G A, et al. Characterization in vitro and in vivo of the putative multigene 4-coumarate: CoA ligase network in Arabidopsis: syringyl lignin and sinapate/sinapyl alcohol derivative formation [J]. Phytochemistry, 2005, 66(17): 2072-2091.
    [63] Loake G J, Choudhary A D, Harrison M J, et al. Phenylpropanoid pathway intermediates regulate transient expression of a chalcone synthase gene promoter [J]. Plant Cell, 1991, 3(8): 829-840.
    [64] Fliegmann J, Schroder G, Schanz S, et al. Molecular analysis of chalcone and dihydropinosylvin synthase from Scots pine (Pinus sylvestris), and differential regulation of these and related enzyme activities in stressed plants [J]. Plant Mol Biol, 1992, 18(3): 489-503.
    [65] Kassim A, Poette J, Paterson A, et al. Environmental and seasonal influences on red raspberry anthocyanin antioxidant contents and identification of quantitative traits loci (QTL) [J]. Mol Nutr Food Res, 2009.
    [66] Bottcher C, Von Roepenack-Lahaye E, Schmidt J, et al. Metabolome analysis of biosynthetic mutants reveals a diversity of metabolic changes and allows identification of a large number of new compounds in Arabidopsis [J]. Plant Physiol, 2008, 147(4): 2107-2120.
    [67] Yamazaki Y, Suh D Y, Sitthithaworn W, et al. Diverse chalcone synthase superfamily enzymes from the most primitive vascular plant, Psilotum nudum [J]. Planta, 2001, 214(1): 75-84.
    [68] Harashima S, Takano H, Ono K, et al. Chalcone synthase-like gene in the liverwort, Marchantia paleacea var diptera [J]. Plant Cell Rep, 2004, 23(3): 167-173.
    [69]王曼,王小菁.蓝光、紫外光的受体及其对CHS表达诱导的研究[J].植物学通报, 2002, 19(3): 265-271.
    [70] Dangl J L, Hahlborock K, Schell J. Regulation and Structure of Chalcone Synthase Genes [M]. New York: Academic Press, 1989: 155-173.
    [71] Van der M, Stuitje A R, Mol N J. Regulation of General Phenylpropanoid and Flavonoid Gene Expression [J]. CRC Press, Boca Raton, 1993: 125-155.
    [72] Harborne J B. Introduction to Ecological Biochemistry [M]. London: Academic Press, 1982.
    [73] Spitaler R, Schlorhaufer P D, Ernst P, et al. Altitudinal variation of secondarymetabolite profiles in flowering heads of Araica montana cv ARBO [J]. Phytochemistry, 2006, 67: 409-417.
    [74] Solar A, Colaric M, Usenik V, et al. Seasonal variations of selected flavonoids ,phenolic acids and quinines in annual shoots of common walnut (Juglans regia L) [J]. Plant Sci, 2006, 170: 453-461.
    [75] Fawe A, Abou Z M, Menzies J G. Silicon-mediated accumulation of flavonoid phytoalexins in cucumber [J]. Phytopathology, 1998 ,88 (5): 396-401.
    [76]哈本.黄酮类化合物[M].北京:科学出版社, 1975.
    [77] Pan H H, Shu Z H. Temperature affects color and quality characteristics of‘Pink’wax apple fruit discs [J]. Scientia Horticulturae. 2007, 112: 290-296.
    [78]吴锦程,唐朝晖,陈群等.不同贮藏温度对枇杷果肉木质化及相关酶活性的影响[J].武汉植物学研究, 2006, 24(3):235-239.
    [79]李明,张清云,将齐等.氮磷钾互作效应对甘草黄酮含量影响的初步研究[J].土壤通报, 2007, 38(2): 301-304.
    [80] Pascale S D, Maggio A, Pernice R, et al. Sulphur fertilization may improve the nutritional value of Brassica rapa L subsp Sylvestris [J]. Eur J Agron, 2007, 26: 418-424.
    [81] Ebel J, Ayers A R, Albersheim P. Host pathogen interactions XII: Response of wuwpension cultured soybean cells to the elicitor isolated from Phytophthorea megasperma var sojae, a fungal pathogen of soybean [J]. Plant Physiol, 1976, 57: 775 -779.
    [82] Loverine P T, Erich G. Flavonoids as developmental regulators [J]. Curr Opin Plant Biol, 2005 8: 317-323.
    [83] Daniels D L, Hadwiger L A. Pisatin 2 inducing components in filtrates of a virulent and avirulent Fusarium solani cultures [J]. Physiol Plant pathol, 1976, 8: 9-19.
    [84] Lois R, Diet rich A, Hahlbrock K, et al. Phenylalanine ammonia-lyase gene from parsley: structure, regulation and identification of elicitor and light responsive cis-acting elements [J]. EMBO J, 1989, 8(6): 1641-1648.
    [85] Long M, Barton W P, Staskawicz B J, et al. Further studies on the relationship between glyceollin accumulation and the resistance of soybean leaves to Pseudomonas syringae pv Glycinea [J]. Phytopathology, 1985, 75: 235-239.
    [86] Edwards K, Cramer C L, Bolwell G P, et al. Rapid and transient induction of phenylalanine ammonia-lyase mRNA in elicitor treated bean cells [J]. Proc NatlAcad Sci USA, 1985, 82: 6731-6735.
    [87] Crcelman R A, Ticrey M A, Mullet J E, et al. Jasmonic acid/ methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression [J]. Proc Natl Acad Sci USA, 1992, 89: 4398-4941.
    [88] Christie J M, Jenkins G I. Distinct UV-B and UV-A/blue light signal transduction pathways induce chalcone synthase gene expression in Arabidopsis cells [J]. Plant Cell, 1996, 8: 1555-1567.
    [89] Grotewold E, Charmberlin M, Snook M, et al. Engineering secondary metabolism in maize cells ectopic expression of transcription factors [J]. Plant Cell. 1998, 10: 721-740.
    [90] Gandikota M, Kochko D A, Chen L, et al. Development of transgenic rice plants expression maize anthocyanin genes and increase blast resistance [J]. Mol Breed, 2001, 7: 73-83.
    [91] Verpoorte R, Memelink J. Engineering secondary metabolite production in plants [J]. Plant Biotechnol, 2002, 13: 181-187.
    [92] Staub J M, Wei N, Deng X W. Evidence for FUS6 as a component of the nuclear-localized COP9 complex in Arabidopsis [J]. Plant Cell, 1996, 8: 2047-2056.
    [93] Nagy F, Sch?fer E. Phytochrome control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants [J]. Annu Rev Plant Biol, 2002, 53: 329-355.
    [94] Shimazaki Y, Pratt L H. Immunochemical detection with rabbit polyclonal and mouse monoclonal antibodies of different pools of phytochrome from etiolated and green Avena shoot [J]. Planta, 1985, 164: 333-344
    [95] Sharrock R A, Quail P H. Novel phytochrome sequences in Arabidopsis thaliana: structure evolution and differential expression of a plant regulatory photoreceptor family [J]. Gene Dev, 1989, 3 : 1745-1757.
    [96] Furuya M. Phytochromes: their molecular species gene families, and functions [J]. Annu Rev Plant Phys, 1993, 44 : 617-645.
    [97] Hudson M, Ringli C, Boylan M T, et al. The FAR1 locus encodes a novel nuclear protein specific to phytochrome a signaling [J]. Gene Dev, 1999, 13: 2017-2027.
    [98] Kircher S, Kozma-Bognar L, Kim L, et al. Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B [J]. Plant Cell, 1999, 11: 1445-1456.
    [99] Jarillo J A, Capel J, Tang R H, et al. An Arabidopsis circadian clock component both CRY1 and phyB [J]. Nature, 2001, 410: 487-490.
    [100] Poppe C, Sweere U, Helge D H, et al. The blue light receptor cryptochrome 1 can act independently of phytochrome A and B in Arabidopsis thaliana [J]. Plant J, 1998, 16 : 465-471.
    [101] Ahmad M, Cashmore A R. The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana [J]. Plant J, 1997, 11: 421-427.
    [102] Yang H Q, Wu Y J, Tang R H, et al. The C termini of Arabidopsis cryptochromes mediate a constitutive light response [J]. Cell, 2000, 103: 815-827.
    [103] Ahmad M, Jarillo J A, Cashmore A R. Chimerc proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability [J]. Plant Cell, 1998, 10: 197-208.
    [104] Guo H, Duong H, Ma N, et al. The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism [J]. Plant J, 1999, 19: 279-287.
    [105] Kleiner O, Kirche S, Harter K, et al. Nuclear localization of the Arabidopsis blue light receptor cryptochrome 2 [J]. Plant J, 1999, 19: 289-296.
    [106] Mas P, Devlin P F, Panda S, et al. Functional interaction of phytochrome B and cryptochrome 2 [J]. Nature, 2000, 408: 207-211.
    [107] Singh A, Selvi M T, Shrma R. Sunlight-induced anthocyanin pigmentation in maize vegetative tissue [J]. J Exp Bot, 1999, 50 : 1619-1625.
    [108] Chaturvedi R, Shyam R, Sane P V. Steady state levels of D1protein and psbA thanscript during UV-B inactivation of photosystemⅡin wheat [J]. Biochem Mol Biol Int, 1998, 44: 925-932
    [109] Short T W, Briggs W R. The transduction of blue light signals in higher plants [J]. Annu Rev Plant Phys, 1994, 45: 143-171.
    [110] Yu X, Klejnot J, Zhao X, et al. Arabidopsis cryptochrome 2 completes its posttranslational life cycle in the nucleus [J]. Plant Cell, 2007, 19(10): 3146-3156.
    [111] Yu X, Sayegh R, Maymon M, et al. Formation of nuclear bodies of Arabidopsis CRY2 in response to blue light is associated with its blue light-dependent degradation [J]. Plant Cell, 2009, 21(1): 118-130.
    [112] Graham L T. Flavonoid and isoflavonoid distribution in developing soybean seedling tissues and in seed and root exudates [J]. Plant Physiol, 1991, 95: 594-603.
    [113]曹建国,赵则海,王文杰等.天然次生林三种不同生境刺五加丁香苷和总黄酮含量的研究[J].植物研究, 2005, 25 (2): 205-209.
    [114] Christie J M, Jenkins G I. Distinct UV-B and UV-A/blue light signal transduction pathways induce chalcone synthase gene expression in Arabidopsis cells [J]. Plant Cell, 1996, 8: 1555-1567.
    [115] Lin C,Ahmad M,Cashmore A R.Arabidopsis cryptochrome 1 is a soluble protein mediating blue light-dependent regulation of plant growth and development [J]. Plant J, 1996,10:893-902.
    [116] Kubasek W L,Shmey B W,McKHop A,et al. Regulation of flavonoid biosynthetic genes in germinating Arabidopsis seedlings [J]. Plant Cell, 1992, (4): 1229-1236.
    [117] Wade H K, Bibikova T N, Valentine W J, et al. Interactions within a network of phytochrome, cryptochrome and UV-B phototransduction pathways regulate chalcone synthase gene expression in Arabidopsis leaf tissue [J]. Plant J, 2001, 25: 675-685.
    [118] Fuglevand G, Jackson J A, Jenkins G I. UV-B, UV-A,and blue light signal transduction pathways interact synergistically to regulate chalcone synthase gene expression in Arabidopsis [J]. Plant Cell, 1996, 8: 2347-2357.
    [119] Spalding E, Cosgrove D. Large plasma-membrane depolarization precedes rapid blue-light-induced growth inhibition in cucumber [J]. Planta, 1988, l78: 407-410.
    [120] Cho M H, Spalding E P. An anion channel on Arabidopsis hypocotyls activated by blue light [J]. Proc Natl Acad Sci USA, 1996, 93: 8134-8138.
    [121] Folta K M, Spalding E P. Unexpected roles for cryptochrome 2 and phototropin revealed by high2resolution analysis of blue light-mediated hypocotyl growth inhibition [J]. Plant J, 2001, 26: 471-478.
    [122] Jenkins G I. UV and blue light signal transduction in Arabidopsis [J]. Plant Cell & Environ, 1997, 20(6): 773-78.
    [123]谢灵玲,赵武玲,沈黎明.光照对大豆叶片苯丙氨酸裂解酶(PAL)基因表达及异黄酮合成的调节[J].植物学通报, 2000, 17(5): 443-449.
    [124] Blount J W,Korth K L,Masoud S A,et al.Altering expression of cinnamicacid 4-hydroxylase in transgenic plants provides evidence for a feedback loop at the entry point into the phenylpropanoid pathway [J]. Plant Physiol, 2000,122(1): 107-116.
    [125] Whetten R, Sederoff R. Lignin biosynthesis [J]. Plant Cell. 1995. 7:1001-1003.
    [126] Lee D, Meyer K, Chapple C, et al. Antisense suppression of 4-coumarate: coenzyme A ligase activity in Arabidopsis leads to altered lignin subunit composition [J]. Plant Cell, 1997, 9: 1985-1998.
    [127]贾彩红,赵华燕,王宏芝等.抑制4CL基因表达获得低木质素含量的转基因毛白杨[J].科学通报, 2004, 49(7): 662-666.
    [128] Mansell R L, Babbel G R, ZenkM H. Multiple forms and specificity of cinnamyl alcohol dehydrogenase from cambial regions of higher plants [J]. Phytochemistry, 1976, 15: 1849-1853.
    [129] Kui S V, Ross W W, David M O, et al. 42courmarate: Coenzyme A ligase from loblolly pine xylem: Isolation, characterization and comp lementary DNA cloning [J]. Plant Physiol, 1995, 108: 85-97.
    [130] Knobloch K H, Hahlbrock K. 4-coumarate: CoA ligase from cell suspension cultures of Petroselinum hortense Hoffm [J]. Arch Biochem Biophys, 1977, 184: 237-248.
    [131] Knobloch K H, Hahlbrock K. Isoenzymes of p-4-coumarate : CoA ligase from cell suspension cultures of Glycine max [J]. Eur J Bichem, 1975, 52: 311-320.
    [132] Hamada K, Nishida T , Yamauchi K, et al. 2004. 42coumarate: coenzyme A ligase in black locust (Robinia pseudoacacia) catalyses the conversion of sinapate to sinapoly-CoA [J]. J Plant Res, 1975, 117: 303-310.
    [133] Allina S M, Pri-Hadash A, Theilmann D A, et al. 4-coumarate: coenzyme A ligase in hybrid poplar: properties of native enzyme, cDNA cloning , and analysis of recombinant enzymes [J]. Plant Physiol, 1998, 116: 743-754.
    [134] Lozoya E, Hoffmann H, Douglas C, et al. Primary structures and catalytic properties of isoenzymes encoded by the two 4-coumarate: CoA ligase genes in parsley [J]. Eur J Biochem, 1988, 176: 661-667.
    [135] Zhao Y, Kung S D , Dube S K. Nucleotide sequence of rice 4-coumarate : CoA ligase gene 4-CL1 [J]. Nucleic Acids Research, 1990, 18 (20): 6144.
    [136] Ehlting J, Buttner D, Wang Q, et al. Three 4-coumarate:coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms [J]. Plant J, 1999, 19(1): 9-20.
    [137] Hu W J, Kawaoka A, Tsai C J, et al. Compartmentalized expression of two structurally and functionally distinct 4-coumarate: CoA ligase genes in aspen (Populus tremuloides) [J]. Proc Natl Acad Sci USA, 1998, 95(9): 5407-5412.
    [138] Lindermayr C, Mollers B, Fliegmann J, et al. Divergent members of a soybean (Glycine max L) 4-coumarate:coenzyme A ligase gene family [J]. Eur J Biochem, 2002, 269(4): 1304-1315.
    [139] Kumar A, Ellis B E. 4-coumarate:CoA ligase gene family in Rubus idaeus: cDNA structures, evolution, and expression [J]. Plant Mol Biol, 2003, 51(3): 327-340.
    [140] Yazaki K, Ogawa A, Tabata M. Isolation and characterization of two cDNAs encoding 4-coumarate:CoA ligase in Lithospermum cell cultures [J]. Plant Cell Physiol, 1995, 36(7): 1319-1329.
    [141] Lee D, Ellard M, Wanner L A, et al. The Arabidopsis thaliana 4-coumarate:CoA ligase (4CL) gene: stress and developmentally regulated expression and nucleotide sequence of its cDNA [J]. Plant Mol Biol, 1995, 28(5): 871-884.
    [142] Cukovic D, Ehlting J, Vanziffle J A, et al. Structure and evolution of 4-coumarate:coenzyme A ligase (4CL) gene families [J]. Biol Chem, 2001, 382(4): 645-654.
    [143] Schneider K, Hovel K, Witzel K, et al. The substrate specificity-determining amino acid code of 4-coumarate:CoA ligase [J]. Proc Natl Acad Sci USA, 2003, 100(14): 8601-8606.
    [144] Voo K S, Whetten R W, O'Malley D M, et al. 4-coumarate:coenzyme a ligase from loblolly pine xylem Isolation, characterization, and complementary DNA cloning [J]. Plant Physiol, 1995, 108(1): 85-97.
    [145] Hamberger B, Hahlbrock K. The 4-coumarate:CoA ligase gene family in Arabidopsis thaliana comprises one rare, sinapate-activating and three commonly occurring isoenzymes [J]. Proc Natl Acad Sci USA, 2004, 101(7): 2209-2214.
    [146] Lois R, Hahlbrock K. Differential wound activation of members of the phenylalanine ammonia-lyase and 4-coumarate:CoA ligase gene families in various organs of parsley plants [J]. Z Naturforsch, 1992, 47(1-2): 90-94.
    [147] Uhlmann A, Ebel J. Molecular cloning and expression of 4-coumarate:coenzyme A ligase, an enzyme involved in the resistance response of soybean (Glycine max L) against pathogen attack [J]. Plant Physiol, 1993,102(4): 1147-1156.
    [148] Soltani B M, Ehlting J, Douglas C J. Genetic analysis and epigenetic silencing of At4CL1 and At4CL2 expression in transgenic Arabidopsis [J]. Biotechnol J, 2006, 1(10): 1124-1136.
    [149] Soltani B M, Ehlting J, Hamberger B, et al. Multiple cis-regulatory elements regulate distinct and complex patterns of developmental and wound-induced expression of Arabidopsis thaliana 4CL gene family members [J]. Planta, 2006, 224(5): 1226-1238.
    [150] Harding S A, Leshkevich J, Chiang V L, et al. Differential substrate inhibition couples kinetically distinct 4-coumarate:coenzyme a ligases with spatially distinct metabolic roles in quaking aspen [J]. Plant Physiol, 2002, 128(2): 428-438.
    [151] Romualdo S F, Ronald D. H. Extraction and Isolation of Lignin for Utilization as a Standard to Determine Lignin Concentration Using the Acetyl Bromide Spectrophotometric Method [J]. J Am Chem Soc, 2001, 49(7): 3133-3139.
    [152]李靖,程舟,杨晓伶等.紫外分光光度法测定微量人参木质素的含量[J].中药材, 2006, 29(3): 239-241.
    [153] Romoualdo S F, Ronald D H. Comparison of the Acetyl Bromide Spectrophotometric Method with Other Analytical Lignin Methods for Determining Lignin Concentration in Forage Samples [J]. Agric Food Chem, 2004, 52: 3713-3720.
    [154] Fukushima R. S, Dehority B. A. Feasibility of using lignin isolated from forages by solubilization in acetyl bromide as a standard for lignin analyses [J]. Anim Sci, 2000, 78:3135-3143.
    [155] Campbell M M, Ellis B E. Fungal elicitor mediated responses in pine cell cultures I: Induction of phenylpropanoid metabolism [J]. Planta, 1992, 186: 409-417.
    [156] Meadus1 W J.A semi-quantitative RT-PCR method to measure the in vivo effect of dietary conjugated linoleic acid on porcine muscle PPAR gene expression [J].Biol Proced Online, 2003, 5(1): 20-28.
    [157] Marone M,Mozzetti S,Ritis D D,et al.Semiquantitative RT-PCR analysis to assess the expression levels of mμLtiple transcripts from the same sample [J]. Biological Procedures Online, 2001, 3(1): 19-25.
    [158] Burbulis I E, Iacobucci M, Shirley B W. A null mutation in the first enzyme offlavonoid biosynthesis does not affect male fertility in Arabidopsis [J]. Plant Cell, 1996, 8: 1013-1025.
    [159] Whiting P, Goring D A I. Chemical characterization of tissue fractions from the middle lamella and secondary wall of black sp ruce tracheids [J]. Wood Sci Techno, 1982, 16: 261-2671.
    [160] Cohen L, Arzee T. Mimicry by cytokinin of phyotochrome-regulated inbibition of chloroplast development in etiolated cucumber cotyledons [J]. Physiol Plant, 1998, 72 :57-64.
    [161] Li J, Ou-Lee T M, Raba R, et al. Arabidopsis Flavonoid Mutants Are Hypersensitive to UV-B Irradiation [J]. Plant Cell, 1993, 5(2): 171-179.
    [162] Zhao X, Yu X, Foo E, et al. A study of gibberellin homeostasis and cryptochrome-mediated blue light inhibition of hypocotyl elongation [J]. Plant Physiol, 2007, 145(1): 106-118.
    [163] Senger H, Schmidt W. Diversity of photoreceptors. Kendrick R E, Kronenberg G H M. Photomorphogenesis in Plants(2nd ed) [M]. Dordrecht: Kluwer Academic Publishers, 1994: 301-322.
    [164] McNellis T W, Deng X W. Light control of seedling morphogenetic pattern [J]. Plant Cell, 1995, 7: 1749-1761.
    [165] Lin C,Shalitin D.Cryptochrome structure and signal transduction [J].Annu Rev Plant Biol, 2003,54: 469-496.
    [166] Cashmore A R.Cryptochromes: enabling plants and animals to determine circadian time [J]. Cell, 2003, 114: 537-543.
    [167] Guo H, Yang H, Mockler T C, et al.Regulation of flowering time by Arabidopsis photoreceptors [J]. Science, 1998, 279: 1360-1363.
    [168] Koornneef M,Rolff E,Spruit C J P.Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L) [J]. Heynh Z Pflanzenphysiol Bd, 1980,100:147-160.
    [169] Ahmad M,Cashmore A R.HY4 gene of Arabidopsis thaliana encodes a protein with characteristics of a blue-light photoreceptor [J]. Nature, 1993, 366: 162-166.
    [170] Koornneef M,Alonso-Blanco C,Peeters A J M,et al. Genetic control of flowering time in Arabidopsis[J]. Annu Rev Plant Physiol Plant Mol Biol,1998, 49: 345-370.
    [171] Lin C,Yang H,Guo H,et al.Enhancement of blue-light sensitivity of Arabidopsis seedings by a blue light receptor cryptochrome 2 [J]. Proc NatlAcad Sci USA, 1998, 95: 2686-2690.
    [172] Quail P H.Phytochrome photosensory signaling networks [J].Nat Rev Mol Cell Bio, 2002, 3(2):85-93
    [173] Sullivan J A,Deng X.From seed to seed: the role of photoreceptors in Arabidopsis development [J].Dev Biol, 2003, 260: 289-297.
    [174] Cashmore A R, Jarillo J A, Wu Y J ,et al. Cryptochromes : Blue light receptors for plants and animals [J]. Science, 1999, 284: 760-765.
    [175] Wu G, Spalding E P. Separate functions for nuclear and cytoplasmic cryptochrome 1 during photomorphogenesis of Arabidopsis seedlings [J]. Proc Natl Acad Sci USA, 2007, 104(47): 18813-18818.
    [176] Lloyd A M, Schena M, Walbot V, et al. Epidermal cell fate determination in Arabidopsis: Patterns defined by a steroid-inducible regulator [J]. Science, 1994, 266: 436-439.
    [177] Samach A, Onouchi H, Gold S E, et al. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis [J]. Science, 2002, 88: 1613-1616.
    [178] Huq E, Al-Sady B, Quail P H. Nuclear translocation of the photoreceptor phytochrome B is necessary for its biological function in seedling photomorphogenesis [J]. Plant J, 2003, 35: 660-664.
    [179] Kang H. G, Fang Y, Singh K B. A glucocorticoid-inducible transcription system causes severe growth defects in Arabidopsis and induces defense-related genes [J]. Plant J, 1999, 20, 127-133.
    [180] Soltani B M, Ehlting J, Hamberger B, et al. Multiple cis-regulatory elements regulate distinct and complex patterns of developmental and wound-induced expression of Arabidopsis thaliana 4CL gene family members [J]. Planta, 2006, 224(5): 1226-1238.
    [181] Jefferson R A. Assaying chimeric genes in plants: the GUS gene fusion system [J]. Plant Mol Bio Rep, 1987, 5:387-450.
    [182] Cutler S R,Ehrhardt D W,Griffitts J S,et al.Random GFP:cDNA fusions enable visualization of subcellμLar structures in cells of Arabidopsis at a high frequency [J].Proc Natl Acad Sci USA, 2000, 97(7): 3718-3723.
    [183] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium -mediated transformation of Arabidopsis thalina [J]. Plant J, 1998, 16(6): 735-743.
    [184] Wagner D, Tepperman J M, Quail P H. Overexpression of phytochrome B induces a short hypocotyl phenotype in transgenic Arabidopsis [J]. Plant Cell, 1991, 3: 1275-1288.
    [185] Reed J W, Nagatani A, Elich T D,et al. Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development [J]. Plant Physiol, 1994, 104: 1139-1149.
    [186] Winkel-Shirley B. Flavonoid Biosynthesis: A Colorful Model for Genetics, Biochemistry, Cell Biology, and Biothehnology [J]. Plant Physiol, 2000, 126: 485-493.
    [187] Chapple C C S, Shirley B W, Zook M, et al. Secondary metabolism in Arabidopsis [M]. NY: Cold Spring Harbor Laboratory Press, 1994, 989-1030.
    [188] Filkowski J, Kovalchuk O, Kovalchuk I. Genome stability of vtc1, tt4, and tt5 Arabidopsis thaliana mutants impaired in protection against oxidative stress [J]. Plant J, 2004, 38(1): 60-69.
    [188]万华方,梁颖.拟南芥种皮色素形成机制的研究进展[J].中国农学通报, 2005, 21(5): 233-236.
    [189] Niedz R P, Sussman M R, Satterlee J S. Green fluorescent protein: an in vivo reporter of plant gene expression [J]. Plant Cell Rep, 1995, 14: 403-406.
    [1] Borlaug N E. Contribution of conventional plant breeding to food production [J]. Science, 1983, 219: 689-693.
    [2] Poysa V, Woodrow L, Yu K. "Tourco soybean." [J], Can. J. Plant Sci, 2008, 88: 519-521.
    [3] Wang H, McCaig T N R, DePauw M, et al. Flag leaf physiological traits in two high-yielding Canada Western Red Spring wheat cultivars [J]. Can. J. Plant Sci, 2008, 88: 35-42.
    [4] Debeaujon I, Koornneef M. Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid [J]. Plant Physiol, 2000, 122: 415–424.
    [5] King R W, Evans L T. Gibberellins and flowering of grasses and cereals: prizing open the lid of the“Florigen”black box. Annu [J]. Rev. Plant Biol, 2003, 54: 307-328.
    [6] Gomi K, Matsuoka M. Gibberellin signalling pathway [J]. Curr. Opin. Plant Biol, 2003, 6: 489-493.
    [7] Chhun T, Koichiro A, Kenji A, et al. Gibberellin Regulates Pollen Viability and Pollen Tube Growth in Rice [J]. Plant Cell, 2007, 19: 3876-3888.
    [8]袁小川,杨远柱,刘选明等.雄性核不育水稻矮秆突变体突变分子机制的初步研究[J].生命科学研究, 2005, 9(2): 141-144.
    [9] Hooley R. Gibberellins: Perception, transduction and responses [J]. Plant Mol. Biol, 1994, 26: 1529-1555.
    [10] Swain S M, Olszewski N E. Genetic analysis of gibberellin signal transduction [J]. Plant Physiol, 1996, 112: 11-17.
    [11] Ikeda A, Ueguchi-Tanaka M, Sonoda Y, et al. Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8 [J]. Plant Cell, 2001, 13: 999-1010.
    [12] Peng J, Richards D E, Hartley N M, et al. Green revolution genes encode mutant gibberellin response modulators [J]. Nature, 1999, 400: 256-261.
    [13] Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, et al. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint [J]. Plant Cell, 2000, 12: 1591-1605.
    [14] Han Y, Jiang J, Liu H, et al. Overexpression of OsSIN, encoding a novel small protein, causes short internodes in Oryza sativa [J]. Plant Sci, 2005, 169: 487-495.
    [15] Ogawa S, Toyomasu T, Yamane H, et al. A role of OsGA20ox1, encoding an isoform of gibberellin 20-oxidase, for regulation of plant stature in rice [J]. Plant Mol. Biol, 2004, 55: 687-700.
    [16] Itoh H, Ueguchi-Tanaka M, Sentoku N, et al. Cloning and functional analysis of two gibberellin 3β-hydroxylase genes that are differently expressed during the growth of rice [J]. Proc. Natl. Acad. Sci. USA, 2001, 98: 8909-8914.
    [17] Monna L, Kitazawa N, Yoshino R, et al. Positional cloning of rice semidwarfing gene, sd-1: rice“green revolution gene”encodes a mutant enzyme involved in gibberellin synthesis [J]. DNA Res, 2002, 9: 11-17.
    [18] Spielmeyer W, Ellis M H, Chandler P M. Semidwarf (sd-1),“green revolution”rice, contains a defective gibberellin 20-oxidase gene [J]. Proc. Natl. Acad. Sci. USA, 2002, 99: 9043-9048.
    [19] Sasaki A, Ashikari M, Ueguchi-Tanaka M, et al. Green revolution: a mutant gibberellin-synthesis gene in rice [J]. Nature, 2002, 416: 701-702.
    [20] Toyomasu T, Kawaide H, Sekimoto H, et al. Cloning and characterization of a cDNA encoding gibberellin 20-oxidase from rice (Oryza sativa) seedlings [J]. Physiol. Plant, 1997, 99: 111-118.
    [21] Margis-Pinheiro M, Zhou X, Zhu Q, et al. Isolation and characterization of a Ds-tagged rice (Oryza sativa L.) GA-responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway [J]. Plant Cell Rep, 2005, 23: 819-833.
    [22] Yang Y, Tang P. Breeding and utilization of TCMS line Zhu1S in rice [J]. Hybrid Rice, 2000, 15: 20-26.
    [23]刘选明,杨远柱D,陈彩艳等.利用体细胞无性系变异筛选水稻株-1S矮杆突变体研究[J].中国水稻科学, 2002, 16: 321-325.
    [24] Koh H J, Son Y H, Heu M H, et al. Molecular mapping of a new genic male-sterility gene causing chalky endosperm in rice (Oryza sativa L.) [J]. Euphytica, 1999, 106: 57-62.
    [25] Dong N V, Subudhi P K, Luong P N, et al. Molecular mapping of rice gene conditioning thermosensitive genic male sterility using AFLP, RFLP and SSR techniques [J]. Theor Appl Genet, 2000, 100: 727-734.
    [26] Zhang Q, Xu J, Li Y, et al. Morphological, anatomical and genetic analysis for a rice mutant with abnormal Hull [J]. J. Genetics Genomics, 2007, 34: 519-526.
    [27] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA [J]. Nucleic Acids Res, 1980, 8: 4321-4325.
    [28] Motoyuki A, Wu J Z, Masahiro Y, et al. Rice gibberellin insensitive dwarf mutant gene Dwarf1 encodes theα-subunit of GTP-binding protein [J]. Proc Natl Acad Sci USA, 1999, 96: 10284-10289.
    [29] Matsukura C, Itoh S, Nemoto K, et al. Promotion of leaf sheath growth by gibberrellin acid in a dwarf mutant of rice [J]. Planta, 1998, 205: 145-152.
    [30] Matsuoka M. Rice dwarf mutant d1, which is defective in theα-subunit of the heterotrimeric G protein, affects gibberellin signal transduction [J]. Proc. Natl. Acad. Sci. USA, 2000, 97: 11638-11643.
    [31] Ashikari M, Sasaki A, Ueguchi-Tanaka M, et al. Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice‘green revolution’[J]. Breeding Sci, 2002, 52: 143-150.
    [32] Sakamoto T, Miura K, Itoh H, et al. An Overview of Gibberellin Metabolism Enzyme Genes and Their Related Mutants in Rice [J]. Plant Physiol, 2004, 134: 1642-1653.
    [33] Sakamoto T, Miura K, Itoh H, et al. An Overview of Gibberellin Metabolism Enzyme Genes and Their Related Mutants in Rice [J]. Plant Physiol, 2004, 134: 1642-1653.
    [34] Hong Z, Ueguchi-Tanaka M, Umemura K, et al. A rice brassinosteriod-deficiet mutant,ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450 [J]. Plant Cell, 2003, 15: 2900-2910.
    [35] Hedden P, Phillips A L. Gibberellin metabolism:new insights revealed by the genes [J]. Trends Plant Sci, 2000, 5: 523-530.
    [36] Hiei Y, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium tumesfaciens and sequence analysis of the boundaries of the T-DNA [J]. Planta J, 1994, 6:271–282.
    [37] Cheng X Y, Sardana R, Kaplan H, et al. Agrobacterium-transformed rice plants expressing synthetic cryIA(b) and cryIA(c) genes are highly toxic to striped stem borer and yellow stem borer [J]. Proc Natl Acad Sci USA, 1998, 95:2767-2772.
    [38] Datta K, Tu J M, Oliva N, et al. Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic eliteindica rice cultivars [J]. Plant Sci, 2001, 160:405-414.
    [39] Repllin A, Baga M, Jauha P P, et al. Genetic enrichment of cereal crops via alien gene transfer: New challenges [J]. Plant Cell Tissue Organ Cult, 2001, 64:159-183.
    [40] Panahi M, Alli Z, Cheng X Y, et al. Recombinant protein expression plasmids optimized for industrial E.colli fermentation and plant system produce biologically active human isulin-like growth factor-1 in transgenic rice and tobacco plants [J]. Trans. Res, 2004, 13:245-259.
    [41] Zaidi M A, Narayanan M, Sardana R, et al. Optimizing tissue culture media for efficient transformation of different indica rice genotypes [J]. Agron Res, 2006, 4:563-575.
    [42] Lin Y, Zhang Q. Optimizing the tissue culture conditions for high efficiency transformation of indica rice [J]. Plant Cell Rep, 2005, 23:540-547.
    [43] Lin Y J, Chen H, Cao Y L, et al. Establishment of high-efficiency Agrobacterium-mediated genetic transformation system of Mudanjiang 8 [J]. Acta Agron Sin, 2002, 28:294-300.
    [44] Sallaud C, Meynard D, Boxtel J, et al. Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics [J]. Theor Appl Genet, 2003, 106:1396-1408.
    [45] Feldmann K A, Marks M D. Agrobacterium mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach [J]. Mol Gen Genet, 1987, 208:1–9.
    [46] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J]. Plant J, 1998, 16:735–743.
    [47] Kojima M, Shioiri H, Nogawa M, et al. In Planta Transformation of Kenaf Plants (Hibiscus cannabinus var. aokawa No. 3) by Agrobacterium tumefaciens [J]. J Biosci Bioeng, 2004, 98:136-139.
    [48] Chumakov M I, Rozhok N A, Velikov V A, et al. Agrobacterium-mediated in planta transformation of maize via pistil filaments [J]. Russ J Genet, 2006, 42: 893-897.
    [49] Supartana P, Shimizu T, Shioiri H, et al. Development of simple and efficient in planta transformation method for rice (Oryza sativa L.) using Agrobacterium tumefaciens [J]. J Biosci and Bioeng, 2005, 100:391-397.
    [50] Bechtold N, Ellis J, Pelletier G. In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants [J]. C R Acad Sci Ser III Sci Vie Life Sci, 1993, 316:1194-1199.
    [51] Liu Z, Park B J, Kanno A, et al. The novel use of a combination of sonication and vacuum infiltration in Agrobacterium-mediated transformation of kidney bean (Phaseolus vulgaris L.) with lea gene [J]. Mol Breeding, 2005, 16:189-197.
    [52] Wang W C, Menon G, Hansen G. Development of a novel Agrobacterium-mediated transformation method to recover transgenic Brassica napus plants [J]. Plant Cell Rep, 2003, 22:274-281.
    [53] Xu G S, Rao Y Q, Chen Y, et al. Genetic Transformation of Brassica napus with in planta method [J]. Acta Agron Sin, 2004, 30:1-5.
    [54] Liu F, Cao M Q, Yao L. In planta transformation of Pakchoi (Brassica campestris L. ssp Chinesis) by infiltration of adult plants with Agrobacterium [J]. Acta Hortic, 1998, 467:187-193.
    [55] Curtis IS, Nam HG Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method-plant development and surfactant are important in optimizing transformation efficiency [J]. Transgenic Res, 2001, 10:363-371.
    [56] Cutler S R, Ehrhardt D W, Griffitts J S, et al. Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency [J]. Proc Natl Acad Sci USA, 2000, 97:3718-3723.
    [57] Zhao X, Yu X, Foo E, et al. A study of Gibberellin homeostasis and cryptochrome-mediated blue light inhibition of hypocotyl elongation [J]. Plant Physiol, 2007, 145:106-118.
    [58] Ohta S, Mita S, Hattori T, et al. Construction and expression in tobacco of aβ-glucuronidase (GUS) reporter gene containing an intron within coding sequence [J]. Plant Cell Physiol, 1990, 31:805-813.
    [59] Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures [J]. Physiol Plantarum, 1962, 15:473-497.
    [60] Wang W C, Menon G, Hansen G. Development of a novel Agrobacterium-mediated transformation method to recover transgenic Brassica napus plants [J]. Plant Cell Rep, 2003, 22: 274-281.
    [61] Cabrera-Ponce J L, Vegas-García A, Herrera-Estrella L. Herbicide resistant transgenic papaya plants produced by an efficient particle bombardment transformation method [J]. Plant Cell Rep, 1995, 15: 1-7.
    [62] Chang T T, E Bardenas. The morphology and varietal characteristics of the rice plant [J]. IRRI Technical Bulletin No, 1965, 4. 40p.
    [63] Lu C, Kang J. Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation [J]. Plant Cell Rep, 2008, 27: 273-278.
    [64] Jin W, Gong Z, Lu Y. Studies on the technique of in planta Agrobacterium-mediated gene transfer by vacuum infiltration of Brassica Juncea [J]. Acta Agron Boreali-Sinica, 2004, 19: 8-12.
    [65] Murakami T, Anzai H, Imai S, et al. The bialaphos biosynthetic genes of Streptomyces hygroscopicus: Molecular cloning and characterization of the gene cluster [J]. Mol Gen Genet, 1986, 205: 42-50.
    [66] Gritz L, Davies J. Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae [J]. Gene, 1983, 25:179-188.
    [67] Veluthambi K, Gupta A K, Sharma A. The current status of plant transformation technologies [J]. Current Sci, 2003, 84: 368-380.
    [68] Cutler S R, Ehrhardt D W, Griffitts J S, et al. Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency [J]. Proc Natl Acad Sci USA, 2000, 97: 3718-3723.
    [69] Niedz R P, Sussman M R, Satterlee J S. Green fluorescent protein: an in vivo reporter of plant gene expression [J]. Plant Cell Rep, 1995, 14: 403-406.
    [70] Yu X, Shalitin D, Liu X, et al. Depression of the NC80 motif is critical for the photoactivation of Arabidopsis CRY2 [J]. Proc Natl Acad Sci USA, 2007, 104: 7289-7294.
    [71] Linn F, Heidmann I, Saedler H, et al. Epigenetic changes in the expression of the maize A1 gene in Petunia hybrida: a role of numbers of integrated gene copies and state of methylation [J]. Mol Gen Genet, 1990, 222: 329-336.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700