用户名: 密码: 验证码:
基于神经—模糊理论的冰情预报研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河冰是北方河流和水利工程的重要研究课题。近些年冰情灾害发生范围有所扩大,给经济发展带来的危害和损失在不断增加,防治冰凌灾害已经成为国民经济发展中必须重视的问题。防治冰凌灾害的首要任务是加强冰情预报的研究,建立健全冰情预报系统。所以本论文开展了模糊—神经理论预报明渠冰情的研究。
     本文主要创新点如下:
     (1)研发了基于Levenberg-Marquart算法改进BP神经网络(ANN)的冰情预报系统。建立了基于Levenberg-Marquart算法改进的Back Propagation(BP)神经网络模型,并把该模型应用到黄河宁蒙河段实时冰情预报中。通过比较,神经网络模型的预报精度明显高于智能的遗传算法(G(0,N))和传统的统计模型。该模型已经投入到黄河宁蒙河段冰情运行管理中,连续多年在线成功的预报了黄河宁蒙河段流凌、封河和开河日期,为黄委会黄河凌汛提前决策提供了重要的科学依据。
     (2)提出了自适应神经模糊推理系统(ANFIS)预报河道冰情。鉴于自适应网络的模糊推理系统吸收了神经网络和模糊理论两者优点,本论文提出用ANFIS预报河渠冰情,模拟了黄河宁蒙河段石嘴山、巴彦高勒、三湖河口、头道拐水文站冬季水温的变化。同时把ANN结果同ANFIS预报结果进行比较,证明(?)NFIS模型比神经网络理论具有更高的预报精度。
     (3)引用中国传统二十四节气到冰情预报研究中。把中国传统二十四节气应用到冰情预报中,开展南水北调中线工程冬季输水冰情预报。把立冬日作为预报的时间基准点,采用Levenberg-Marquart算法改进的BP神经网络模型预报南水北调中线黄河以北6个城市的气温稳定转正和转负日期。并同公历作为时间坐标系预报结果进行对比,前者预报精度好于后者。在预报因子选取中也考虑到农历二十四节气作为时间节点的参考价值。
The ice conditions are natural phenomena appeared in the rivers of cold regions, which have important impacts on hydraulic engineering. The disaster of the ice condition has increased in both the degree and range in the recent years, which damage to the economic and social development is more serious. Therefore, accurate forecast of the ice conditions is very important for against the potential disaster. Therefore, the Neuro-Fuzzy theory is applied to forecast ice conditon in this study,. The innovations are are follows.
     (1) An the artificial neural networks (ANN) model based on feed-forward back-propagation (FFBP) and improved by Levenberg-Marquardt (L-M) algorithm is developed to forecast the ice condition. Because of the complexity of ice conditions, traditional methods could hardly give accurate prediction in the ice condition forecast, while ANN have obvious advantage over other traditional methods for forecasting ice condition. An ANN model based on BP and improved by L-M algorithm is developed to forecast the ice condition including ice run date, freeze-up date, break-up date and so on in the Inner Mongolia Region of the Yellow River. The forecast results are in good agreement with the measured ones. Simulation also shows that the ANN model is superior to the MLR model and GM(0,1) model. This forecast system has been runing for the several years to provide the reliable information of Yellow River in the winter management.
     (2) Adaptive-Network-based Fuzzy Inference System(ANFIS) is applied to ice condition. With its hybrid learning scheme, ANFIS, constructed under the framework of the neural networks and fuzzy models, and the latter possess certain advantages over the former two, is convenient for modelling the nonlinear multivariable process. Consequently, ANFIS is applied to the freeze-up water temperature forecast in Bayangaole, Shanhuhekou, Shizuishan and Toudaoguai Hydrometric Station of Inner Mongolia reach of the Yellow River. Through such comparisons, it was discovered that the water temperature forecast results approximately agree with those of the field records. Compared with the results of ANFIS and ANN, ANFIS model was founds to be superior to ANN model for forecasting the time series information.
     (3) Chinese Calender is introduced to forecast the ice condition. In this study, the essence and characteristic are analyzed theoretically for Lunar Calendar, Solar Calendar and Chinese Calender. Though reasearch on the relationship between the Chinese Calender and modern hydrology, it is reasonable and scientific to apply the coordinate system of Chinese Calender to forecast hydrological information. Chinese Calender is associated with the ANN to forecast ice condition in South-to-North Water Diversion Middle Route Project. It is difficult to forecast ice condition because there are no existing hydrological data for this building Project. By analyzing the meteorological conditions, BP-ANNs model improved by L-M algorithm is applied to forecast the date of temperature downcrossing0℃and the date of temperature upcrossing0℃in the coordinate system of Chinese Calender and Solar Calendar, respectively. Obviously, the accuracy is more improved when the Beginning of Winter is as the datum points of the statistic date in the coordinate system of Chinese Calender than that in Solar Calendar. This result show that the Twenty-four Solar Terms is as an important reference for the hydrological forecast correlated the weather and Climate.
引文
[1]蔡琳等.《中国江河冰凌》.郑州,黄河水利出版社,2008.
    [2]Shen, H.T.. River ice processes-State of research. Proc.,13th IAHR Symp. on Ice, V.3, Beijing,1996:825-833.
    [3]中共中央国国务院,关于加快水利改革发展的决定,2012.12.
    [4]中共中央国国务院,国家中长期科学和技术发展规划纲要(2006-2020),2005.
    [5]中国电力百科全书_水力发电卷,北京:中国电力出版社,第二版,2001:468.
    [6]万育安,敖天其,尹芳等.分形理论在紫坪铺水库汛期洪水分期中的应用,黑龙江水专学报,2008,25(3):18-20,29.
    [7]吴东峰,何新林,杨广等,高山冰川作用下流域水库汛期分期.长江科学院院报,2008,25(1):25-29.
    [8]喻婷,郭生练,刘攀,李玮.水库汛期分期方法研究及其应用,中国农村水利水电,2006,(8):24-26.
    [9]王本德.水文中长期预报模糊数学方法.大连:大连理工大学出版社,1993.
    [10]刘清仁.松花江流域水旱灾害发生规律及长期预报研究.水科学进展,1994,5(4):319-327.
    [11]张俊.大连理工大学博士论文.中长期水文预报及调度技术研究与应用.大连理工大学博士论文,2009.
    [12]徐冬梅,赵晓慎.中长期水文预报方法研究综述.水利科技与经济.2010,16(1):1-7.
    [13]Gourley J J, Vieux B E. A method for evaluating the accuracy of quantitative precipitation estimates from a hydrologic modeling perspective. Journal of Hydrometeorology,2005,6:15-133.
    [14]冯小冲,王银堂,刘勇等.基于物理统计方法的丹江口水库月入库径流预报,河海大学学报,2011,39(3):242-247.
    [15]金光炎.水文水资源随机分析.北京:中国科学技术出版社,1993.
    [16]杨晓红.水库中长期水文预报模型研究(Ⅰ),甘肃科技,2011,27(17):57-59.
    [17]晓红.水库中长期水文预报模型研究(Ⅱ),甘肃科技,2011,27(18):57-59.
    [18]万认生,沈浒英,长江三峡明渠截流期长期水文气象预报实践,人民长江,34(10):63-65.
    [19]张世钦,张俊,程春田,申建建.福建省电网中长期水文预报系统设计与开发,水电能源学报,2008,26(6):58-61.
    [20]许士国,王富强,李红霞等.洮儿河镇西站径流长期预报研究水文,2007,27(5):86-89.
    [21]钟永华,多元回归分析法在密云水库汛期来水预报中的应用,北京水务,2011,3:12-14.
    [22]许卫民,多元线性回归分析法在月流量预报中的运用,水利科技与经济,2010,16(6):651-653.
    [23]张斌,喻佳,顾功开.基于多元线性回归模型的大坝变形预报研究,人民长江,2010,41(20):53-55.
    [24]高琦,金琪,王仁乔等.基于面雨量预报的长江上游洪水分级预估及其应用,暴雨灾害,2011,30(4):370-374.
    [25]李琪,马建斌,刘洪吉.基于逐步回归的投影寻踪水文预报模型研究,水电能源科学,2011,29(2):10-12.
    [26]何振奇,乔光建.基于多项式回归模型的枯季径流预报与分析,南水北调和水利科技,2011,8(5):85-88.
    [27]Box G.E.P and Jenkins G.M.. Times series Analysis Forecasting and Control. Holden-Day, San Francisco,1970.
    [28]Chen H.L. and Rao A.R.. Testing hydrologic time series for stationarity, Journal of Hydrologic Engineering,7,:129-136,2002.
    [29]曲晶,黄艳.基于季节性自回归模型的龙溪口电站径流预报,水利科技与经济,2010,12(9):1002-1003.
    [30]郭磊,赵英林.基于误差自回归的洪水实时预报校正算法的研究,水电能源科学,2002,20(3):25-27.
    [31]卢继强,徐峰.基于指数平滑法和回归分析的滑坡预报模型研究,武汉理工大学学报,33(10):88-91.
    [32]马金凤,杨广.基于自回归滑动平均模型的玛纳斯河洪水预报,石河子大学学报,2010,28(2):242-244.
    [33]武夏宁,江燕.年径流预报的非线性混合回归模型研究,中国农村水利水电,2010,(11):8-10.
    [34]吴云芳,李珍照.大坝神经网络预报模型与大坝回归预报模型的比较,长江科学院院报,2003,20(2):50-53.
    [35]李计,李毅,严宝文等.基于四种方法的月径流预测研究,水利与建筑工程学报,2010,8(2):56-59.
    [36]Deng Julong, Control Problems of Grey Systems & Control Letters,1982, 1(5).
    [37]邓聚龙,灰色系统控制.武汉:华中工学院出版社,1985,8.
    [38]邓聚龙,灰色系统理论与计量未来学.未来与发展,1983,(3).
    [39]邓聚龙,灰色系统概述,世界科学,1983,(7).
    [40]邓聚龙,灰色系统的生成函数,模糊数学杂质,1985,(2).
    [41]邓聚龙,灰色系统的GM模型,模糊数学杂质,1985,(2).
    [42]邓聚龙,模糊决策,模糊数学杂志,1985,(2).
    [43]邓聚龙,灰色控制系统,华中工学院学报,1982,10(3).
    [44]夏军.中长期径流预报的一种灰关联模式识别与预测方法,水科学进展,1993,4(03):190-197.
    [45]夏军.一类灰参数模型识别及其在水文预报中的应用.华中理工大学学报,1994,22(01):55-60.
    [46]袁秀娟,夏军.径流中长期预报的灰色系统方法研究明.武汉水利电力大学学报,1994,27(04):367-375.
    [47]张闻胜,王银堂.时间序列分解模型在水文要素中长期预报中的应用.水文,2001,21(1):21-24.
    [48]雷杰,彭杨,纪昌明.基于改进灰色-周期外延模型的中长期水文预报.人民长江,2010,41(24):28-31.
    [49]黄克明.灰色系统的拓扑预测方法在水文中长期预报中的应用.数学杂志,1998,18(S1):98-102.
    [50]苑俊廷.灰色灾变模型的建立及其在径流预测中的应用.水利科技与经济,2008,14(11):870-871.
    [51]蓝永超,康尔泗,杨文华.黄河上游径流预报的灰色拓扑方法阴.冰川冻土,1997,19(04):308-311.
    [52]蓝永超,杨志怀,权建民等.灰色预测模型在径流长期预报中的应用们.中国沙漠,1997,17(01):50—53.
    [53]邱进辉,陈建勋.长江上游地区枯期径流特征及其长期预报.人民长江,2003,34(10):37-38.
    [54]崔冬冬,陈建康,吴震宇等MGM(1,n)-ARMA模型在大坝监测系统中的应用.中国农村水利水电,2011,3:76-78.
    [55]周命端,郭际明,文鸿雁等.基于优化初始值的GM(1,1)模型及其在大坝监测中的应用.水电自动化与大坝监测,2008,32(2):52-54.
    [56]董胜,刘德辅.年极值水位的灰色马尔科夫预报模型.水利学报,1999,(1):60-64.
    [57]纪懿桓,熊艺媛,麻荣永.灰色马尔可夫模型及其在年最高潮位预报中的应用,广西大学学报(自然科学版),2008,33(1):31-34.
    [58]马志鹏,陈守伦.水库预报调度的灰色动态规划模型.水力发电学报,2007,26(5):7-9.
    [59]左其亭,崔永华.运用灰色关联分析法推求河流流量传播时间,水电能源科学,2005,23(2):7-10.
    [60]陈张羽,颜旭光.灰色系统GM(1,1)模型在尼尔基水库年来水量预测中的应用.东北水利水电,2011,(3):44-46.
    [61]Hassoun M. Fundamentals of Artificial Neural Networks, The MIT Press,1955.
    [62]Zadeh LA. Fuzzy sets. Information & Control.1965,8:338-353.
    [63]杨振强,王常虹,庄显义.自适应复制、交叉和突变的遗传算法来源.电子科学学刊,2000,22(1):112-117.
    [64]Li T.Y., Yorke J..Period three implies chaos. American Journal of Mathematics,1975.
    [65]张智星,孙春在,水谷英二.神经-模糊和软件计算(译著).西安:西安交通大学出版社,2000.
    [66]飞思科技产品研发中心Matlab 6.5辅助神经网络分析与设计.北京:电子工业出版社,2003.
    [67]ASCE Task Committee. (2000a). Artificial neural networks in Hydrology I. Journal of Hydrologic Engineering,2000,5(2),115-123.
    [68]ASCE Task Committee. (2000b). Artificial neural networks in Hydrology Ⅱ. Journal of Hydrologic Engineering, ASCE.5(2),124-132.
    [69]Maier. H. R., Dandy. G.C. Neural network for the prediction and forecasting of water resources variable:a review of modeling issues and applications. Environmental Modeling and Software,2000,15,101-124.
    [70]Cigizoglu, H.K.. Estimation and forecasting of daily suspended sediment data by multi layer perceptions. Advances in Water Research,2004,27, 185-195.
    [71]Cigizoglu H.K., Alp, M. Generalized regression neural network in modelling river sediment yield. Advances in Engineering Software,2006, 37,63-68.
    [72]Cigizoglu H.K., Kisi, O.. Methods to improve the neural network performance in suspended sediment estimation. Journal of Hydrology, 2006,317(3-4),221-238.
    [73]Alp, M., and Cigizoglu, H.K. Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data. Environmental Modeling & Software,2007,22 (1),2-13.
    [74]Chau K W., Wu C. L. and Li Y. S.. Comparison of several flood forecasting models in Yangtze River, Journal of Hydrologic. ASCE Journal of Hydrologic Engineering,2005,10 (6),485-491.
    [75]Dawson C.W., Abrahart R.J., Shamseldin A.Y., Wilby R.L. Flood estimation at ungauged sites using artificial neural networks. Journal of Hydrology,2006,319(1-4),391-409.
    [76]Sahoo G.B., Ray C., De Carlo E. H.. Use of neural network to predict flash flood and attendant water qualities of a mountainous stream on Oahu, Hawaii. Journal of Hydrology,2006,327(3-4),525-538.
    [77]Zhanga J. J., Songb R., Bhaskara N. R., Frencha M. N., Short-term water demand forecasting:a case study,8th Annual Water Distribution Systems Analysis Symposium, Cincinnati, Ohio, USA,2006:1-14.
    [78]Bazartseren B., Hidebrandt G, Holz K. P.. Short-term water level prediction using neural networks and neuro-fuzzy approach. Neurocomputing,2003,55(3-4),439-450.
    [79]Chau, K. W.. Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. Journal of Hydrology,2006, 329(3-4),363-367.
    [80]Chang F. J., Chang Y. T.. Adaptive neuro-fuzzy inference system for prediction of lever in reservoir. Advances in water resources,2006, 29:1-10.
    [81]Michael B., Yang J. Q.. Function network in real-time flood forecasting-a novel application. Advances in Water Resources,2005, (8):899-909.
    [82]Cigizoglu, H.K. (2003a). Incorporation of ARMA models into flow forecasting by artificial neural networks. Envirometrics,2003,14(4): 417-427.
    [83]Cigizoglu, H.K. (2003b). Estimation, forecast and extrapolation of flow data by artificial neural networks. Hydrological Science Journal,2003, 48(3):349-361.
    [84]Jain, S.K., Das, D., Srivastava, D.K. (1999). Application of ANN for reservoir inflow predication and operation, Journal of Water Resources Planning and Management.1999,125(5),263-271.
    [85]Sunheer K. P., Gosain A. K., Ramasastri K. S.. A data-driver algorithm for constructing artifical neural network rainfall-runoff models, Hydrological Processes,2002,16,1325-1330.
    [86]Riad S., Mania J., Bouchaou L., Najjar Y.. Rainfall-runoff model using an artificial neural networks approach. Mathematical and Computer Modeling,2004,40(7-8),839-846.
    [87]Tokar AS, Johnson PA. Rainfall-runoff modeling using artificial neural networks. Journal Hydrology Engineering,1994,4(3),232-239.
    [88]苑希民,李鸿雁,刘树坤等.神经网络和遗传算法在水科学领域的应用.北京,水利水电出版社,2002.
    [89]Balkhair K. S.. Aquifer parameters determination for large diameter wells using neural network approach. Journal of Hydrology,2002,265(1-4), 118-128.
    [90]Zou. R., Lung. W.S., Guo. H.. Neural network embedded Monte Carlo approach for water quality modeling under input information uncertainly. Journal of Computing in Civil Engineering,2002,16(2),135-142.
    [91]Basheer I. A., Najjar Y. M.. Designing and analyzing fixed-bed adsorption systems with artificial neural networks. Journal of Environmental Systems,1995,23(3):291-312.
    [92]Olden J. D., Poff N.L., Bledsoe B. P.. Incorporating ecological knowledge into ecoinformatics:An example of modeling hierarchically structured aquatic communities with neural networks. Ecological Informatics,2006,1(1),33-42.
    [93]Tan C. O., Beklioglu M.. Modeling complex nonlinear responses of shallow lakes to fish and hydrology using artificial neural networks. Ecological Modelling,2006,196(1-2),183-194.
    [94]Gokmen T.. Artificial neural network for sheet sediment transport. Hydrological Sciences Hydrologiques,2002, (10):879-887.
    [95]王涛,杨开林.神经网络在调水工程水力控制优化中的应用.南水北调与水利科技,2005,(1),21-24.
    [96]程远初,叶鲁卿.水轮发电机调速器的非线性PID控制.大电机技术,2002,(1),63-66.
    [97]Huang C.J., Cheng C.L., Chuang Y. T., Jang J-S. R.. Admission control schemes for proportional differentiated services enabled internet servers using machine learning techniques. Expert Systems with Applications 2006,31:458-471.
    [98]Marshall D. H., Zarghamee M., Mergalas B., Kleiner Y. Tarrant Regional Water District's Risk Management Plan for Prestressed Concrete Cylinder Pipe.Pipelines,2005,:853-861.
    [99]Wu B. Li B. J. C. Z.. Transportation Model of Emergency Transportation Assurance System Based on the Fuzzy Risk Control Theory. International Conference on Transportation Engineering,2009:3356-3361.
    [100]Dubois D.,Prade H..Fuzzy sets and System:theory and Application.New York:Academic press,1980.
    [101]Machias A, Skikos G D. Fuzzy risk index of winds sites. IEEE Trans. Energy Coranersion.1992,7(4):638-643.
    [102]Jablonowski M. Fuzzy risk analysis:using AI systems, AI Expert,1994. 9(12):34-37.
    [103]Huang C F. Concepts and models of fuzzy risk analysis. Risk research and management in Asian perspectives [C]. Proceedings of the Fist China-Japan Conference on Risk Assessment and Management, November 23-26, Beijing.International Academic Publishers.1998: 12-23.
    [104]陈守煜,周惠成.径流长期预报的模糊推理模式.大连理工大学学报,1985,24(1):109-114.
    [105]陈守煜,许士国.径流分级长期预报的模糊聚类分析法.水利学报, 1986,(7):43-49.
    [106]陈守煜.模糊水文学.大连理工大学学报,1988(1):93—97.
    [107]陈守煜.模糊水文学与水资源系统模糊优化原理.大连:大连理工大学出版社,1990.
    [108]陈守煜.工程水文水资源系统模糊集分析理论与实践.大连:大连理工大学出版社,1998.
    [109]陈守煜.水资源与防洪系统可变模糊集理论与方法.大连:大连理工大学,2005.
    [110]王本德.水文中长期预报模糊数学方法.大连理工大学出版社,1992
    [111]胡和平,曹永强,侯召成.短期降雨预报精度的模糊风险评价方法研究.哈尔滨工业大学学报,2005,37(5):577-580.
    [112]张静,王本德.洪水预报方案的模糊风险分析方法及应用.水电能源科学,2007,25(5),23-26.
    [113]阂骞,汪泽培.模糊数学在都阳湖年最高水位长期预报中的应用,水文,1992(4).
    [114]马寅午,周晓阳,尚金成,张勇传等.防洪系统洪水分类预测优化调度方法.水利学报,1997(4):1-25.
    [115]周晓阳,张勇传.洪水分类的预测及优化调度.水科学进展,1997,8(2):123-129.
    [116]Jang, J-S. R.. ANFIS:adaptive-network-based fuzzy inference system. IEEE transactions on system, Man and Cybernetics, Man and Cybernetics,1993,23(3):665-685.
    [117]吴晓莉,林哲辉等MATLAB辅助模糊系统设计.西安:西安电子科技大学出版社,2003.
    [118]Jang, J-S. R.. Input Selection for ANFIS Learning. IEEE,1996, (3), 1493-1499.
    [119]Jang, J-S. R., Sun, C. T., and Mizutani, E.. Neurofuzzy and soft computing: A computational approach to learning and machine intelligence. Prentice-Hall, Upper Saddle River, NJ,1997.
    [120]Kisi, O.. Daily pan evaporation modeling using a neuro-fuzzy computing technique. Journal of Hydrology,2006,329(3-4):636-646.
    [121]Kisi, O., and Ozturk, O.. Adaptive neurofuzzy computing technique for Evapotranspiration Estimation. Journal of Irrigation and Drainage Engineering,2007, (4):368-379.
    [122]Chau, K W., Wu, C. L., and Li, Y. S.. Comparison of several flood forecasting models in Yangtze River, Journal of Hydrologic. Journal of Hydraulic Engineering,2005,10 (6):485-491.
    [123]Mukerji, A., Chatterjee, C., and Raghuwanshi, N. S.. Flood forecasting using ANN, Neuro-Fuzzy. Journal of Hydrologic Engineering,2009, (6): 649-652.
    [124]Shen H. T., River ice processes-state of research Proc.,13TH IAHR Symposium on Ice,1986,8, Beijing, China:825-833.
    [125]蔡琳.中国江河冰凌.郑州:黄河水利出版社,2008.
    [126]陈廷赞,孙肇初,蔡琳等.论三门峡水库的调节在黄河下游防凌中的作用.人民黄河,1980,(5):1-9.
    [127]陈赞廷,可素娟.黄河冰凌预报方法评述.黄河水文科技成果与论文选集(四),郑州:黄河水利出版社,2000,245-252.
    [128]陈储军.关于我国河流冰情分类_名称和定义的讨论.人民黄河,1982,(6):51-54.
    [129]孙肇初.中国寒冷地区水力学的近代发展.合肥工业大学学报,1990.13(12):97-105.
    [130]孙肇初,隋觉义.江河冰塞的研究及其意义.地球科学进展1990:51-54.
    [131]隋觉义等.黄河河曲段冰塞水位的分析计算.水文,1994(02):18-24,63.
    [132]谢永刚.黑龙江省胜利水库冰盖生消规律.冰川冻土,1992,14(2):168-173.
    [133]王升.苏联输水渠道的设计和冰温分析计算.海河水利,1991,(03): 58-62.
    [134]高霈生.南水北调中线工程输水冰情的初步分析的研究报.北京:中国水利水电科学研究院,1996.
    [135]杨开林,刘之平,李桂芬等.河道冰塞的模拟.水利水电技术,2002,(10):40-47.
    [136]付辉,杨开林,郭新蕾,王涛,郭永鑫.基于虚拟流动法的输水明渠冰情数值模拟.南水北调与水利科技,2010,8(4):7-12.
    [137]郭新蕾,杨开林,付辉,王涛,南水北调中线工程冬季输水数值模拟,水利学报,2011,11:1268-1276.
    [138]王军.平衡冰塞输冰的试验研究.水力发电学报,2002,76(1):61-67.
    [139]王军,赵惠敏.河流冰塞数值模拟进展.水科学进展,2008,19(4):597-604.
    [140]王军,张潮,倪晋等.三维贴体坐标变换在河冰数值模拟中的应用.水力发电学报,2008,27(3):120-114.
    [141]王军,郭力文,赵慧敏等.冰盖下的输冰量计算分析.水科学进展,2009,20(2):293-297.
    [142]王军,付辉,伊明昆等.冰盖下水流速度分布的二维数值模拟分析.冰川冻土,2009,31(4):705-710.
    [143]王军,何亮,陈胖胖.水力与热力耦合的开河判别准则.水科学进展,2010,21(5),713-718.
    [144]王军,倪晋,张潮.冰盖下冰花颗粒的随机运动模拟.合肥工业大学学报,2008,31(2):191-195.
    [145]王军,陈胖胖,隋觉义.稳封期天然河道冰塞堆积数值模拟[J].水利学报,2011,42(9):1117-1121.
    [146]WANG J, LI Q.G, SUI J.Y. Floating rate of frazil ice particles in flowing water in bend channels-a three-dimensional numberical analysis[J]. Journal of Hydrodynamics,2010,22(1):19-28.
    [147]WANG J, CHEN P.P, SUI J.Y. Numerical simulations of ice accumulation under ice cover along a river bend[J]. International Journal of Environmental Science Technology,2009.6 (1):141-152.
    [148]WANG J, CHEN P.P, SUI J.Y. Progress in studies on ice accumulation in river bends[J]. Journal of Hydrodynamics,2011,23(6):734-744.
    [149]SUI J.Y, WANG J, HE Y. Velocity profiles and incipient motion of frazil particles under ice cover [J]. International Journal of Sediment Research, 2010,25(1):39-51.
    [150]王军.封冻河道下流速分布和阻力问题探讨[J].水科学进展,2005,16(1):28-31.
    [151]茅泽育,吴剑疆,张磊等.天然河道冰塞演变发展的数值模拟.水科学进展,2003,14(6):700-705.
    [152]茅泽育,张磊,王永填,吴剑疆.采用适体坐标变换方法数值模拟天然河道河冰过程.冰川冻土,2003,25:214-219.
    [153]茅泽育,许昕,王爱民等.基于适体坐标变换的二维河冰模型.水科学进展,2008,19(2),214-223.
    [154]茅泽育,赵雪峰,胡应均,刘颖.开河期冰盖横向冰缝形成机理.水科学进展,2009,20(4):572-577.
    [155]茅泽育,赵雪峰,王爱民等.开河期冰盖纵向冰缝形成机理.水科学进展,2009,20(3):434-437.
    [156]茅泽育,许听,王爱民等.开河期冰坝预测方法研究进展.水利水电科技进展,2007,27(3):76-80.
    [157]茅泽育,茅泽育,高亮等.春季河道武开河与文开河的判别准则初探.水利水电科技进展,2010,30(30):1-3.
    [158]刘连希,吴吉才.关于十三陵抽水蓄能电站上库冬季运行结冰问题的探讨.水利水电技术,2001,32(3):33-35.
    [159]可素娟,钱云平,郝守英等.万家寨水库凌情特点及初始封河期调度方案研究.冰川冻土,2002,24(2):209-213.
    [160]可素娟,钱云平,杨向辉等.1999~2000年度黄河宁蒙河段及万家寨水库凌情分析.人民黄河,2005,22(5):11-12.
    [161]李志军,贾青,黄文峰等.水库淡水冰的晶体和气泡及密度特征分析. 水利学报,2009年,40(11):1333-1338.
    [162]李志军,杨宇,彭旭明等.黑龙江红旗泡水库冰生长过程现场观测数据的剖析.西安理工大学学报,2009,25(3):270-274.
    [163]李志军,贾青,张宝森等.水库冰气泡含量和密度对探地雷达测厚的影响分析(英文)Applied Geophysics,2010,7(2):105-113.
    [164]李志军,董吉武.冰对水工结构物作用力的物理模拟—Ⅲ.冰对结构物撞击作用力模拟实例.黑龙江大学工程学报,2011,02(4).
    [165]李志军[1],贾青.冰对水工结构物作用力的物理模拟-Ⅱ.DUT-1模型冰物理和力学性能.黑龙江大学工程学报,2011,02(2).
    [166]李志军,董吉武.冰对水工结构物作用力的物理模拟-Ⅰ.模型冰分类和发展.黑龙江大学工程学报,2011,02(1).
    [167]高霈生,靳国厚,吕斌秀等.南水北调中线工程输水冰情的初步分析.水利学报,2003(11):96-101,106.
    [168]李根生,王建新,牟纯儒等.引黄济津冬季输水冰情观测与分析.南水北调与水利科技,2006,(4):25-27.
    [169]Shen H.T..River Ice Transport Theories:Post, Present, and Future.15TH IAHR Symposium on Ice,2000.8, Gdansk, Poland.
    [170]Shen H.T. Research on River Ice Processes:Progress and Missing Links. Journal of Cold Regions Engineering,2003,12:135-142.
    [171]Shen H T. Mathematical modeling of river ice processes. Cold Regions Science and Technology,2010,62(1):3-13.
    [172]Morse B, Hicks F. Advances in river ice hydrology 1999-2003. Hydrological Processes,2005,19,247-263.
    [173]Foltyn E P, Shen H T. St. Lawrence River Freeze-Up Forecast. Journal of Waterway, Port, Coastal and Ocean Engineering,1986,112(4):467-481.
    [174]Adams C E, Jr. Estimating Water Temperature and Time of Ice Formation on the St. Lawrence River. Limnology and Oceanography,1976,21(1): 128-137.
    [175]Shen H T, Yapa P D. A Unified Degree-day Method for River Ice Cover Thickness Simulation. Canadian Journal of Civil Engineering,1985, 12(3):54-62.
    [176]Shen H T. Dynamic transport of river ice. Journal of Hydraulic Research, 1990,28(6):659-671.
    [177]Shen H T, Su J, Liu L. SPH simulation of river ice dynamics.J. Comput. Phys.,2000,165(2):752-771.
    [178]Shen H T, Shen H H, Tsai S m. Dynamic transport of river ice. Journal of Hydraulic Research,1990,28(9):659-671.
    [179]Shen H T, Wang D. Under cover transport and accumulation of frazil granules. Journal of Hydraulic Engineering, ASCE,1995,121(2): 184-195.
    [180]Shen H T, Wang D S, Lai A M W. Numerical Simulation of River Ice Processes. J. Cold Regions Engrg., ASCE,1995,9(3):107-118.
    [181]Shen H T, Chaing L A. Simulation of growth and decay of river ice covers. J.of Hydr. Div., ASCE,1984,110(7):958-971.
    [182]Lu S, Shen H T, Criaaman R D. Numerical study on ice transport in the vicinity of Niagara River Hydropower intakes. J. Cold Regions Engrg., ASCE,1997,11(4):255-269.
    [183]Foltyn E P., Shen H T. St. Lawrence River Freeze-Up Forecast. Journal of Waterway, Port, Coastal and Ocean Engineering,1986,112(4):467-481.
    [184]Wang D S, Shen H T, Crissman R D. Simulation and Analysis of Upper Niagara River Ice-Jam Conditions. Journal of Cold Regions Engineering, 1995:119-134.
    [185]Shen H T, Lu S, Liu Crissman R D.1997a. Numercal simulation of ice transport over the Lake Erie-Niagara River ice boom. Cold Regions Sci. and Techol.,1997,26:17-33.
    [186]Wang, D.-S., Shen, H.T., Zhu, Q., Hou, S., Li, Z., Wang, Z. Simulation and Analysis of Ice Conditions in the Lower Yellow River, Proceedings, 13th IAHR Symposium on Ice,1996, V.2, Beijing:721-728.
    [187]Beltaos, River Ice Jams, USA, Colorado:Water Resources Publication, LLC:1995.
    [188]Beltaos S,Burrell B C,Water temperature decay under breakup ice jams, Cold Regions Science and Technology,2006,45:123-136.
    [189]Beltaos S;Miller L;Burrell B C;and Sullivan D. Formation of Breakup Ice Jams at Bridges. Journal of Hydraulic Engineering, ASCE,2006, (12): 1229-1236.
    [190]Beltaos S. Progress in the study and management of river ice jams, Cold Regions Science and Technology,2008,51:2-19.
    [191]Beltaos S, Onset of river ice breakup, Cold Regions Science and Technology,1997,25:183-196.
    [192]Beltaos, River Ice Breakup, USA, Colorado:Water Resources Publication, LLC,2008.
    [193]多钦科P.B.,苏联河流冰情(译著).北京:中国科学技术出版社,1991.
    [194]李若宏.黄河流域实用水文预报方案,水利部黄河水利委员会水文局,1989.
    [195]可素娟,王敏,饶素秋等.黄河冰凌研究.郑州:黄河水利出版社,2000.
    [196]Zhang B. Z., Yang X. Q.,Shen H T. Simulation of Winter Time Fluvial Processes in Lower Yellow River. Journal of Hydrodyamics(B),1994, (1): 33-42.
    [197]陈守煜,冀鸿兰.冰凌预报模糊优选神经网络BP方法.水利学报,2004,(6):114-118.
    [198]黑龙江省水文总站,中华人民共和国水利部.中华人民共和国行业标准河流冰情观测规范,北京:水利水电出版社,1993.
    [199]飞思科技产品研发中心Matlab 6.5辅助神经网络分析与设计.北京:电子工业出版社,2003.
    [200]闻新,周露等,MATLAB神经网络应用设计,北京:科技出版社,2001.
    [201]闻新,周露,李东江等(2002)Matlab模糊逻辑工具箱的分析和应用. 北京:科学出版社,2001.
    [202]杨晓帆,陈廷槐.人工神经网络固有的优点和缺点,计算机科学,1994,(02):21-25.
    [203]刘金琨著.先进PID控制及其MATLAB仿真.北京:电子工业出版社,2003.
    [204]黄德双,神经网络模式识别系统理论,北京:电子工业出版社,1996.5.
    [205]SL250-2000(2000).水文情报预报规范[S].北京:水利水电出版社.
    [206]马光华,王华勇.中国民间历书,北京:农业出版社,1993.
    [207]中国科学院紫金山天文台.大众万年历,上海:上海科学技术出版社,1991.
    [208]徐振韬.中国古代天文学字典,北京,中国科学技术出版社,2009.
    [209]乌志鹏,1500年回种西历离谱,银川:黄河出版传媒集团(宁夏人民出版社),2011.
    [210]徐延东,孙强.农历知识和农业小窍门,济南:山东科学技术出版社,2010.
    [211]黄河水利委员会水文处.冰期水文测验.北京:水利电力出版社,1958:6-7.
    [212]中华农历网:http://www.nongli.com/Doc/0611/18134839.htm
    [213]中国科学院紫金山天文台.2012年中国天文年历,北京:科学出版社,2011.
    [214]许建伟.天文算法,http://www.doc88.com/p-30290416537.html
    [215]张智星,孙春在,水谷英二著.张平安,高春华等译.神经-模糊和软算法.西安:西安交通大学出版社,2006.
    [216]马细霞,胡铁成.基于ANFIS的水库年径流预报.水力发电学报,2008,27(5):33-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700