用户名: 密码: 验证码:
基于3S技术的汶川强震区潜在突发性泥石流危险性区划及评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国地震频繁,是全球地震活动最强烈、地震灾害最严重的国家之一。5.12汶川巨震诱发了大量的崩塌、滑坡等地质灾害,据估计整个灾区地震触发的崩塌、滑坡有5万处以上,潜在泥石流沟近千条,而对人民安全造成直接威胁的灾害隐患点就达12000余处,其分布之广、类型之复杂、破坏之巨大,举世罕见。特大地震导致大量的山体开裂,造成了大量的松散堆积体,形成潜在不稳定斜坡,隐蔽性极强,构成灾害威胁,其数量难以估计。这些潜在不稳定斜坡在一定条件下将诱发突发性泥石流,对新的安置点人民生命和财产同样构成重大威胁。因此,采用新技术新方法快速查明重灾区突发性泥石流隐患分布及性状特点,并对其进行危险性区划和预警预报,有重要科学意义和实用价值。
     本文以岷江上游汶川县域以其地震极重灾区映秀-老虎嘴一带为实验区,在充分分析研究前人资料基础上,采用3S技术,以多尺度DEM和多源高精度遥感图像为研究区地貌流域信息熵计算和地质灾害信息提取等研究的数据源,结合地质、地理、水文、气象等资料,通过研究区地质灾害信息的遥感图像数字处理和解译及野外实地调查验证,查明了研究区地质灾害性状特点及空间分布特征,并在此基础上采用多种方法对研究区潜在突发性泥石流进行危险性区划与评价。
     论文主要研究内容及取得的创新成果有以下方面:
     (1)充分发挥3S技术特点,利用震后高精度、多类型、多时相遥感影像,通过遥感图像处理和地质灾害信息提取,结合现场调查,对研究区重要地段地质灾害进行了详细解译,共解译图像面积414.25km2,提取/解译滑坡体53个,崩塌1575个,地质灾害面积76.58km2。基本查明了研究区地质灾害的性状特点及其空间分布特征。
     (2)研究中利用5·12震后无人机高精度遥感图像,通过全数字摄影测量方法提取了震后的高精度DEM,并应用于研究区泥石流危险性评价中进行地形、地貌等分析中,以GIS强大的空间分析功能提取研究区流域、坡度、高差等重要信息,尤其是利用本次提取的震后高精度DEM制作的遥感图像地质解译三维可视化与动态分析系列图像,为本次地质灾害的信息提取与现场调查工作提供一种切实可行的技术手段。实践证明,制作目标区三维遥感图像对地质灾害进行动态观测可提高解译的精度,有利于从全局宏观和局部微观对研究区地质灾害个体及群体性状特征及其空间分布进行分析,得出与实际相吻合的结论。
     (3)研究中采用了不同层次区域和多种泥石流危险性评价理论及方法。在基于流域尺度的泥石流危险性评价中,分别采用集水阈值为20万和30万划分流域和40万划分的流域做泥石流危险性评价,按照不同尺度对研究区进行子流域划分和地貌信息熵计算。以子流域为评价单元,选用层次分析法确定权重,采用高程差、地形坡度、地层岩性、地震烈度、地貌信息熵、日最大降雨量、植被覆盖度等11个评价因子对研究区泥石流危险性进行区划与评价。将汶川县域泥石流危险性划分为低、偏低、中等、偏高、高五个级别。研究结果表明,沿岷江主流域及近侧突发性泥石流灾害危险性极高,特别是银杏乡、映秀镇等地区,值得加强注意。
     (4)在强震区映秀-老虎嘴潜突发性泥石流危险性区划研究中,采用基于模糊综合评判法的泥石流危险性区划与评价理论及方法,利用震后高精度DEM,将实验区按不同尺度分为31和67个子流域单元,泥石流危险性评价以泥石流规模为主要因子,子流域面积、高程差、平均坡度、汇流累积量、流域切割密度、物源面积、单位物源面积、主沟长度、不稳定沟床比例、沟床纵坡降、地貌信息熵等为其它因子建立因子评价集合,借助灰色系统和模糊数学的思想,利用灰色关联度法确定评价因子权重、利用模糊综合评判法对实验区进行潜在泥石流危险性区划。研究成果为该区突发性泥石流危险性预警预报提供了科学依据。
Earthquakes disasters occur frequently in China. China is one of the most intenseseismic activity and the most serious earthquake damaged national in the world.5.12Wenchuan Earthquake-induced collapses and a large number of landslides and othergeological disasters. It is estimated that the earthquake disastertriggered landslidesand collapses have50,000or more, nearly a thousand ofpotential debris flow, andposes a direct threat to the safety of the people of disaster risks at the point of morethan12,000, its wide distribution, the type of complex, massive destruction, rare inthe world.Earthquake led to a large number of mountain crack, causing a largeaccumulation of loose body, the formation ofpotentially unstable slopes, highly covert,constitute hazards, it is difficult to estimate the number.These potentially unstableslopes, under certain conditions will induce sudden debris flows, the new settlementsof people's lives and property as a major threat. Therefore, use of new techniques andmethods to quickly identify the hardest hit by the unexpected distribution of debrisflow hazards and trait characteristics,to take the risk of zoning and early warning andforecasting measures,there are important scientific significance and practical value.
     In this paper as Wenchuan County of Minjiang River upper reaches of a studyarea, and most areas of earthquake damage–Yingxiu to the Tiger Mouth area for theexperimental area, in the full analysis on the basis of previous data, using3Stechnology,the multi-scale multi-source high-precision DEM and remote sensingimage as data source to calculate theentropy of the study area watershed topographyinformation,extracted information on geological disasters.combined with geological,geographical, hydrological, meteorological information, by studying geologicalhazard information of remote sensing and digital image processing and interpretationoffield survey verification,identified the characteristics of the study area and geological disaster spatial distribution of traits,on this basis,using a variety of methodsfor the study area for debris flow potential risk of sudden and Evaluation Division.
     Thesis research content and made innovations in the following areas:
     (1) Give full play to the characteristics of RS,GIS&GPS technology, use ofearthquake-precision, multi-type, multi-temporalremote sensing images, throughremote sensing image processing and information extraction of geologicaldisasters,combined with site survey,detailed interpretation of the importance of thestudy area of the geological hazard information.Interpretation of the image area of414.25km2,extract/interpret the53landslides,collapses1575, geological disasterarea76.58km2.Geological disasters in the study area and spatial distribution of traitscharacteristic features generally been identified.
     (2) Study the use of5.12high-precision earthquake UAV remote sensing images,by all-digital photogrammetry to extract high-precision DEM after the earthquake.The DEM used in the study area after the earthquake,debris flow hazard assessment inthe terrain,topography and other analysis.using The power spatial analysiscapabilities of GIS to extract the study area watershed, slope, elevation and otherimportant information, in particular, use of this high-precision earthquake extractedDEM,produced geological interpretation of remote sensing images three-dimensionalvisualization and analysis of series of dynamic images,provide a viable technology forextraction of geological disasters and on-site investigation.Practice has proved that theproduction target of remote sensing images of3D dynamic observation ofgeologicaldisasters can improve the accuracy of interpretation,benefit from the globalmacro-and micro-local study of geological hazards on individual and group propertycharacteristics and spatial distribution analysis,draw conclusions consistent with theactua.
     (3) Studies using a variety of different levels of regional and debris flow hazardassessment theory and methods.Based on basin-scale debris flow risk assessment incatchment threshold respectively200,000and300,000and400,000is divided into thevalley basin debris flow hazard assessment,according to different scales of the studyarea into sub-basins and calculate the landscape entropy.Evaluation of the sub-basinas a unit, used AHP to determine the weight.Using the elevation difference, terrainslope,lithology, earthquake intensity, topography information entropy, the maximumdaily rainfall,vegetation cover,11evaluation factors of the study area for debris flowrisk zoning and evaluation. The risk of landslides in Wenchuan county is divided intofive-level. The results show that, along the Minjiang River and the main proximal sudden debris flows extremely dangerous, especially of ginkgo Township andYingxiu town and other areas that merit more attention.
     (4) In the earthquake zone Yingxiu-Tiger Mouth potential sudden debris flowhazard zonation Research,Use of fuzzy comprehensive evaluation method based onthe debris flow hazard zonation and evaluation theoryand methods,use thehigh-precision DEM after the earthquake,the experimental unit is divided into31and67sub-basins,Debris flow hazard assessment for debris flow scale as the mainfactor,Sub-basin area,elevation difference, the average slope, the cumulative amountof convergence,basin cut density,material source area, flat material source area,mainchannel length, the proportion of unstable gully, gullylongitudinal fall, landscapeinformation entropy such as other factors,established evaluation factors set, with graysystem and fuzzy mathematics ideas, use of gray correlation method to determine theweights of evaluation factors,use fuzzy comprehensive evaluation method for theexperimental area of the potential for debris flow risk zonin.Research results to thisarea of the risk of sudden debris flow warning and forecast provide a scientific basis.
引文
[1]中国科学院地球物理研究所.地震学基础[M].北京:科学出版社,1977.
    [2]顾功叙.中国地震目录(公元1970--1979年)[M].北京:地震出版社,1984.
    [3]中国地震台网中心.有史以来我国共发生过18次8级地震[DB/OL].http://www.ceic.ac.cn/contents/background/background4.jsp.
    [4]互动百科.汶川大地震[DB/OL], http://www.hudong.com/wiki/汶川大地震.
    [5]黄瑞秋等.汶川地震地质灾害研究[M].北京:科学出版社,2009.
    [6]中国共产党新闻网.加强地质灾害研究已刻不容缓[DB/OL],http://theory.people.com.cn/GB/14885684.html.
    [7] Blackwelder E. Mudflows as a geologic agent in semi-arid mountains[J].Geological Society ofAmerica Bulletin,1928,39:465-487.
    [8]刘希林.国外泥石流机理模型综述[J].灾害学,2002,17(4):1-6.
    [9] Johnson and P.H. Rahn. Mobilization of debris flows[J]. Zeitschrift fuerGeomorphologie,1970,9:168–186.
    [10] M Arnould. Geological hazards-insurance and legal and technical aspects[J]. Bulletin ofthe IntCrnational Association of Engineering Geology.1976,(14):263-274.
    [11] Nilsen.Tor H, Brabb.Earl E. Slope-Stability Studies in the San Francisco BayRegion,California[J].Reviews in Engineering Geology, v3,1977,235-243.
    [12] Cannon SH, Ellen SD (1985) Rainfall conditions for abundant debris avalanches, SanFrancisco Bay region, California. Calif Geol38(12):267–272.
    [13] V. Singhroy,K. E. Mattar and A. L. Gray. LANDSLIDE CHARACTERISATION INCANADA USING INTERFEROMETRIC SAR AND COMBINED SAR AND TMIMAGES[J]. Adv. Space Res.1998,21(3):465-476.
    [14]张燕.日本最新滑坡调查及防治对策技术——赴日本考察地质灾害监测防治技术报告[J].中国地质灾害与防治学报,2007,18,增刊:1-4.
    [15]百度百科.遥感地质[DB/OL].http://baike.baidu.com/view/27680.htm.
    [16]倪晋仁,王光谦.泥石流研究进展与启示[J].科技导报,1992,10(9201):28-30.
    [17]姚德基译(费莱施曼CM著).泥石流[M].北京:科学出版社.1986.
    [18] Lorenzo Marchi, Massimo Arattano, Andrea M Deganutti. Ten years of debris-flowmonitoring in the Moscardo Torrent (Italian Alps)[J]. Geomorphology.2002,46(1-2):1-17.
    [19] Carlo Colesanti,Alessandro Ferretti,Claudio Prati,Fabio Rocca. Monitoring landslides andtectonic motions with the Permanent Scatterers Technique[J]. Engineering Geology,2003,68(1-2):3–14.
    [20] Matthias Jakob. A size classification for debris flows[J]. Engineering Geology.2005,79(3-4):151-161.
    [21] Graciela Metternicht,Lorenz Hurni,Radu Gogu. Remote sensing of landslides:An analysisof the potential contribution to geo-spatial systems for hazard assessment in mountainousenvironments[J]. Remote Sensing of Environment.2005,98(2-3):284-303.
    [22] Janet E. Nichol, Ahmed Shaker, Man-Sing Wong. Application of high-resolution stereosatellite images to detailed landslide hazard assessment[J]. Geomorphology,2006,76:68–75.
    [23]邓辉.高精度卫星遥感技术在地质灾害调查与评价中的应用[D].博士论文.成都:成都理工大学,2007.
    [24] E. Alparslan,F. Ince,B. Erkan,C. Ayd ner,H. zen,A. D nerta,S. Ergintav,F.S. Ya san,A. Zatero ullari,I. Ero lu,M. De er,H. Elalmi,M. zkan. A GIS model for settlementsuitability regarding disaster mitigation, a case study in Bolu Turkey[J]. EngineeringGeology,2008,96:126–140.
    [25] A. Yalcin,S. Reis,A.C. Aydinoglu,T. Yomralioglu. A GIS-based comparative study offrequency ratio, analytical hierarchy process, bivariate statistics and logistics regressionmethods for landslide susceptibility mapping in Trabzon, NE Turkey[J]. Catena,2011,85(3):274–287.
    [26] Tom Parsons,Chen Ji,Eric Kirby. Stress changes from the2008Wenchuan earthquake andincreased hazard in the Sichuan basin[J]. Nature,2008,454(7203):509–510.
    [27] William B. Ouimet. Landslides associated with the May12,2008Wenchuan earthquake:Implications for the erosion and tectonic evolution of the Longmen Shan[J]. Tectonophysics.2010,491(1-4):244-252.
    [28]奚晓青,杨新宝.地质灾害国内外研究现状浅析[J].中国水运.2007,7(9):98-100.
    [29]中国科学院水利部成都山地灾害与环境研究所.中国泥石流[M],2000,北京:商务印书馆.
    [30]张春山,吴满路,张业成.地质灾害风险评价方法及展望[J].自然灾害学报,2003,12(1):96-102.
    [31]唐邦兴,杜榕桓,康志成,章书成.我国泥石流研究[J].地理学报,1980,35(3):259-264.
    [32]唐邦兴,章书成.泥石流研究[J].中国科学院院刊,1992(2):119-123.
    [33]崔鹏.我国泥石流防治进展[J].中国水土保持科学.2009,7(5)7-13.
    [34]刘仁志,倪晋仁.中国暴雨泥石流危险性区划[J].应用基础与工程科学学报,2004,12(4):346-360.
    [35]谭万沛.中国暴雨泥石流预报研究基本理论与现状[J].土壤侵蚀与水土保持学报,1996,2(1):88-95.
    [36]崔鹏,刘世建,谭万沛.中国泥石流监测预报研究现状与展望[J].自然灾害学报,2000,9(2):10-15.
    [37]杨武年,濮国梁,郑平元,F. Cauneau,T. Ranch in,J. P. Paris.长江三峡库区多类型、多时相遥感图像数字处理和地质构造信息提取[J].成都理工大学学报(自然科学版),2003.30(4):378-385.
    [38]杨武年,濮国梁, CAUN EAU F, RANCH IN T, PAR IS J P.长江三峡库区地质灾害遥感图像信息处理及其监测和评估[J].地质学报,2005,79(3):423-430.
    [39]韩玲玲,何政伟,等.长江三峡库区Landsat7ETM+数据的处理方法探讨[J].遥感技术与应用,2003,18(4).
    [40]何政伟,黄润秋,等.基于ARCGIS的地质灾害防治信息与决策支持系统的研制[J].吉林大学学报(地球科学版),2004,34(4):601~606.
    [41]刘少军,何政伟,等.基于组件式GIS的滑坡预报系统的研究[J].灾害学,2005,20(1).
    [42]姜琪文,许强,何政伟,等.基于SVM多类分类的滑坡区域危险性评价方法研究[J].地质灾害与环境保护,2005,16(3):238~330.
    [43]沈开俊,刘严松,何政伟,等.四川兴文县滑坡发育特征及影响因素分析[J].中国地质灾害与防治学报,2007,18(4):120~122.
    [44]吴伯清,何政伟,等.基于GIS的信息量法在九龙县地质灾害危险性评价中的应用[J].测绘科学,2008,33(4).
    [45]尹江涛,何政伟,等.天山公路地质灾害决策支持地理信息系统的设计研究[J].物探化探计算技术,2008,30(6):514:517.
    [46]刘洪江,唐川,崔鹏. GIS支持下的东川区泥石流危险度区划[J].干旱区地理,2005,28(4):446-449.
    [47]殷坤龙,张桂荣.地质灾害风险区划与综合防治对策[J].安全与环境工程,2003,10(1),32-35.
    [48]李秀珍,孔纪名,李朝凤.多分类支持向量机在泥石流危险性区划中的应用[J].水土保持通报,2010,30(5):129-133,157.
    [49]刘希林,燕丽萍,尚志海.基于区域临界雨量的广东省泥石流灾害易发区预测[J].水土保持学报,2009,23(6):71-84.
    [50]刘希林.区域泥石流危险度评价研究进展[J].中国地质灾害与防治学报,2002,13(4):1-9.
    [51]陈宁生,邓明枫,胡桂胜,周伟,杨成林.地震影响下西南干旱山区泥石流危险性特征与防治对策[J].四川大学学报(工程科学版),2010,42(增刊1):1-6.
    [52]许强,李为乐.汶川地震诱发滑坡方向效应研究[J].四川大学学报(工程科学版).2010,42(增刊1):7-14.
    [53]黄润秋,李为乐.汶川地震触发崩塌滑坡数量及其密度特征分析[J].地质灾害与环境保护,2009,20(3):1-7.
    [54]黄润秋,李为乐.汶川大地震触发地质灾害的断层效应分析[J].工程地质学报,2009,17(1):19-27.
    [55]黄润秋,李为乐.“5.12”汶川大地震触发地质灾害的发育分布规律研究[J].岩石力学与工程学报,2008,27(12):2585-2592.
    [56]谢洪,钟敦伦,矫震,张金山.2008年汶川地震重灾区的泥石流[J].山地学报,2009,27(4):501-509.
    [57]唐川.汶川地震区暴雨滑坡泥石流活动趋势预测[J].山地学报,2010,28(3):341-349.
    [58]唐川,丁军,梁京涛.汶川震区北川县城泥石流源地特征的遥感动态分析[J].工程地质学报,2010,18(1):1-7.
    [59]唐川,齐信,丁军,杨泰平,罗真富.汶川地震高烈度区暴雨滑坡活动的遥感动态分析[J].地球科学——中国地质大学学报,2010,35(2):317-323.
    [60]袁金国.遥感图像数字处理[M].北京:中国环境科学出版社,2006.
    [61]李志林,朱庆.数字高程模型[M].武汉:武汉大学出版社,2000.
    [62]邬伦,,张晶.地理信息系统[M].北京:电子工业出版社,2002.
    [63] Weibel R, Heller M1991Digital terrain modelling. In Maguire D J, Goodchild M F,Rhind DW (eds), Geographical information systems: principles and applications. Harlow,Longman/New York, John Wiley&Sons Inc.Vol.1:269-297.
    [64]党安荣,贾海峰,陆晓峰,张建宝.ERDAS IMAGINE遥感图像处理教程[M].北京:清华大学出版社,2010.
    [65]杨武年,丁纯勤,王大可,刘登中,陶清玉.(TM正射遥感影像地图在四川南江地区区调研究及成矿预测中的应用[J].地球科学——中国地质大学学报.1998,23(2):188-192.
    [66]夏清,刘登忠,石勇.遥感图像三维地形景观可视化的实现——以西藏赛利普地区为例.[J].地球信息科学,2007,9(5):121-123.
    [67]杨武年,廖崇高,濮国梁,徐强,于庆文,徐凌.数字区调新技术新方法——遥感图像地质解译三维可视化及影像动态分析[J].地质通报,2003,22(1):60-64.
    [68]胡国超.遥感技术在“5.12”地震重灾区汶川县地质灾害调查中的应用[D].成都理工大学,2009.
    [69]国土资源部、水利部、地矿部地质灾害勘察规范[S],2008。
    [70]卓宝熙.工程地质遥感判释与应用[M].北京:中国铁道出版社,2002.
    [71]汤国安,杨昕. ArcGIS地理信息系统空间分析实验教程[M].北京:科学出版社,2006.
    [72] Strahler A N. Hypsometric (area-altitude) analysis of erosional topography[J]. Bulletin of theGeological Society of America,1952,63:1117-1142.
    [73]艾南山.侵蚀流域的信息熵[J].水土保持学报,1987,1(2):1-8.
    [74]艾南山,岳天祥.再论流域系统的信息熵[J].水土保持学报,1988,2(4):1-9.
    [75]程思,易加强.四川省汶川县地质灾害的成因及防治对策[J].地质灾害与环境保护,2007,18(4):1-6.
    [76]刘传正,李铁锋,等.三峡库区地质灾害空间评价预警研究[J].水文地质工程地质,2004,4:9-19.
    [77]刘传正,李铁锋,等.长江三峡库区地质灾害成因与评价研究[M].北京:地质出版社,2007.
    [78] H. B. Wang,K. Sassa,W. Y. Xu. Analysis of a spatial distribution of landslides triggered bythe2004Chuetsu earthquakes of Niigata Prefecture, Japan[J]. NaturalHazards,2007,41(1):43-60.
    [79] Sato HP,Harp EL. Interpretation of earthquake-induced landslides triggered by the12May2008, M7.9Wenchuan earthquake in the Beichuan area, Sichuan Province, China usingsatellite imagery and Google Earth[J]. Landslides,2009,6(2):153-159.
    [80]韦方强,胡凯衡, J. L Lopez,崔鹏.泥石流危险性动量分区方法与应用[J].科学通报,2003,4(3):298-301.
    [81]唐尧.基于3S的震后汶川潜在泥石流危险性评价研究[D]成都理工大学,2011.
    [82]韩金华.基于GIS的白龙江流域泥石流危险性评价研究[D].兰州大学.2009.
    [83] Chyi-Tyi Lee, Chien-Cheng Huang, Jiin-Fa Lee, Kuo-Liang Pan, et al. Statistical approach toearthquake-induced landslide susceptibility[J]. Engineering Geology,2008,100(1/2):43–58.
    [84] Kamp U, Growley B J, Khattak G A, Owen, L.A.. GIS-based landslide susceptibilitymapping for the2005Kashmir earthquake region[J]. Geomorphology,2008,101(4):631–642.
    [85]铁永波,唐川.层次分析法在单沟泥石流危险度评价中的应用[J].中国地质灾害与防治学报.2006,17(4):79-84
    [86]周春花,唐川,铁永波.金沙江流域云南段泥石流危险度评价[J].中国水土保持科学.2006,4(1):65-69.
    [87]庄建琦,裴来政,丁明涛,陈兴长.潜在泥石流的界定与判识——以金沙江流域溪洛渡库区为例[J].灾害学,2009,24(4):1-5,24.
    [88]田述军,孔纪名,阿发友,崔云.汶川地震山地灾害对环境因素的响应机制[J].四川大学学报(工程科学版),2010,42(5):92-98.
    [89]罗佑新,张龙庭,李敏.灰色系统理论及其在机械工程中的应用[M].湖南:国防科技大学出版社,2001.
    [90]刘希林,唐川.泥石流危险性评价[M].北京:科学出版社,1995.
    [91]黄润秋,许向宁,唐川,向喜琼.地质环境评价与地质灾害管理[M].北京:科学出版社,2008.
    [92]眭素刚,范柱国.模糊综合评判在大水箐泥石流危险度评价中的应用[J].地质学刊,2010,34(1):22-27.
    [93]陈守煜.工程模糊集理论与应用[M].北京:国防工业出版社,1998.
    [94]王小朋,潘懋,任群智.基于流域系统地貌信息熵的泥石流危险性定量评价[J].北京大学学报(自然科学版),2007,43(2):211-215

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700