用户名: 密码: 验证码:
永磁同步直线电机磁阻力分析及控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
永磁同步直线电机将电能直接转换为直线运动,取消了传统的从旋转电机到工作台之间的一切中间传动环节,进给系统可以直接驱动负载,具有高速、高精的特性,因此直线电机正在成为高档数控机床的主要功能部件,在高速高精数控系统、IC制芯和封装设备、光刻机等众多应用场合具有广阔的应用前景。然而,直线电机存在由端部效应和齿槽效应引起的磁阻力扰动、负载扰动、系统参数摄动等因素形成的推力波动,直接影响高精度数控加工系统的定位精度和低速时的速度平稳性,成为影响直线电机广泛应用于工业实践的重要原因。本文以削弱推力波动对永磁同步直线电机性能的影响为核心问题,对推力波动产生的因素和计算方法进行了分析,提出了磁阻力的结构优化方式和推力波动的控制策略补偿方案,并进行了相关的实验研究。
     首先从直线电机设计角度进行研究,针对推力波动的主要因素磁阻力,运用等效磁化电流法和Schwarz-Christoffel变换建立了直线电机电磁场分析的模型,利用麦克斯韦张量法对直线电机的磁阻力进行分析,证明磁阻力可以依据其产生原因分解成由端部效应产生的端部力和由齿槽效应所产生的齿槽力,并根据这一分析结果分别建立相应的有限元分析模型,对端部力和齿槽力分别进行数值计算,提出了降低端部力和齿槽力的结构优化设计方法。
     其次,综合运用电机控制理论和计算机仿真技术,分别对永磁同步直线电机的矢量控制原理、运动力学模型以及电压空间矢量脉宽调制技术进行分析,搭建了永磁同步直线电机伺服控制系统的数学模型。针对推力波动对于直线电机的速度控制精度和平稳性影响较大的问题,设计了速度环滑模控制器。针对滑模控制器所引入的抖振现象,设计了扰动观测器,对系统扰动进行补偿。同时,采用模糊控制策略设计了模糊滑模控制器,对滑模控制器中的切换控制幅值进行实时地调整,实现了在不影响系统鲁棒性和快速跟踪性能的前提下,减小系统抖振的控制目的。
     在上述理论分析的基础上,详细地介绍了以DSP芯片为核心的永磁同步直线电机伺服控制系统的软硬件设计和实现,并对所提出的结构优化措施和控制优化策略进行了实验验证。
The electrical energy can be transferred into linear motion by permanent magnetic synchronous linear motors (PMSLMs), and all intermediate transmission mechanism can be canceled. Therefore, the feeding system can drive load directly, and realize manufacturing procedure with high speed and high precision. Consequently, PMSLM is becoming the principal function device of super-quality NC machines, and has extensive application perspectives in NC systems with high speed and high precision,IC manufacture and packing devices, lithographic tools,and so on. However, in the PMSLMs, there exists thrust ripple caused by the load disturbance, the detent force generated by end-effect and slot-effect, and the perturbation of system parameters, which has negative effect on the positioning accuracy and the steadiness at low speed, and then becomes one of significant causes interfering with the widely use of the PMSLMs in industrial practice. This paper focused on how to weaken the negative effect of thrust ripple on the performance of the PMSLMs, and analyzed the occurrence reasons and the calculation methods of thrust ripple, and proposed the corresponding constructive design methods to reduce detent force and the control strategy to restraint thrust fipple, and performed experiments to verify the validity of the proposed methods above.
     Firstly, the detent force that is the main reason of thrust ripple was analyzed by the motor design methods. The analysis model of the magnetic field in the PMSLM was built by means of equivalent magnetizing current and Schwarz-Christoffel transformation, and the detent force was analyzed by Maxwell stress. The analysis results showed that the detent force could be divided into the end force caused by end-effect and the cogging force caused by slot-effect, and then the finite element models were set up to calculate the end force and the cogging force respectively, as the result, the corresponding constructive design methods were proposed.
     Secondly, the vector control theory,the kinematics model and the sinusoidal space vector Pulse-Width-Modulation (SVPWM) control technology were analyzed dividually, and then the mathematic simulation model of the servo system of PMSLM was built. Since the thrust ripple has great influence on the precision and steadiness of the velocity control, the sliding-mode control device of speed loop was designed. In order to reduce the chattering of the sliding-mode control, the disturbance observer was designed to estimate the disturbance of the servo system and the estimation was fed back to the output current of the sliding-mode control. Furthermore, the fuzzy control strategy was introduced to modify the amplitude of the switching control at real time, in order that the chattering of the control system was weakened, and at the same time, the robustness and the fast tracking performance were maintained.
     On the basis of the theory study above, the design and the realization of the software and hardware of the servo system of PMSLM based on the DSP was described in detail, and the experiments were made to verify the effectiveness of the proposed constructive design methods and control algorithms.
引文
[1] Budig P. K. The application of linear motors. Proceedings of the third International Conference on Power Electronics and Motion Control, PIEMC2000, 2000, 3: 1336-1341
    [2]叶云岳.直线电机原理与应用.北京:机械工业出版社,2000
    [3] Brandenburg G,Bruckl S,Dormann J,et al.Comparative investigation of rotary and linear motor feed drive systems for high precision machine tools.The 6th International Workshop on Advanced Motion Control, 2000:384-389
    [4]杨正新,陈志华,涂阳虎等.直接驱动的发展与未来.中国机械工程,2000,10:1180-1182
    [5]郑玉玺,张式勤,蒋黔麟.直线电机驱动在机床中的应用.机电工程,2002,4:36-39
    [6]张国梁.我国机床用直线电机规模开发前景分析.数控机床市场,2003,11:67-68.
    [7]唐任远.现代永磁电机理论与设计.北京:机械工业出版社,1997.
    [8]张春良,陈子辰,梅德庆.直线电机伺服进给系统及其关键技术问题.组合机床与自动化加工技术,2001,11:37-40
    [9]郭庆鼎,王成元,周美文等.直线交流伺服控制系统的精密控制.北京:机械工业出版社,2000
    [10]刘泉,张建民,王先逵.直线电机在机床工业中的最新应用及技术分析.机床与液压,2004,6:1-3
    [11]江为华,文小玲.高速高精度运动轨迹控制方案.控制与检测,2006,9:60-61.
    [12]黄世涛,冯之敬.直线电机伺服控制系统精密数字控制方法研究.控制与检测, 2006:9:48-51
    [13]张丽秀,吴玉厚.用于非圆表面磨削加工的高速数控磨床设计.机械制造,2006,1:36-38
    [14]潘开林.永磁直线电机的驱动特性理论及推力波动优化设计研究: [博士学位论文].浙江大学:2003.
    [15]穆海华,周云飞,严思杰.超精密点对点运动4阶轨迹规划算法研究.中国机械工程, 2007,18(19):2346-2354
    [16]石阳春,周云飞,李鸿.长行程直线电机的迭代学习控制.中国电机工程学报,2007,8(24):92-96
    [17]余显忠,陈学东,何学明等.精密直线电机气浮轴承参数辨识.华中科技大学学报(自然科学版), 2007,12(12):62-64
    [18]李景天,宋一得,郑勤红等.用等效磁荷法计算永磁体磁场.云南师范大学学报(自然科学版) ,1999,02:33-36
    [19] Xiong, G., Nasar, S.A. Analysis of fields and forces in a permanent magnet linearsynchronous machine based on the concept of magnetic charge. IEEE Transactions on Magnetics, 1989,25(3):2713– 2719
    [20] Sang-Ho Lee, Su-Beom Park, Soon-O Kwon. Characteristic analysis of the slotless axial-flux type brushless DC motors using image method. IEEE Transactions on Magnetics, 2006, 42(4):1327– 1330
    [21] Joon-Ho Lee, Young-Hwan Lee, Dong-Hun Kim. Dynamic vibration analysis of switched reluctance motor using magnetic charge force density and mechanical analysis. IEEE Transactions on Applied Superconductivity, 2002, 12(1):1511– 151
    [22]秦世耀,熊光煜,牛华.永磁电机气隙磁场的解析分析.太原理工大学学报, 2002,33(2):121-124
    [23] Mizuno, T.; Yamada, H. Magnetic circuit analysis of a linear synchronous motor with permanent magnets. IEEE Transactions on Magnetics, 1992,28(5):3027– 3029
    [24] Profumo, F.; Tenconi, A.; Gianolio, G. Novel PM linear motor for industrial applications: magnetic circuit design procedure. Magnetics Conference, 1999. Digest of INTERMAG 99. 1999:ED07 - ED07
    [25] Nakamura, K.; Saito, K.; Ichinokura, O. Dynamic analysis of interior permanent magnet motor based on a magnetic circuit model. IEEE Transactions on Magnetics, 2003,39(5):3250– 3252
    [26] Nakamura, K., Saito, K., Ichinokura, O. Dynamic analysis of interior permanent magnet motor based on a magnetic circuit model. IEEE Transactions on Magnetics, 2003, 39(5):3250– 3252
    [27] Kim, J.K., Joo, S.W., Hahn, S.C. Static characteristics of linear BLDC motor using equivalent magnetic circuit and finite element method. IEEE Transactions on Magnetics, 2004, 40(2):742– 745
    [28] Jin Hur, Sang-Baeck Yoon, Dong-Yun Hwang. Analysis of PMSLM using three dimensional equivalent magnetic circuit network method. IEEE Transactions on Magnetics, 1997, 33(5):4143– 4145
    [29] Ji-Young Lee,Jung-Pyo Hong, Do-Hyun Kang. Analysis of permanent magnet type transverse flux linear motor by coupling 2D finite element method on 3D equivalent magnetic circuit network method. Industry Applications Conference, 2004. 39th IAS Annual Meeting. Conference Record of the 2004 IEEE. 2004, (3):2092– 2098
    [30] Ho Kwon, Kwon, S.-Y., Ju Lee. A study on the permanent magnet overhang effect in permanent magnetic actuator using 3-dimension equivalent magnetic circuit network method. Electrical Machines and Systems, 2003. ICEMS 2003:222– 225
    [31] Lee, J.-Y., Kim, S.-I., Hong, J.-P. Optimal Design of Superconducting Motor to Improve Power Density Using 3D EMCN and Response Surface Methodology. IEEE Transactions on Applied Superconductivity, 2006 16(2):1819– 1822
    [32] In-Soung Jung, Jin Hur, Dong-Seok Hyun. 3-D analysis of permanent magnet linear synchronous motor with magnet arrangement using equivalent magnetic circuitnetwork method. IEEE Transactions on Magnetics,1999,35(5):3736– 3738.
    [33] Jin Hur, In-Soung Jung, Dong-Seek Hyun.Lateral characteristic analysis of PMSLM considering overhang effect by 3 dimensional equivalent magnetic circuit network method. IEEE Transactions on Magnetics,1998, 34(5):3528– 3531
    [34] In-Soung Jung, Jin Hur, Dong-Seok Hyun. Analysis of permanent magnet linear synchronous motor for servo system using 3-D equivalent magnetic circuit network method. Electric Machines and Drives, 1999. International Conference IEMD '99,1999 :132– 134
    [35]周杰,谢为,汪国梁.用等效磁路网络法与有限元法计算永磁电机参数的比较.西安交通大学学报,1998,32:41-47
    [36]张伟雄,张敬华.基于磁网络模型的永磁电机气隙磁场的研究.第四界中国小电机技术研讨会,上海.1999:71-75
    [37] Gullen AL, Barton TH. A Simplified Electromagnetic Theroy of the Induction Motor using the concept of wave Impedance. IEE Monographs Processdings C ,1958, 105(8):331-336
    [38] Idir, K.,Dawson, G.E., Eastham, A.R. Modeling and performance of linear induction motor with saturable primary. IEEE Transactions on Industry Applications,1993 29(6):1123– 1128
    [39]汪旭东,王兆安,袁世鹰等.基于场路结合的永磁直线同步电机的解析计算.微电机,2001,34(1):15-17
    [40]张向文,焦留成,王福忠等.PMSLM的两种模型及比较.焦作工学院学报(自然科学版) , 2002,21(4):266-270
    [41]汪旭东,袁世鹰,王兆安等.永磁直线同步电动机的二维傅里叶解析.煤炭学报, 1998,24(4):411-415
    [42]焦留成.垂直运动永磁直线同步电机电磁参数及特性研究.北京:中国矿业大学,1998
    [43]焦留成,袁世鹰.永磁同步直线电机等效电路参数计算.中国电机工程学报,2002,22(3):12-16
    [44] I. Boldea, Sayed A. Nasar. Linear electric actuators and generators. Cambridge, NewYork, Cambridge University Press,1997
    [45] ZESHENG DENG, BOLDEA, S.A. NASAR. Fields in Permanent Magnet Linear Synchronous Machines. IEEE Transactions on Magnetics,1986, 22(2):107-112
    [46] Andriollo, M., Martinelli, G., Morini, A. FEM calculation of the LSM propulsion force in EMS-MAGLEV trains. IEEE Transactions on Magnetics, 1996, 32(5):5064– 5066
    [47] Chang, J., Kang, D. H., Viorel, I. Transverse Flux Reluctance Linear Motor's Analytical Model Based on Finite-Element Method Analysis Results. IEEE Transactions on Magnetics,2007,43(4) :1201– 1204
    [48] Dong-Yeup Lee, In-Cheol Hwang, Gyu-Hong Kang. 3D Finite Element Analysis ofSkew and Overhang Effects in Permanent Magnet Linear Synchronous Motor. 12th Biennial IEEE Conference on Electromagnetic Field Computation,2006:64– 64
    [49] Ji-Young Lee, Do-Hyun Kang,Jung-Hwan Jang. Rapid Eddy Current Loss Calculation for Transverse Flux Linear Motor.Industry Applications Conference, 2006. Conference Record of the 2006 IEEE ,2006 :400– 406
    [50] Krop, D. C. J., Lomonova, E. A., Vandenput, A. J. A. Application of Schwarz-Christoffel Mapping to Permanent-Magnet Linear Motor Analysis. IEEE Transactions on Magnetics, 2008, 44(3):352– 359
    [51]王明杰,焦留成,陈勇.永磁直线同步电机磁场和力的有限元分析.矿山机械,2007,35(2):106-108
    [52]李庆雷,王先逵,吴丹等.永磁同步直线电机推力及垂直力的有限元计算.清华大学学报,2004,40(5):20-23
    [53]赖国庭,吴玉厚,富大伟.基于PMAC的直线电机速度/加速度前馈控制.控制工程,2003,11(6):555-557
    [54] Zhuang M. & Atherton D P. Automatic tuning of optimum PID controllers. Proceeding IEE, Part D, 1993, 140(2): 216-224
    [55] Ali W.H., Zhang Y., Akujuobi C.M., et al. DSP-based PID controller design for the PMDC motor. International Journal of Modelling and Simulation, 2006, 26(2): 143-149
    [56] Tanaka Kanya , Oka Masato, Uchibori Akihiko, et al. Precise Position Control of an Ultrasonic Motor Using the PID Controller Combined with NN. Electrical Engineering in Japan, 2004, 146(3): 46-54
    [57] Xia Changliang, Xue Mei, Chen Ziran. Adaptive PID control and on-line identification for switched reluctance motors based on BP neural network. IEEE International Conference on Mechatronics and Automation, ICMA 2005, 2005:1918-1923
    [58] Feng Guang, Liu Yan-Fei, Huang Lipei. A new robust algorithm to improve the dynamic performance on the speed control of induction motor drive. IEEE Transactions on Power Electronics, 2004, 19(6): 1614-1627
    [59]谭冠政,陈勇旗,王越超.基于DSP和模糊PD控制的智能人工腿位置伺服控制系统.中南工业大学学报,2001,4:417-421
    [60] Yao B, Al Majed M, Tomizuka M. High performance robust motion control of machine tools: an adaptive robust control approach and comparative experiments. IEEE ASME Trans. Mechatronics, 1997, 2 (2) : 63-76
    [61]许强,贾正春,李朗如.永磁同步电机的自适应预测电流控制.电气传动, 1997, 35 (4) : 19-24
    [62] Q. Guo, L. Wang, R.Luo. Robust fuzzy variable structure control of PMSLM servo system. IEEE International Conference Intelligent Proceeding system. 1997, 1:675-679
    [63]王丰尧.滑模变结构控制.北京:机械工业出版社,1995
    [64]高为炳.变结构控制的理路与设计方法.北京:科学出版社, 1998
    [65]林岩,毛剑琴.鲁棒变结构模型参考自适应控制器的分析与设计.控制理论与应用,2001,18(2):217-223
    [66]高为炳.变结构控制研究的发展与现状.控制与决策, 1993, 8:241-247
    [67]孙宜标,郭庆鼎.基于神经网络推力观测器的滑模控制在抑制直线伺服推力波动中的应用.电气传动,2002,3:18-21
    [68]关新,孙宜标,洪百会等.基于阻力估计器的直线伺服控制系统滑模控制.沈阳工业大学学报,2002,24(3):203-207
    [69]陈志梅,张井岗,曾建潮.交流伺服控制系统的积分模糊滑模控制.电机与控制学报, 1999,(1) : 38-41
    [70]孙宜标,郭庆鼎.交流永磁直线伺服控制系统的神经网络—滑模双自由度控制.电气传动, 2002, 1:19-23
    [71] Francis B A. A course in H∞control theory. Lecture Notes in Control and Information Sciences. New York: Springer-Verlag, 1987
    [72]徐月同,傅建中,陈子辰.永磁直线同步电机进给系统H∞控制策略的研究.浙江大学学报,2005,39(6):789-794
    [73] Zhiyuan Cai, Qingding Guo. H infinity robust performance design of linear permanent magnet synchronous servo motor. 7th International Workshop on Advanced Motion Control, 2002: 371-375
    [74] Cheung N.C., Yuan-Rui Chen, Jie Wu. H∞control of permanent magnet linear motor in transportation system. Proceedings of the Fifth International Conference on Electrical Machines and Systems. 2001, 2:706-709
    [75] Tien-Chi Chen, Tsong-Terng Sheu. Model reference robust speed control for induction-motor drive with time delay based on neural network. IEEE Transactions on System, Man and Cybernetics, Part A.2001, 31(6): 746-753
    [76] F.J.Lin, C.H.Lin, C.M.Hong. Robust control of linear synchronous motor servo drive using disturbance observer and recurrent neural network compensator. IEE Proceedings Electric Power Application, 2000, 147(4): 263-272
    [77] F.J.Lin, R.J.Wai. Robust control using neural network uncertainty observer for linear induction motor servo drive. IEEE Trans. Power Electronics, 2002, 17(2): 241-254.
    [78]舒迪前.预测控制系统及其应用.北京:机械工业出版社,1996
    [79] Kwon W.H. Advances in Predictive Control: Theory and Application. First Asian Control Conf., Tokyo, 1994
    [80]席裕庚.预测控制.北京:国防工业出版社,1993,12
    [81]郭庆鼎,郭威,周悦.交流永磁直线同步电机伺服控制系统的预见前馈补偿.电机与控制学报. 1999,3:141-145
    [82]郭威,周悦,郭庆鼎.自适应神经元实现的直线永磁同步电机伺服控制系统的预前馈补偿.中国机械工程. 2002,20:87-94
    [83]李鸿,周云飞.预测前馈控制在0.1um光刻机硅片台长行程直线电机控制中的应用.长沙电力学院学报(自然科学版),2003,18(3):19-22
    [84] Jin Zhao, Shuyun Wan, Jinbang Xu. Improving performance method for fuzzy control AC speed drive.IEEE Proceedings of the 5th World Congress on Intelligent Control and Automation,2004:4500-4503
    [85] You-ping Chen, Dai-lin Zhang, et al. An Improved fuzzy system for position control of permanent magnet linear motor. Proceeding of the Fourth International Conference on Machine Learning and Cybernetics, 2005, 5: 2731-2735
    [86]孙炜,王耀南.基于神经网络的规则自校正模糊控制器及其在交流伺服控制系统中的应用.中国电机工程学报,2001,21(7):15-17
    [87]叶云岳,陆凯元.直线电机的PID控制与模糊控制.电工技术学报, 2001, 16 (3) : 11-15
    [88]刘金凌,王先逵.直线电机伺服控制系统的模糊推理自校正PID控制.清华大学学报(自然科学版) , 1998, 38(2):44-46
    [89]郭庆鼎,王成元,周美文.直线交流伺服控制系统的精密控制技术.北京:机械工业出版社, 2000
    [90] Gerco Otten, Theo J. A. de Vries, et al. Linear motor motion control using a learning feedforward controller. IEEE ASME Trans. Mechatronics, 1997, 2:179-187
    [91] Miroslaw Wlas, Zbigniew Krzemin′ski, Jaros?aw Guzin′ski, et al. Artificial-network-based sensorless nonlinear control of induction motors. IEEE Trans. Energy Conversion, 2005, 20(3): 520-528
    [92] B. Raison, F. Francois, G. Rostaing, and J. Rogon, Induction drive monitoring by neural networks, Proc. IEEE Int. Conf. Industrial Electronics, Control Instrumentation, 2000: 859–863
    [93] M.K. C?l?z and M. Tomizuka. Neural network based friction compensation in motion control. Electronics Letters, 2004, 40(12): 752-753
    [94]夏加宽,王成元等.高精度数控机床用直线电机端部效应分析及神经网络补偿技术.中国电机工程学报,2003,23(8):100-104
    [95]郭庆鼎,王军.基于在线辨识补偿的永磁直线同步电机模型参考自适应神经网络速度控制.电气传动, 2000, ( 4) : 16- 19
    [96] Lin CL, Shieh N C, Ting P C. Robust Wavelet Neuro Control for Linear Brushless Motors. IEEE Trans. on Aerospace and Electronic System, 2002, 38 (3) : 918 - 932.
    [97]叶云岳.直线电机原理与应用.北京:机械工业出版社, 2000
    [98]陈幼平,张颖,艾武等.永磁同步直线电动机磁场和推力波动分析及实验研究.微电机,2007,40(8):4-8
    [99]俞宏生.工程电磁场分析与计算.北京:人民交通出版社,1997
    [100] Xinghua Wang, Qingfu Li, Shuhong Wang, and Qunfeng Li. Analytical Calculation of Air-Gap Magnetic Field Distribution and Instantaneous Characteristics of Brushless DC Motors. IEEE trans. energy conversion, 2003,18(3):424-432
    [101] Zhu,Z.Q, and D. Howe. Instantaneous Magnetic Field Distribution in Brushless Permanent Magnet dc Motors, Part III: Effect of Stator Slotting. IEEE trans. magnetics, 1993, 29(1):143-151
    [102]胡之光.电机电磁场的分析与计算.北京:机械工业出版社, 1989.
    [103]汤蕴.电机内的电磁场.北京:科学出版社, 1998.
    [104]王兴华,励庆手,王曙鸿.永磁无刷直流电机磁阻转矩的解析计算方法.中国电机工程学报,2002,22(10):104-108
    [105]童昕宏.磁浮交通同步电机计算及模拟仿真软件设计:[硕士学位论文]。浙江大学:2006
    [106]倪光正,钱秀英等.电磁场数值计算.北京:高等教育出版社,1996.
    [107]金建铭.电磁场有限元方法.西安:西安电子科技大学出版社,1998.
    [108]兵器工业无损检测人员技术资格鉴定考核委员会.常用钢材磁特性曲线速查手冊.北京:机械工业出版社,2003
    [109] N. Bianchi, S. Bolognani and A.D.F. Cappello. Reduction of cogging force in PM linear motors by pole-shifting. IEE Proc.-Electr. Power, 2005, 152(3):703-709.
    [110] In-Soung Jung, Jin Hur, Dong-Seok Hyun. Analysis of permanent magnet linear synchronous motor for servo system using 3-D equivalent magnetic circuit network method. International Conference IEMD '99, 1999:132– 134
    [111] Jeans, C.G.,Cruise, R.J.,Landy, C.F. Methods of detent force reduction in linear synchronous motors. International Conference IEMD '99:437– 439
    [112] Shao Bo, Cao Zhi-tong, Chen Hong-ping. Cogging force and its estimation using a neural network based on 2D field model of PMSLM. IEEE International Conference on Electric Machines and Drive, 2005:1243– 1248
    [113]陈霞,邹继斌,胡建辉.采用齿冠开槽法有效抑制永磁电机齿槽力矩.微特电机, 2006,34(11):45-49
    [114] Touzhu Li,Gordon Slemon.Reduction of Cogging Torque in Permanent Magnet Motors[J].IEEE Transactions on Magneticst, l988, 24(6):3901- 3903
    [115] Sangmoon Hwang, Sangmin Lee, Acoustic noise reduction in high torque permanert magnet DC motor by teeth pairing. 27th IMCSD, 1998:235-240
    [116] Takeo Ishikawa.Gordon R.Slemon.A method of Reducing Ripple Torque in Permanent Magnet Motors without Skewing. IEEE Transactions on Magnetics, 1993,29(2): 2028- 2031
    [117]王有庆.基于内模滑模复合控制的直线电机高性能伺服控制研究. [博士学位论文].上海交通大学:2003
    [118] Barahanov, N. and Ortega, R. Necessary and sufficient conditions for passivity of the LuGre friction model. IEEE Transactions on Automatic Control, 2000, 45(2): 830-832.
    [119]杨庆江,李晔,包西平.三电平SVPWM控制算法及控制策略的研究.煤矿机械, 2007, 28(6):50-52
    [120]陈瑶,童亦斌,金新民.基于PWM整流器的SVPWM谐波分析新算法.中国电机工程学报,2007,27(13):76-80
    [121]田亚菲,何继爱,黄智武.电压空间矢量脉宽调制(SVPWM)算法仿真实现及分析.电力系统及其自动化学报,2004,16(4):68-71
    [122]夏加宽,董婷,王贵子.抑制永磁直线电机推力波动的电流补偿控制策略.沈阳工艺大学学报,2006,28(4):379-383
    [123]穆海华,周云飞,严思杰.基于PID与cogging力补偿的直线电动机控制.微电机, 2007,40(10):48-51
    [124]冯纯伯,费树岷.非线性控制系统分析与设计.北京:电子工业出版社, 1998.
    [125]孙宜标,郭庆鼎.交流直线伺服控制系统的模糊滑模变结构控制.沈阳工业大学学报, 2002, 24(3): 317-321
    [126] Chung S K, Lee J S. Robust speed control of brushless direct-drive motor using integral variable structure control. IEE Proc-Electr. Power Appl, 1995,142(6):362-366
    [127]梅志千.机电伺服控制系统中的补偿计算研究.上海:上海交通大学机械与动力学院,2003
    [128]李士勇.模糊控制、神经控制和智能控制论.哈尔滨:哈尔滨工业大学出版社, 1996
    [129]艾武,刘凌云,张代林,等. LS7266R1在双轴位置信号检测中的应用.仪表技术与传感器, 2007, 2:39-41
    [130]刘书明,罗军辉.双口RAM在DSP处理系统中的应用.国外电子元器件, 2002,11:64-66

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700