用户名: 密码: 验证码:
不确定机器人的力/位置智能控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来,国际上对机器人的控制问题进行了大量研究,尤其是机器人的力/位置控制问题吸引了许多学者和专家的注意。许多学者不断运用新的控制理论和方法,从不同的角度,对机器人的力/位置控制进行理论和实际应用上的尝试。然而,机器人本身是一种高度非线性、强耦合且含有诸多不确定性因素的对象,当机器人的末端执行器与外界环境接触时,工作环境接触刚度的不同对控制性能也有较大的影响,机器人的应用范围因而受到极大制约。
    基于上述问题,本文在力/位置控制的基础上,主要针对机器人参数摄动及外界工作环境接触刚度的不确定进行研究。
    在机器人力/位置混合控制的基础上,首先设计了一种模糊神经网络控制器与反馈控制器相结合的控制方案,采用模糊神经网络在线学习所有不确定性的包络函数的上界,引入反馈控制器,以增强模糊神经网络控制策略的完备性。针对实际应用中对不确定的不同要求,又提出了一种具有混合/性能指标的神经网络控制方法,对机器人不确定性(包括参数不确定性和外部扰动)分别进行补偿,保证了系统对外界干扰在给定的干扰衰减度下具有鲁棒稳定性的同时,还增强了系统对参数不确定性的补偿。
    力/位置混合控制理论明确,但付诸实施难。为此,本文又在机器人阻抗控制的基础上,针对机器人和环境的不确定性,提出一种具有鲁棒性的阻抗控制结构,使用模糊神经网络作为补偿控制器消除力控制中的所有不确定性,具有较强的鲁棒性和较好的实用价值。最后,针对阻抗控制对期望力的跟踪能力,提出一种自适应力跟踪策略,它根据力误差修正参考位置,不需要知道环境位置和刚度的先验知识,并且对补偿不确定性有一定的鲁棒性,但计算量较大。在此基础上,又提出一种以位置控制为基础的模糊神经网络阻抗控制方案,计算量小,达到了理想的力跟踪效果。
In the recent decades, many efforts have been devoted to the control of robot manipulators. Especially, problems of free motion and constrained motion for robot manipulators have attached many researchers and experts. Many researchers try many new theory and ways to robot force/position control from different point of view. It is know that there exist complex nonlinear, strong coupling and lots of uncertainties in robotic system, and when the manipulator end-effector contacts with the environment, the different environment stiffness have great affection on the system’s performance. Hence, robot’s applying scope is greatly constricted.
    In this dissertation, parameter perturbation and the uncertainties of environment stiffness are mainly studied based on robot force/position control.
    A new control strategy is presented by combining fuzzy-neural control with feedback control under considering the uncertainties of robotic system firstly based on robot force/position hybrid control. Fuzzy-neural network is used to learning the boundary of envelope function of uncertainties, and the feedback controller is used to enhance the complete performance of fuzzy-neural control strategy. After that, a fuzzy neural network control design with mixed performance was proposed aiming at different requirement to uncertainty, which separately compensate parameter uncertainties and external disturbances of robot system. This method can ensure the robust stability that under a prescribed attenuation level for the external disturbance, and also strengthens compensation to parameter uncertainties.
    The theory of hybrid force/position control is clear, however, it is difficult to implement. Then an impedance control strategy with robust performance is presented aiming at uncertainties of robot, FNN is used to learning the uncertainties in order to eliminate disturbance, which have good robust and high value in practice. Finally, an adaptive method is presented
    
    
    aiming at the tracking ability of impedance control. It modifies the reference position according to the force error on line so that the prior knowledge of the environment stiffness and location is not required. And it is robust to compensate uncertainties, but have long computation time. Then, a fuzzy neural controller is presented based on position control, which have short computation time and can successfully tracking reference force.
引文
蔡自兴. 机器人学. 北京:清华大学出版社, 2000
    熊有伦. 机器人学. 北京:机械工业出版社, 1993
    Kiguchi, Kazuo and Watanabe. Two-Stage Adaptive Robot Position/Force Control Using Fuzzy Reasoning and Neural Networks. Advanced Robotics, 2000,14(3): 153-168
    J. J. Craig. Adaptive Control of Mechanical Manipulators. The International Journal of Robotics Research, 1987, 6(2):172-184
    B. Paden, R. Panja. Globally Asymptotically ‘PD+’ Controller for Rigid Robot Manipulators. Int. J. Control, 1988, 47(6):1697-1712
    Niu Yugang, Yang Chengwu. An Adaptive Neural Robust Controller for Trajectory
    of Robot Manipulators. Control Theory and Applications, 2000, 17(6):924-928
    B. Yao, M. Tomizuka. Comparative Experiments of Robust and Adaptive Control with New Robust Adaptive Controller for Robot Manipulators. Proc. of The IEEE Conference on Decision and Control, 1994, (2):1290-1295
    Villani, Luigi and N. Ciro. Experimental Study of Adaptive Force/Position Control Algorithms of Industrial Robot. IEEE Transactions on Control Systems Technology 2000, (9):777-786
    Hsu. feng-Yih, F. L. Chen. New Adaptive Fuzzy Hybrid Force/Position Control for Intelligent Robot Debarring. Proceedings IEEE International Conference on Robotics and Automation, 1999, 3(5):2476-2481
    T. C. Hisa. Adaptive Control of Robot Manipulator Review. IEEE Int. Conf. Robotic and Automation, 1986, (9):652-663
    E. M. Joo, G. Yang. Robust Adaptive Control of Robot Manipulators Using Generalized Fuzzy Neural Networks. IEEE Transactions on Industrial Electronics, 2003, 50(6):620-628
    G. W. Zeng, Ahmad Hemami. An Overview of Robot Force Control. Robotic, 1997, 15(5):473-482
    
    
    A. Andrew, Goldenberg and Peilin Song. Principles for Design of Position and Force Controllers for Manipulators. Robotics and Autonomous Systems, 1977, (3):263-277
    T. Yoshikawa, T. Sugie and M. Tanaka. Dynamic Hybrid Position/Force Control of Robot Manipulator Constrained A Stiff Environment. IEEE Robotic and Automation, 1988, 4(6):321-333
    Homayoun Seraji, Richard Colbaugh. Force Tracking Impedance Control. The International Journal of Robotics Research, 1997, 16(2):97-117
    Lucibello, Pasquale. Learning Algorithm for Impendence Hybrid Force Position Control of Robot Arms. IEEE Transactions on Systems, Man, and Cybernetics, 1998, 28(5):241-244
    N. Hogan. Impedance Control: An Approach to Manipulation: Part I-theory. Part II-Implementation. Part III-Applications. J Dyn Sys Meas Cont, 1985:1-24
    S. P. Chan, B. Yao and W. B. Gao. Robust Impedance Control of Robot Manipulators. Int J Robotice Automation, 1991, 6(4):220-227
    A. Hace, K. Jezernik and S. Uran. Robust Impendence Control. IEEE Conference on Control Applications-Proceedings, 1998, 1(9):583-587
    H. Berghuis. A Robust Adaptive Robot Controller. IEEE Transaction on Robotics and Automation, 1993, 9(6):825-830
    C. M. Kwan. Robust Force/Motion Control of Constrained Robots Using Neural Network. Proceedings of The 33rd Conference on Decision and Control, 1944, (12): 1862-1867
    H. G. Sage, E. Ostertag. Robust Control of Robot Manipulators A Survey. Int. Control, 1999, 72(16):1498-1552
    G. Tao. Robust Adaptive Control of Robot Manipulators. Robotics and Automation, 2000, 28(4):803-807
    J. S. Reed, P. Ioannou. Instability Analysis and Robust Adaptive Control of Robotic Manipulators. IEEE Transactions on Robotics and Automation, 1989, 5(3):381-386
    B. Yao, M. Tomizuka. Robust Adaptive Motion and Force Control of Robot Manipulators in Unknown Stiffness Environment. Proc.32nd IEEE Conf. Decision Contr, 1993, (3):142-147
    C. H. Pyung, D. S. Kim and L. W. Jeong. Intelligent Force/Position Control of Robot Manipulator Using Time Delay Control. IEEE/RSJ/GI International Conference on Intelligent Robots and Systems, 1994, (3):1632-1638
    
    Connolly, Thom and H. Pfeiffer Friedrich. Neural Network Hybrid Position/force Control. IEEE International Conference on Intelligent Robots and Systems, 1993, (9):240-244
    Y. S. Xu, P. P. Richard and Shum Heung-Yeung. Fuzzy Control of Robot and Compliant Wrist System. IEEE Industry Application Society Annual Meeting, 1991, (2):1431-1437
    Tokita. Masatoshi, Mituoka. Toyokazu. Force Control of A Robotic Manipulator by Application of A Neural Network. Advanced Robotics, 1991, 5(1):15-24
    F. Toshio, K. Takashi and T. Masatoshi. Position/Force Hybrid Control of Robotic Manipulator by Neural Network (Int. Report: Application of Neural Servo Controller to Stabbling Control). Nippon KikaiGakkaiRonbunshu, C Hen/Transactions of The Japan Society of Mechanical Engineers:Part C, 1990, 56(527):1854-1860
    Jung, Seul and T. C. Hsia. Robust Neural Force Control Scheme under Uncertainties in Robot Dynamics and Unknown Environment. IEEE Transactions on Industrial Electronics, 2000, 47(2):403-412
    R. J. Wai, Hsieh and K. Yun. Robust Fuzzy Neural Network Control for n-link Robot Manipulator. Journal of The Chinese Institute of Electrical Engineering, Transactions of The Chinese Institute of Engineers, Series E/Chung Kuo Tien Chi Kung Chieng Hsueh K’an, 2003, 10(2):21-32
    L. Cai, A. A. Goldenberg. Robust Control of Position and Forces for A Robot Manipulator in Non-contact and Contact Tasks. Proceedings of American Control Conference, 1989:1905~1911
    K. Hornik, M. Stinchcombe and H. White. Universal Approximation of An Unknown Mapping and Its Derivatives Using Multiplayer Feedforword Neural Networks, 1990, (3):551-560
    Peng. Limin, Woo. Peng-Yung. Neural-Fuzzy Control System for Robotics Manipulators. IEEE Control System Magazine, 2002, 22(2):53-63
    李士勇. 模糊控制-神经网络控制和智能控制论. 哈尔滨:哈尔滨工业大学出版社, 2002:431-447
    T. Takagi, M. Sugeno. Fuzzy Identification of Systems and Its Application to Modeling and Control. IEEE Trans. on Systems, Man, and Cybernetics, 1985, 15(1):116-132
    
    K. J. Hunt. Extending The Functional Equivalence of Radial Basis Function Network and Fuzzy Inference System. IEEE Trans. on Neural Networks, 1996, (3):776-781
    H. Gomi, M. Kawato. Neural Network Control for A Closed-Loop System Using Feedback-Error-Learning, Neural Network, 1993, (6):933-946
    Y. S. Xu. Neural Networks Control of A Space Manipulator, IEEE Control System Magazine, 1993, (6):14-22
    何玉彬, 刘艳秋, 徐立勤,等. 电液伺服系统的神经网络在线学习自适应控制. 中国电机工程学报, 1998, 18(6):434-437
    R. J. Wai, Hsieh and K. Yun. Tracking Control Design for Robotic Manipulators via Fuzzy Neural Network. IEEE International Conference on Plasma Science, 2002, (2):1422-1427
    Chyi-Tsong Chen. Intelligent Process Control Using Neural Fuzzy Techniques. Journal of Process Control, 1999, (9):493-503
    张化光, 何希勤. 模糊自适应控制理论及其应用. 北京:航空航天大学出版社, 2002:214-231
    牛玉刚, 杨成梧. 机器人轨迹跟踪的一种自适应神经鲁棒控制. 控制理论与应用, 2000, (6):924-928
    Seul Jung. Robot Neural Force Control with Robot Dynamic Uncertainties under Totally Unknown Environment. IEEE International Conference on Intelligent Robots and Systems, 1996, 2(11):4-8
    查理德. 摩雷, 李泽湘, 夏恩卡.萨思特里,等. 机器人操作的数学导论. 北京:机械工业出版社, 1997
    蒙以正, 柳成茂. MATLAB5.X应用与技巧. 北京:科学出版社, 1999:124-133
    代颖. 不确定性机器人鲁棒自适应控制方法研究. [西安交通大学工学博士学位论文]. 1998:18-39
    蔡自兴, 谢光汉, 伍朝晖,等. 直接在位置控制机器人上实现力/位置自适应模糊控制. 机器人, 1998, (7):297-301
    
    谢光汉, 伍朝晖, 符曦. 附加力外环的机器人力/位置自适应模糊控制. 控制与决策, 1998, (3):161-164
    B. S. Chen, Y. Chan. Nonlinear Mixed Control for Robust Tracking Design of Robotics Systems. Int. J of Cont, 1997, 67(6):837-857
    谢明江, 刘允刚, 代颖,等. 机器人混合自适应控制. 上海交通大学学报, 2000, (5):654-656
    王得进. 和优化控制理论. 哈尔滨:哈尔滨工业大学出版社, 2001:214-229
    A. A. Stoorvogel. The Robust Control Problem: A Worst Case Design. IEEE Trans. AC, 1993, (38):1358-1370
    鲍鸿, 黄心汉, 李锡雄. T-S模糊RBF神经网络的结构研究. 华中理工大学学报, 1999, (1):11-13
    Homayou Seraji, Richard Colbaugh. Force Tracking in Impedance Control. Inter- national Journal of Robotics Research, 1997, 16(2):97-117.
    H. Seraji, R. Colbaugh. Force Tracking in Impedance Control. Int. J Robot Research, 1997, 16(1):97-117
    L. F. Baptista, J. M. Sousa and J. COSTA. Force Control of Robotic Manipulators Using A Fuzzy Predictive Approach. Journal of Intelligent and Robotics System, 2001, (30):359-376.
    Seul Jung. Robust Neural Force Control Scheme Under Uncertainties in Robot Dynamics and Unknown Environment. IEEE Transactions on Industrial Electronics, 2000, 47(4):403-412
    C. M. Kwan. Robust Force and Motion Control of Constrained Robots Using Fuzzy Neural Network. Proceedings of The 33rd Conference on Decision and Control, 1994, (9):1862-1867
    T. A. Lasky, T. C. Hsia. Force-Tracking Impedance Control of Robot Manipulators. Proc 19th IEEE Conf Robot and Automat. Sacramento California, 1991, (4):274-280
    J. K. Salishury. Active Stiffness Control of A Manipulator in Cartesian Coordinates. Proc 19th IEEE Conf Decision contra, 1980:95-100
    H. Seraji, R. Colbaugh. Force Tracking in Impedance Control. Int. J Robotics Research, 1997, 16(1):97-117
    D. E. Whitney. Force Feedback Control of Manipulator Fine Motions. Trans. ASMEJ of Dynsys Means and Control, 1977:1120-1132
    H. Vanbrussed, J. Simons. The Adaptable of Compliance Concept and Its
    
    
    Use for Automatic Assembly by Active Force Feedback Accommodations. In: 9th Int Symp on Industrial Robots, 1979:678-689
    H. Kazerooni, T. B. Sheridan and R. K. Houpt. Robust Compliant Motion for Manipulators. Part1: The Fundamental Concepts of Compliant Motion. IEEE J. R. A, 1986, 2(2):1124-1136
    J. A. Maples, J. J. Becker. Experiments in Force Control of Robotics Manipulators. In: Proc IEEE Conf on Robotics & Automation, 1986, (11):1108-1114
    温淑焕, 吴丽燕, 王洪瑞. 基于改进神经网络的不确定性机器人自适应阻抗控制. 自动化理论技术与应用, 2002, (9):168-172
    N. F. Xiao, L. Todo. Neural Network Based Learning Impedance Control for A Robot. JSME International Journal, Series C:Mechanical Systems, Machine Elements and Manufacturing, 2001, 44(9):626-633
    Seul Jung. Robust Neural Force Control Scheme under Uncertainties in Robot Dynamics and Unknown Environment. IEEE Transactions on Industrial Electronics, 2000, 47(4):403-412
    
    M. Carreras, P. Radio and J. Batlle. Efficient Learning of Reactive Robot Behaviors with A Neural Learning Approach. IEEE International Conference on Intelligent Robots and Systems, 2002, (1):1020-1025
    代颖, 郑南宁, 李春来. 新一类的机器人鲁棒自适应跟踪控制策略. 机器人, 1998, (3):111-115
    王永骥, 涂健. 神经网络控制. 北京:机械工业出版社, 1998:21-56
    吴健珍. 6-DOF并联机器人非线性鲁棒自适应控制. [燕山大学硕士学位论文]. 2001:23-56
    魏立新. 6-DOF并联机器人动力学建模及其控制策略研究. [燕山大学硕士学位论文]. 2002:1-21
    吴丽燕. 考虑摩擦外扰情况下不确定性机器人的力/位置自适应控制. [燕山大学硕士学位论文]. 2002:37-60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700