用户名: 密码: 验证码:
基于粘弹性材料的柔性卫星隔振技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在卫星升空过程中,其所处动力学环境非常恶劣。为了保证卫星不受破坏,应用整星隔振技术对卫星进行保护,提高卫星发射成功率。本文以粘弹性材料为研究对象,研究隔振系统的参数设计以及可靠性方法在隔振技术中的应用,从动力学角度研究了粘弹性材料对柔性卫星隔振系统的影响。具体完成的主要研究工作如下:
     研究了长径比大的整星系统横纵向固有频率比的控制问题。建立了卫星-适配器等效动力学模型,通过解析方法证明了增大锥壳适配器的高度和减小锥壳适配器的锥角都可以增大整星系统横纵向固有频率比。在横向固有频率不降低或少降低的条件下降低纵向固有频率,满足了实际卫星隔振系统设计时对系统固有频率的要求。
     针对粘弹性材料的阻尼动力学特性,建立了多自由度隔振系统动力学模型。基于模态理论,发现了粘弹性材料储能刚度的增大会引起隔振系统模态损耗因子饱和的现象。通过对具有偏心质量隔振系统的建模和分析,证明了具有偏心现象的隔振系统存在横纵向耦合的结论。
     研究了粘弹性材料会引起隔振系统模态损耗因子饱和的现象。提出了一个描述动力学系统特征值灵敏度的新函数――振型差。根据振型差,得到了隔振系统特征值灵敏度的解析形式,论证了系统模态损耗因子的饱和机理。在粘弹性材料储能刚度会引起隔振系统模态损耗因子饱和的基础上,进一步证明了粘弹性材料损耗因子同样会引起系统模态损耗因子饱和,为保证实际工程中隔振器的正确设计提供了理论依据。
     针对卫星多为柔性体的现状,建立了柔性卫星隔振系统的有限元模型,研究了卫星-隔振器动力学系统的特性。根据Fourier变换方法,得到了隔振器底端到柔性卫星的传递率。通过对系统传递率的计算,证明隔振器具有良好的隔振性能。通过比较隔振系统在共振频率和反共振频率下的传递率,证明了过大的粘弹性阻尼储能刚度会限制隔振器两端的位移,抑制粘弹性阻尼器变形,从传递特性角度解释了隔振系统产生阻尼饱和现象的原因。
     通过引入不同阻尼系统和复杂系统的可靠性计算方法,得到了系统固有频率和阻尼设计方法,并进一步提出了粘弹性阻尼隔振系统的优化方法。通过隔振性能可靠性以及星箭耦合可靠性的计算,得到了系统固有频率的量化设计方法并证明了星箭耦合系统一定存在内共振现象。
     在理论研究的基础上,通过测定不同粘弹性材料储能刚度对应的模态损耗因子,从实验角度证明了柔性隔振系统存在模态损耗因子饱和现象,而且给出了实际工程设计中粘弹性材料储能刚度的设计方法,即测定系统模态损耗因子饱和时对应的粘弹性材料储能刚度临界值,将粘弹性材料储能刚度设计为稍大于临界值,当隔振器隔振性能满足实际要求时,其隔振性能会由于部分阻尼元件的失效而提高。而且通过隔振器冗余特性实验结果可以证明,少量阻尼元件失效不会影响隔振器的隔振性能。
The vibration environment of spacecraft is very severe during launch. For keepingthe spacecraft safe in severe vibration environment, whole-spacecraft vibration isolation(WSVI) is applied to increase the success probability of launch. In this paper, viscoelasticmaterial (VEM) is studied, the parameters design and reliability technology are applied.The in?uence of VEM on ?exibility WSVI is studied in dynamic solution. The primaryobtained results are as follows:
     The lateral-longitudinal natural frequency ratio control problem of whole-spacecraftsystem is studied. The dynamic model of spacecraft and payload attaching fitting (PAF)is given. By the analytic solutions, it is proved that both to increase the height of PAF andto reduce the angle of PAF can increase the lateral-longitudinal natural frequency ratio.With no reduction of lateral natural frequency, the longitudinal natural frequency can bereduced to satisfy the requirement of actual launch.
     Taking the VEM as damping providing form, the multiple degree-of-freedoms(DOFs) dynamic model of vibration isolation is given and analyzed. Based on modetheory, it can be proved that the increase of VEM stiffness can cause the model loss fac-tor (MLF) saturation of vibration isolation system. By the dynamic model of vibrationisolation system, the in?uence of eccentric center of mass is discussed.
     Because the stiffness of VEM can cause the MLF saturation of vibration isolationsystem, a new function”mode displacement difference (MDD)”, which is an inherentfeature of vibration system, is brought in this paper. By MDD, the analytic solutions ofsystem eigenvalues and the mechanism of MLF saturation are obtained. Besides, the lossfactor of VEM can also cause the MLF saturation, which is developed from the traditionaldesign technology of vibration isolation. The conclusion is provided for the design ofvibration isolator in practice.
     Because the spacecraft is ?exible, the finite element model is given to discuss thedynamic feature of WSVI system. By Fourier transformation, the analytic solutions oftransmissibility is obtained. By the computation of transmissibility, the performanceof isolator is obtained. The dynamic feature is analyzed at natural frequency and anti-resonance frequency. It can be proved that the displacement difference of isolator will be limited by large stiffness of VEM. The deformation of viscoelastic damper (VED) issuppressed. The MLF saturation is proved by transmissibility.
     By the introduction of reliability computation method of different system and com-plex system, the design method of natural frequency and damping of WSVI system withVEM are obtained. Furthermore, the optimization method is presented. By reliabilitycomputation of performance and spacecraft and launch vehicle (LV) coupled problem,the quantization method of natural frequency design is obtained. In addition, it is provedthat there must be the resonant in the coupled system of spacecraft and LV.
     Based on the basic study, by the test of MLF, the MLF saturation is proved by theexperiment result. The design method of VED stiffness is given in practice. The stiffnessof VEM should be designed as a little more than the critical value which is correspondingto MLF saturation. As the performance of isolator satisfies the requirement, the vibrationisolation will be improved by the failure of VEDs. Furthermore, by the redundant featureexperiment of isolator, the failure of a small amount VEDs cannot cause the failure ofisolator.
引文
1黄文虎,王心清,张景绘,等.航天柔性结构振动控制的若干新进展[J].力学进展,1997,27(1):5–18.
    2马兴瑞,于登云,韩增尧,等.星箭力学环境分析与试验技术研究进展[J].宇航学报,2006,27(3):323–331.
    3张军,谌勇,骆剑,等.整星隔振技术的研究现状和发展[J].航空学报, 2005,26(2):179– 183.
    4杜华军,于百胜,郑钢铁,等.蜂窝锥壳卫星适配器约束阻尼层振动抑制分析[J].应用力学学报,2003,30(3):5–9.
    5张军,谌勇,张志谊,等.一种整星隔振器的研制[J].振动与冲击, 2005,24(5):35– 38.
    6杜华军,黄文虎,邹振祝.航天支架结构的被动振动控制[J].应用力学学报,2002, 19(3):10– 13.
    7 P. S. Wilke, C. D. Johnson. Whole-spacecraft Passive Launch Isolation[J]. Journalof Spacecraft an Rockets, 1998, 35(5):690– 694.
    8徐庆善.隔振技术的进展与动态[J].机械强度, 1994, 16:37– 41.
    9孙朝晖,王冲,孙进才,等.螺旋桨飞机舱室隔声技术研究[J].西北工业大学学报,1994,12(4):623–627.
    10雷平,高行山.飞机座舱减振降噪优化设计方法[J].动力学与控制学报, 2007,5(1):88– 91.
    11孙进才,师利明,叶西宁.利用共振吸声器改善飞机壁板的隔声量[J].航空学报,1991,12(8):B359–B363.
    12 P. S. Wilke, C. D. Johnson, P. J. Grosserode, et al. Whole-spacecraft VibrationIsolation on Small Launch Vehicles[C]//SPIE, 2000, 3989:440– 451.
    13 P. Wilke, C. Johnson, P. Grosserode, et al. Whole-spacecraft Vibration Isolation forBroadband Attenuation[C]//Aerospace Conference Proceedings, 2000 IEEE. 2000,4:315– 321.
    14赵会光,马兴瑞,冯纪生.整星隔振技术若干问题的探讨[J].航天器工程,2001, 10(3):30– 37.
    15 A. S. Bicos, C. D. Johnson, L. P. Davis. Need for and Benefits of Launch VibrationIsolation[C]//SPIE, 1997, 3045:14– 19.
    16何渝生.汽车噪声控制[M].机械工业出版社, 1995.
    17刘宗巍.基于发动机转速的车内噪声自适应主动控制系统研究[D]. :吉林大学硕士学位论文,2004:13–15.
    18王加春,李旦,董申.机械振动主动控制技术的研究现状和发展综述[J].机械强度,2001,23(2):156–160.
    19张阿舟.实用振动工程(2)―振动控制与设计[M].航空工业出版社, 1997.
    20 R. Malla, H. Jahromi, M. Accorsi. Passive Vibration Suppression in Truss-typeStructures with Tubular Members[J]. Journal of Spacecraft and Rockets, 2000,37(1):86– 92.
    21 C. Johnson, D. Kienholz. Finite Element Prediction of Damping in Structures withConstrained Viscoelastic Layers[J]. AIAA Journal, 1982, 20(9):1284– 1290.
    22 C. Bert, J. Ray. Vibrations of Orthotropic Sandwich Conical Shells with FreeEdges[J]. International Journal of Mechanical Sciences, 1969, 11:767– 779.
    23 A. Rittweger, J. Albus, E. Hornung. Passive Damping Devices for Aerospace Struc-tures[J]. Acta Astronautica, 2002, 50(10):597– 608.
    24 M. Marivani, M. Hamed. Numerical Simulation of Structure Response Outfittedwith a Tuned Liquid Damper[J]. Computers & Structures, 2009, 87(17– 18):1154– 1165.
    25 S. Colwell, B. Basu. Tuned Liquid Column Dampers in Offshore Wind Turbinesfor Structural Control[J]. Engineering Structures, 2009, 31(2):358– 368.
    26 A. Samantaray. Modeling and Analysis of Preloaded Liquid Spring/damper ShockAbsorbers[J]. Simulation Modelling Practice and Theory, 2009, 17(1):309– 325.
    27 J. C. Wu, Y. P. Wang, C. L. Lee, et al. Wind-induced Interaction of a Non-uniformTuned Liquid Column Damper and a Structure in Pitching Motion[J]. EngineeringStructures, 2008, 30(12):3555– 3565.
    28 K. Shum, Y. Xu, W. Guo. Wind-induced Vibration Control of Long Span Cable-stayed Bridges Using Multiple Pressurized Tuned Liquid Column Dampers[J].Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(2):166– 192.
    29 A. A. Ta?anidis, J. L. Beck, D. C. Angelides. Robust Reliability-based Design ofLiquid Column Mass Dampers under Earthquake Excitation Using an AnalyticalReliability Approximation[J]. Engineering Structures, 2007, 29(12):3525– 3537.
    30 E. Berger, M. Begley, M. Mahajani. Structural Dynamic Effects on Interface Re-sponse:formulation and Simulation under Partial Slipping Conditions[J]. Journalof Applied Mechanics, 2000, 67:785– 792.
    31 A. Bhaskararao, R. Jangid. Harmonic Response of Adjacent Structures Connectedwith a Friction Damper[J]. Journal of Vibration and Sound, 2006, 292(3– 5):710–725.
    32 E. Berge, C. Krousgrill. On Friction Damping Modeling Using Bilinear HysteresisElements[J]. Journal of Vibration and Acoustics, 2002, 124(3):367– 375.
    33赵云峰. Zn系列粘弹性阻尼材料的性能及应用[J].宇航材料工艺, 2001,(2):19– 23.
    34 R. Fan, G. Meng, J. Yang, et al. Experimental Study of the Effect of ViscoelasticDamping Materials on Noise and Vibration Reduction Within Railway Vehicles[J].Journal of Sound and Vibration, 2009, 319(1– 2):58– 76.
    35 A. de Lima, A. Faria, D. Rade. Sensitivity Analysis of Frequency Response Func-tions of Composite Sandwich Plates Containing Viscoelastic Layers[J]. CompositeStructures, 2010, 92(2):364– 376.
    36 A. Rashid, C. M. Nicolescu. Design and Implementation of Tuned ViscoelasticDampers for Vibration Control in Milling[J]. International Journal of MachineTools and Manufacture, 2008, 48(9):1036– 1053.
    37 G. Lesieutre, K. Govindswammy. Finite Element Modeling of Frequency-dependent and Temperature-dependent Dynamic Behavior of Viscoelastic Materi-als in Simple Shear[J]. International Journal of Solids Structures, 1996, 33(3):419– 432.
    38黄金威,杨朋军,于云峰,等.惯性平台橡胶减振器弹性特性的有限元分析[J].机械设计,2006,23(11):51–54.
    39 K. W. Min, H. S. Kim, S. H. Lee, et al. Performance Evaluation of Tuned Liq-uid Column Dampers for Response Control of a 76-story Benchmark Building[J].Engineering Structures, 2005, 27(7):1101– 1112.
    40叶正强,李爱群,徐幼麟.工程结构粘滞流体阻尼器减振新技术及其应用[J].东南大学学报,2002,32(3):466–473.
    41 L. He, G. Zheng. Effect of Viscous Heating in Fluid Damper on the Vibration Isola-tion Performance[J]. Mechanical Systems and Signal Processing, 2007, 21(8):3060– 3071.
    42 M. Pirner, S. Urushadze. Liquid Damper for Suppressing Horizontal and VerticalMotions–parametric Study[J]. Journal of Wind Engineering and Industrial Aerody-namics, 2007, 95(9– 11):1329– 1349.
    43 Q. Jin, X. Li, N. Sun, et al. Experimental and Numerical Study on Tuned Liq-uid Dampers for Controlling Earthquake Response of Jacket Offshore Platform[J].Marine Structures, 2007, 20(4):238– 254.
    44 J. Wang, Y. Ni, J. Ko, et al. Magneto-rheological Tuned Liquid Column Dampers(mr-tlcds) for Vibration Mitigation of Tall Buildings: Modelling and Analysis ofOpen-loop Control[J]. Computers & Structures, 2005, 83(25– 26):2023– 2034.
    45叶正强,李爱群,程文瀼,等.采用粘滞流体阻尼器的工程结构减振设计研究[J].建筑结构学报,2001,22(4):61–66.
    46杨国华,李爱群,程文瀼,等.工程结构粘滞流体阻尼器的减振机制与控振分析[J].东南大学学报,2001,31(1):57–61.
    47吕刚,李俊宝,陆锋,等.粘弹性阻尼器动力设计及其应用的实验研究[J].实验力学,1998,13(2):190–196.
    48 D. Huajun, Z. Zhenzhu, H. Wenhu. Vibration Suppression Analysis for Supporterwith Constrained Layer Damping[J]. Journal of Harbin Institute of Technology(New Series), 2004, 11(2):231– 236.
    49 M. Guedri, A. Lima, N. Bouhaddi, et al. Robust Design of Viscoelastic StructuresBased on Stochastic Finite Element Models[J]. Mechanical Systems and SignalProcessing, 2010, 24(1):59– 77.
    50 N. D. Butler, S. O. Oyadiji. Transmissibility Characteristics of Stiffened Profiles forDesigned-in Viscoelastic Damping Pockets in Beams[J]. Computers & Structures,2008, 86(3– 5):437– 446.
    51 S. A. Nayfeh, K. K. Varanasi. A Model for the Damping of Torsional Vibration inThin-walled Tubes with Constrained Viscoelastic Layers[J]. Journal of Sound andVibration, 2004, 278(4– 5):825– 846.
    52 L. Chen, Y. Tang, C. Lim. Dynamic Stability in Parametric Resonance of AxiallyAccelerating Viscoelastic Timoshenko Beams[J]. Journal of Sound and Vibration,2010, 329(5):547– 565.
    53 M. Mofid, A. Tehranchi, A. Ostadhossein. On the Viscoelastic Beam Subjected toMoving Mass[J]. Advances in Engineering Software, 2010, 41(2):240– 247.
    54 A. Kren, A. Naumov. Determination of the Relaxation Function for ViscoelasticMaterials at Low Velocity Impact[J]. International Journal of Impact Engineering,2010, 37(2):170– 176.
    55 D. Castello, F. Rochinha, N. Roitman, et al. Constitutive Parameter Estimation ofa Viscoelastic Model with Internal Variables[J]. Mechanical Systems and SignalProcessing, 2008, 22(8):1840– 1857.
    56 H. B. Yun, S. F. Masri, R. W. Wolfe, et al. Data-driven Methodologies for ChangeDetection in Large-scale Nonlinear Dampers with Noisy Measurements[J]. Journalof Sound and Vibration, 2009, 322(1– 2):336– 357.
    57 M. Pellicer. Large Time Dynamics of a Nonlinear Spring-mass-damper Model[J].Nonlinear Analysis: Theory, Methods & Applications, 2008, 69(9):3110– 3127.
    58 M. H. Ghayesh. Nonlinear Transversal Vibration and Stability of an Axially Mov-ing Viscoelastic String Supported by a Partial Viscoelastic Guide[J]. Journal ofSound and Vibration, 2008, 314(3-5):757– 774.
    59 B. Pratiher, S. K. Dwivedy. Non-linear Vibration of a Single Link ViscoelasticCartesian Manipulator[J]. International Journal of Non-Linear Mechanics, 2008,43(8):683– 696.
    60 C. L. Gaillard, R. Singh. Dynamic Analysis of Automotive Clutch Dampers[J].Applied Acoustics, 2000, 60(4):399– 424.
    61 X. Yang, L. Chen. Non-linear Forced Vibration of Axially Moving ViscoelasticBeams[J]. Acta Mechanica Solida Sinica, 2006, 19(4):365– 373.
    62 A. Bahar, F. Pozo, L. Acho, et al. Parameter Identification of Large-scale Mag-netorheological Dampers in a Benchmark Building[J]. Computers & Structures,2010, 88(3– 4):198– 206.
    63 S. Choi, S. Hong, K. Sung, et al. Optimal Control of Structural Vibrations Us-ing a Mixed-mode Magnetorheological Fluid Mount[J]. International Journal ofMechanical Sciences, 2008, 50(3):559– 568.
    64 N. Kwok, Q. Ha, M. Nguyen, et al. Bouc-wen Model Parameter Identification for aMR Fluid Damper Using Computationally Efficient Ga[J]. ISA Transactions, 2007,46(2):167– 179.
    65 H. Tsang, R. Su, A. Chandler. Simplified Inverse Dynamics Models for MR FluidDampers[J]. Engineering Structures, 2006, 28(3):327– 341.
    66 I. Bica. Damper with Magnetorheological Suspension[J]. Journal of Magnetismand Magnetic Materials, 2002, 241(2– 3):196– 200.
    67 G. Yang, B. F. Spencer, J. D. Carlson, et al. Large-scale MR Fluid Dampers: Mod-eling and Dynamic Performance Considerations[J]. Engineering Structures, 2002,24(3):309– 323.
    68 E. F. Crawley, J. de Luis. Use of Piezoelectric Actuators as Elements of IntelligentStructures[J]. AIAA Journal, 1988, 25(10):1373– 1385.
    69 H. S. Tzou, C. L. Tseng. Distributed Piezoelectric Sensor/actuator Design for Dy-namic Measurement/control of Distributed Parameter Systems: A Piezo- ElectricFinite Element Approach[J]. Journal of Sound and Vibration, 1990, 138(1):17–34.
    70 S. Saadat, J. Salichs, M. Noori, et al. An Overview of Vibration and Seismic Ap-plications of Niti Shape Memory Alloy[J]. Smart Materials and Structures, 2002,11:218– 224.
    71 W. Chen, H. Pu, X. Qiu. A Compound Secondary Source for Active Noise Radia-tion Control[J]. Applied Acoustics, 2010, 71(2):101– 106.
    72 H. Hassanpour, P. Davari. An Efficient Online Secondary Path Estimation for Feed-back Active Noise Control Systems[J]. Digital Signal Processing, 2009, 19(2):241– 249.
    73 R. T. Bambang. Adjoint Ekf Learning in Recurrent Neural Networks for NonlinearActive Noise Control[J]. Applied Soft Computing, 2008, 8(4):1498– 1504.
    74 Z. Qiu, H. Wu, C. Ye. Acceleration Sensors Based Modal Identification and ActiveVibration Control of Flexible Smart Cantilever Plate[J]. Aerospace Science andTechnology, 2009, 13(6):277– 290.
    75 C. D. Johnson, P. S. Wilke, P. J. Grosserode. Whole-spacecraft Vibration IsolationSystem for the Gfo/taurus Mission[C]//SPIE, 1999, 3672:175– 185.
    76 C. D. Johnson, P. S. Wilke, K. R. Darling. Multi-axis Whole-spacecraft VibrationIsolation for Small Launch Vehicles[C]//SPIE, 2001, 4331:153– 161.
    77 D. Steward. A Platform with Six-degree of Freedom[J]. Proc Inst Mech Eng, 1965,180(15):371– 386.
    78 Z. Geng, L. Haynes. Six Degree-of-freedom Active Vibration Control Using theStewart Platforms[J]. IEEE Transactions on Control Systems Technology, 1994,2(1):45– 53.
    79 B. Dasgupta, T. Mruthyunjaya. Closed-form Dynamic Equations of the GeneralStewart Platform Through the Newton-Euler Approach[J]. Mechanism & MachineTheory, 1998, 33(7):993– 1012.
    80 J. McInroy. Modeling and Design of Flexure Jointed Stewart Platforms for ControlPurposes[J]. IEEE/ASME Transactions on Mechatronics, 2002, 7(1):95– 99.
    81 G. R. Thomas, C. M. Fadick, B. J. Fram. Launch Vehicle Payload Adapter Designwith Vibration Isolation Features[C]//SPIE, 2005, 5760:35– 45.
    82周劭翀,王皓,高剑,等.整星隔振技术的原理分析[J].宇航学报, 2008,29(6):1752– 1755.
    83杜华军,陈恩鹏.航天结构的约束阻尼振动抑制优选方案研究[J].航天控制,2004, 22(5):5– 9.
    84王威远,王聪,魏英杰,等.复合材料蜂窝结构锥形壳振动传递特性试验研究[J].工程力学,2007,24(7):1–5.
    85王威远,王聪,邹振祝.蜂窝锥壳结构动力学特性实验研究[J].振动与冲击,2007, 26(7):164– 168.
    86张军,谌勇,华宏星,等.卫星减振的试验研究[J].应用力学学报, 2006,23(1):76– 79.
    87张军,谌勇,张志谊,等.整星隔振器的隔振性能分析[J].宇航学报, 2005,26:110– 113.
    88 L. Liu, G. Zheng, W. Huang. Octo-strut Vibration Isolation Platform and its Appli-cation to Whole Spacecraft Vibration Isolation[J]. Journal of Sound and Vibration,2006, 289:726– 744.
    89 R. Rackwitz, B. Fiessler. Structural Reliability under Combined Random LoadSequences[J]. Computers & Structures, 1978, 9(5):489– 494.
    90 V. Raizer. Theory of Reliability in Structural Design[J]. Applied Mechanics Re-views, 2004, 57(1):1– 21.
    91 A. M. Hasofer, N. C. Lind. Exact and Invariant Second-moment Code Format[J].J. Eng. Mech. Div., 1974, 100(EM1):111– 121.
    92 M. Shinozuka. Basic Analysis of Structural Safety[J]. Journal of StructuralEngineering-ASCE, 1983, 109(3):721– 740.
    93 D. K. A, L. H-Z, H. S-J. Second-order Reliability Approximations[J]. Journal ofEngineering Mechanics, 1987, 113(8):1208– 1225.
    94 J. E. Hurtado, D. A. Alvarez. Neural-network-based Reliability Analysis: A Com-parative Study[J]. Computer Methods in Applied Mechanics and Engineering,2001, 191(1– 2):113– 132.
    95李云贵,赵国藩.结构可靠度的四阶矩分析法[J].大连理工大学学报, 1992,32(4):455– 459.
    96 Y.-G. Zhao, T. Ono. Moment Methods for Structural Reliability[J]. StructuralSafety, 2001, 23(1):47– 75.
    97 X. Yeping. Optimum Control of Vibration and Structure Borne Noise for Machineryon Flexible Foundation[J]. Chinese Journal of Mechanical Engineering (Englishedition), 1996, 9(1):13– 20.
    98李新德,宋孔杰,陈欣.多维柔性耦合系统功率流传递特性[J].山东大学学报,2002, 32(3):206– 210.
    99张蔚波,宋孔杰,亓文果.带有回转机构系统的功率流传递特性研究[J].噪声与振动控制,2003,(4):12–15.
    100 L. Meirovitch. Principles and Techniques of Vibrations[C]//Prentice–Hall. NJ:Englewood Cliffs, 1997:14– 19.
    101 Y. Q. Tu, G. T. Zheng. On the Vibration Isolation of Flexible Structures[J]. Journalof Applied Mechanics, 2007, 74:415– 420.
    102 Y. M. Zhang, X. D. He, Q. L. Liu, et al. Robust Reliability Design of Banjo Flangewith Arbitrary Distribution Parameters[J]. Journal of Pressure Vessel Technology,2005, 127(4):408– 413.
    103 Y. M. Zhang, B. C. Wen, Q. L. Liu. Reliability Sensitivity for Rotor-stator Systemswith Rubbing[J]. Journal of Sound and Vibration, 2003, 259(5):1095– 1107.
    104刘惟信.机械可靠性设计[M].清华大学出版社, 1996.
    105 E. Levy. Complex Curve Fitting[J]. IRE Transaction on Automatic Control, 1959,4(3):37– 43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700