用户名: 密码: 验证码:
局部非线性结构分析方法及其在航天器结构分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合理准确地计算和分析航天器结构的动力学特性,可以为航天器结构及其控制系统提供正确的设计参考依据,进而可以保证航天器设计的合理性并提高其技术性能。一些现代航天器的结构正变得日益复杂和庞大,这类结构通常可以视为由若干简单子结构通过各种连接结构组合而成。连接结构通常对航天器结构的动力学特性有明显的影响,它们的存在增加了航天器结构动力学分析的复杂性,特别是当它们包含的非线性因素不可忽略时。在航天器工程中,通常借助于有限元方法来计算分析航天器结构的动力学特性,因而得到的数学模型通常具有大量的自由度。但是,在这类模型中,与非线性因素相关联的自由度数目通常却只占整个模型自由度数目的很小一部分。从航天器结构的分析和设计角度,如果直接将得到的数学模型按照一般的非线性问题处理并分析,将会增加航天器结构的设计周期和研制成本。因此,本文从局部非线性结构的角度对大型航天器结构动力学问题进行分析与讨论。
     本文首先针对航天器结构中的非线性因素具有局部性和离散性的特点,基于广义动力缩聚方法和直接积分方法中的Newmark方法提出了一种求解大型局部非线性结构瞬态响应的方法。在结构降阶时,将感兴趣的自由度、激励自由度和非线性自由度保留在物理空间,而将剩余自由度转换至模态空间。通过这种处理不仅可以使该方法适用于求解强非线性问题,而且可以提高计算结果的精度。此外,在利用Newmark方法求解结构瞬态响应时,为了降低计算量,通过变换将每个时间步的迭代计算量减少至仅与非线性自由度相关。
     基于描述函数和频响函数提出了一种求解大型局部非线性结构简谐激励响应的方法。利用该方法分别研究了简谐激励下局部非线性结构的基础谐波响应和多谐波响应。该方法首先结合描述函数将结构动力学常微分方程转化为非线性复代数方程组,然后采用频响函数将代数方程组的迭代计算量减小到只与非线性自由度相关。因此,该方法可以适用于分析大型局部非线性结构。此外,该方法还可以用于分析简谐激励下局部非线性结构的稳态响应。在计算频响函数时,由于采用了线性模态叠加方法,所以该方法可以与现有商业有限元软件有效的结合起来。
     讨论了现有组合结构分析方法的优缺点。基于描述函数提出了一种非线性组合结构分析方法,用于分析含有复杂非线性连接子结构的情形。文中分别讨论了基础谐波和多谐波情形下的拟线性频响函数耦合方法。在该方法中,首先利用描述函数将非线性连接拟线性化,得到非线性连接的拟线性阻抗方程,然后将一种线性频率响应函数耦合方法扩展并推广,从而得到组合结构的拟线性频响函数方程。与现有的频域综合方法相比,该方法更具有一般性。
     论文最后将局部非线性结构简谐激励响应的计算和伪弧长延拓方法结合,讨论了局部非线性结构简谐激励响应的参数化计算问题。该方法可以比较容易的计算非线性参数变化和激励幅值变化对结构简谐激励响应的影响,还可以用于修改非线性参数后的结构稳态响应的计算。此外,还讨论了大型局部非线性结构简谐激励响应的灵敏度分析问题,并针对两类典型频率响应函数曲线的共振点、简单转折点及其幅值的计算问题和它们对非线性参数和激励幅值的灵敏度计算问题进行了相关讨论。
Reasonable and accurate calculation and analysis of dynamic characteristics of spacecraft can provide an accurate reference for the design of structure and control system of spacecraft, and thus can ensure the design quality and enhance the performance of spacecraft. To achieve better performances and integrate more functions, many spacecraft structures have been becoming larger and more complicated. In general, spacecraft can be considered as an assembled structure of which several physically existing substructures that are connected by different kinds of connectors. These connectors usually have obvious influences on the dynamic characteristics of spacecraft, especially when their nonlinearities cannot be ignored. Thus they make the dynamic analysis of spacecraft more complicated. In engineering practices, spacecraft are often idealized as finite element models with many degrees of freedom (DOFs). However, the number of DOFs associated with nonlinear connectors usually constitutes only a small part of the model. If such structures are taken as globally nonlinear in the dynamic analysis, great difficulties will be certainly brought to the analysis and design process. And it is unavoidable that design costs will be added and design time will be extended. Therefore, an alternative approach is to take them as local nonlinear structures. From this point of view, the structural dynamics of spacecraft is investigated.
     As the nonlinearities of spacecraft are usually distributed and local, an approach is proposed to calculate the transient response of large-scale structure with local nonlinearities. The approach is based on general dynamic reduction method and the Newmark’s method, which is commonly used in direct time integration method. DOFs that are of interest, those on which external forces act, and those associated with nonlinearities are expressed in physical coordinates, but the remaining DOFs are transformed into modal coordinates. In this way, the proposed method can solve strongly nonlinear problems and improve the accuracies of the results. With a transformation, the iterations in each time step are only related to nonlinear DOFs. Consequently, the computational effort of the approach can be significantly reduced.
     A method is proposed to study the forced harmonic response of large-scale structures with local nonlinearities. It is combining the describing function (DF) and frequency response function (FRF). With the method, fundamental and multi-harmonic response analysis is discussed, respectively. In the method, the dynamical equations of motion are firstly converted into a set of nonlinear algebra equations. Subsequently, with FRF, the computational efficiency of the approach can be significantly enhanced, and only associated with nonlinear DOFs. In addition, the method can be also used to study the steady state periodic response of nonlinear structures. In the approach, FRF are obtained by using linear normal modes (LNMs). As the LNMs can be obtained by the well developed standard linear modal analysis procedures, the method can be easily cooperated with commercial finite element (FE) softwares.
     Following a brief review of most commonly used coupling methods with their merits and shortcomings, a quasilinear FRF coupling method is established by using the DF. The purpose of the method is the treatment of complicated nonlinear joints, which are called general nonlinear joints. Fundamental and multi-harmonic receptance coupling are discussed. In the method, the dynamical equations of motion of general nonlinear joints are firstly quasi-linearized with the DF. Then a linear FRF coupling method is extended, modified and adopted to calculate the forced harmonic response. In comparison with current nonlinear coupling methods in the frequency domain, the present method is more general.
     In the last part of the dissertation, parametric study for the forced harmonic response of local nonlinear structures is presented. By using the pseudo-arclength continuation scheme, the effects of modifying nonlinear parameters and/or changing excitation levels on the forced harmonic response can be easily obtained. The approach can be also used to calculate the steady state periodic response of a local nonlinear structure when its nonlinear parameter is modified. Besides, sensitivity analysis (SA) of the forced harmonic response with respect to nonlinear parameters and excitation levels are presented. Moreover, focused on two kinds of typical frequency response cure, the calculations of simple turning points, resonant points, and their corresponding amplitudes are discussed. Their SA with respect to nonlinear parameters and excitation levels is presented.
引文
1马兴瑞,苟兴宇,李铁寿.航天器动力学发展概况.宇航学报. 2000, 21 (3): 1-5.
    2王巍,于登云,马兴瑞.航天器铰接结构非线性动力学特性研究进展.力学进展. 2006, 36 (2): 233-238.
    3阎绍泽,季红林,吴德隆,黄铁球,张永.航天多铰接机械系统动力学研究.机械科学与技术. 2000, 19 (4): 517-519.
    4阎绍泽.航天器中含间隙机构非线性动力学问题及其研究进展.动力学与控制学报. 2004, 2 (2): 48-52.
    5吴德隆,王毅,文荣.空间站大型伸展机构动力学研究中的若干问题.中国空间科学技术. 1996 (6): 30-38.
    6谭雪峰,阎绍泽.星箭包带式连接结构动力学研究进展.导弹与航天运载技术. 2010 (1): 1-6.
    7 G. Shi, S. N. Atlurit. Nonlinear Dynamic Response of Frame-Type Structures with Hysteretic Damping at the Joints. AIAA Journal. 1991, 28 (4): 740-749.
    8 L. Gaul, J. Lenz. Nonlinear Dynamics of Structures Assembled by Bolted Joints. Acta Mechanica. 1997, 125: 169-181.
    9 M. C. Natori, N. Okuizumi. Nonlinear Vibrations of a Satellite Truss Structure with Gaps. 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, California, 2004: 19-22.
    10 T. Yoshida. Dynamic Characteristic Formulations for Jointed Space Structures. Journal of Spacecraft and Rocket. 2006, 43 (4): 771-779.
    11吴志刚,王本利,马兴瑞.在轨航天器连接结构动力学及参数辨识.宇航学报. 1998, 19 (3): 103-109.
    12黄铁球,吴德隆,阎绍泽.带间隙伸展机构的非线性动力学建模.中国空间科学技术. 1999 (1): 7-13.
    13刘明辉,梁鲁,白绍竣,张静,郑钢铁.阻尼柔性连接在卫星结构中的综合应用研究.宇航学报. 2009, 30 (1): 293-298.
    14 J. Zhang, L. Liang, M. H. Liu, et al. Floating Design of Meteorological Satellite Structure for Thermal Stress Release and Jitter Attenuation. AIAA Space 2008 Conference and Exposition, San Diego, California, 2008.
    15 R. A. Ibrahim. Recent Advances in Nonlinear Passive Vibration Isolators. Journal of Sound and Vibration. 2008, 314 (3-5): 371-452.
    16 J. B. Sullivan, U. Sanjay. Application of Modal Superposition in Nonlinear Rotor Dynamic Analysis. Proceedings of the 3rd International Modal Analysis Conference, 1985: 191-197.
    17 C. J. Chang, B. Mohraz. Modal Analysis of Nonlinear Systems with Classical and Non-Classical Damping. Computers & Structures. 1990, 36: 1067-1080.
    18 R. Subbian, R. B. Bhat, and T. S. Sankar. Dynamic Response of Rotors Using Modal Reduction Techniques. 1989, 111: 360-365.
    19 B. Kuran, H. N. ?zgüven. A Modal Superposition Method for Nonlinear Structures. Journal of Sound and Vibration. 1996, 189 (3): 315-339.
    20 B. Y. Moon, B. S. Kang. Vibration Analysis of Harmonically Excited Non-Linear System Using the Method of Multiple Scales. Journal of Sound and Vibration. 2003, 263: 1-20.
    21 T. Zheng, N. Hasebe. Nonlinear Dynamic Behaviors of a Complex Rotor-Bearing System. Journal of Vibration and Acoustics. 2000, 67: 485-495.
    22 W. C. Hurty. Dynamic Analysis of Structural Systems Using Component Modes. AIAA Journal. 1965, 3 (4): 678-685.
    23 R. R. Craig, M. C. C. Bampton. Coupling of Substructures for Dynamic Analyses. AIAA Journal. 1968, 6 (7): 1313-1319.
    24 R. W. Clough, E. L. Wilson. Dynamic Analysis of Large Structural Systems with Local Nonlinearity. Computer Methods in Applied Mechanics and Engineering. 1979, 17 (18): 107-129.
    25谭明安,蔡承文.局部非线性系统动响应分析的子结构方法.振动与冲击. 1987 (23): 25-34.
    26陈健,陈扬,陆鑫森.人造卫星太阳翼电池阵板非线性动力子结构分析.上海交通大学学报. 1989, 23 (6): 14-20.
    27 P. Sundararajan, S. T. Noah. An Algorithm for Response and Stability of Large Order Nonlinear Systems-Application to Rotor Systems. Journal of Sound and Vibration. 1998, 214 (4): 695-723.
    28崔颖,刘占生,黄文虎,等.高维转子-轴承系统非线性动力稳定性分析.哈尔滨工业大学学报. 2005, 37 (11): 1465-1468.
    29李朝峰,王得刚,刘杰,等.非线性转子-轴承系统的动力学降维分析与实验研究.振动与冲击. 2009, 28 (8): 124-127.
    30 T. Iwatsubo, K.Shimbo, and S. Kawamura. Nonlinear Vibration Analysis of a Rotor System Using Component Mode Synthesis Method. Archive of Applied Mechanics. 2003, 72: 843-855.
    31 A. Saito, M. P. Castanier, C. Pierre, et al. Efficient Nonlinear Vibration Analysis of the Forced Response of Rotating Cracked Blades. Journal of Computational and Nonlinear Dynamics. 2009, 4: 0110051:01100510.
    32 O. J. Poudou. Modeling and Analysis of the Dynamics of Dry-Friction-Damped Structural Systems. University of Michigan, Doctor of Philosophy. 2007.
    33 R. H. B. Fey, D. H. Van Campen, and A. De Kraker. Long Term Structural Dynamics of Mechanical Systems with Local Nonlinearities. Journal of Vibration and Acoustics. 1996, 118: 147-153.
    34 M. F. Heertjes, M. J. G. V. Molengraft, J. J. Kok, et al. Vibration Reduction of a Harmonically Excited Beam with One-Sided Spring Using Sliding Computed Torque Control. Dynamics and Control. 1997, 7: 361-375.
    35吕延军,虞烈,刘恒.非线性转子-轴承系统的动力学特性及稳定性.机械强度. 2004, 26 (3): 242-246.
    36 G. R. Liu, V. B. C. Tan, and X. Han, Computational Methods, Netherlands, Springer, 2006, Page.
    37 G. Verros, S. Natsiavas. Ride Dynamics of Nonlinear Vehicle Models Using Component Mode Synthesis. Journal of Vibration and Acoustics. 2002, 124 (3): 427-434.
    38 S. Kawamura, N. Takayoshi, M. Z. Hossain, et al. Analysis of Nonlinear Steady State Vibration of a Multi-Degree-of-Freedom System Using Component Mode Synthesis Method. Applied Acoustics. 2008, 69 (7): 624-633.
    39郝淑英,陈予恕,张琪昌,黄怀德,李欣业.连接子结构在非线性动力学分析中的应用.天津大学学报. 2001, 34 (3): 295-299.
    40 M. F. A. Azeez, A. F. Vakakis. Proper Orthogonal Decomposition (POD) of a Class of Vibroimpact Oscillations. Journal of Sound and Vibration. 2001, 240 (5): 859-889.
    41 R. Kappagantu, B. F. Feeny. An“Optimal”Modal Reduction of a System withFrictional Excitation. Journal of Sound and Vibration. 1999, 224 (5): 863-877.
    42 Y. C. Liang, W. Z. Lin, H. P. Lee, et al. Proper Orthogonal Decomposition and Its Applications. Part II: Model Reduction for MEMS Dynamical Analysis. Journal of Sound and Vibration. 2002, 256 (5): 515-532.
    43 G. Kerschen, B. F. Feeny, and J. C. Golinval. On the Exploitation of Chaos to Build Reduced-Order Models. Computer Methods in Applied Mechanics and Engineering. 2003, 192: 1785-1795.
    44 M. A. Trindade, C. Wolter, and R. Sampaio. Karhunen–Loève Decomposition of Coupled Axial/Bending Vibrations of Beams Subject to Impacts. Journal of Sound and Vibration. 2005, 279: 115-1036.
    45 X. Ma, A. F. Vakakis. Karhunnen-Loève Analysis and Order Reduction of the Transient Dynamics of Linear Coupled Oscillators with Strongly Nonlinear and Attachments. Journal of Sound and Vibration. 2008, 309: 569-587.
    46邓子辰,范小弄,赵玉立.基于Karhunnen-Loève展开的柔性梁撞击系统的降阶方法.动力学与控制. 2005, 3 (1): 24-27.
    47 E. Pesheck, C. Pierre, and S. W. Shaw. Modal Reduction of a Nonlinear Rotating Beam through Nonlinear Normal Modes. Journal of Vibration and Acoustics. 2002, 124: 229-236.
    48 P. Apiwattanalunggm, S. S. W. Pierre, and P. B. Christophe. Finite Element Based Nonlinear Modal Reduction of a Rotating Beam with Large Amplitude Motion. Journal of Vibration and Control. 2003, 9 (3-4): 235-263.
    49 P. Apiwattanalunggm. Model Reduction of Nonlinear Structural Systems Using Nonlinear Normal Modes and Component Mode Synthesis. Michigan State University, Doctor of Philosophy. 2003.
    50 E. Pesheck, C. Pierre, and S. W. Shaw. A New Galerkin-based Approach for Accurate Nonlinear Normal Modes through Invariant Manifolds. Journal of Sound and Vibration. 2002, 249 (5): 971-993.
    51王巍,于登云,马兴瑞.基于非线性模态的航天器铰接结构基频特性研究.中国空间技术. 2005, 6 (3): 19-27.
    52 P. Apiwattanalunggarn, S. W. Shaw, and C. Pierre. Component Mode Synthesis Using Nonlinear Normal Modes. Nonlinear Dynamics. 2005, 41: 17-46.
    53 A. F. Vakakis. Non-Linear Normal Modes (NNMS) and Their Applications inVibration Theory: An Overview. Mechanical Systems and Signal Processing. 1997, 11 (1): 3-22.
    54 D. J. Segalman. Model Reduction of Systems with Localized Nonlinearities. Journal of Computational and Nonlinear Dynamics. 2007, 2: 249-266.
    55王晋麟,曹登庆,宋敉淘.大型动力系统的降维:基于模态截断的非线性galerkin方法.动力学与控制学报. 2009, 7 (2): 108-112.
    56 Guyan. Reduction of Stiffness and Mass Matrices. AIAA Journal. 1965, 3 (2): 380.
    57 M. Paz. Dynamic Condensation. AIAA Journal. 1984, 22: 724-727.
    58 J. C. O'callahan. A Procedure for an Improved Reduced System (IRS) Model. Proceedings of the 7th IMAC, Las Vegas, NV, 1989: 17-21.
    59 J. C. O'callahan, P. Avitabile, and R. Riemer. System Equivalent Reduction Expansion Process. Proceedings of the 7th IMAC, Las Vegas, NV, 1989: 29-37.
    60 L. J. Mclean, E. J. Hahn. Unbalance Behavior of Squeeze Film Damped Multi-Mass Flexible Rotor Bearing Systems. Journal of Lubrication Technology. 1983, 105 (1): 22-28.
    61 T. N. Shiau, A. N. Jean. Prediction of Periodic Responses of Flexible Mechanical Systems with Nonlinear Characteristics. Journal of Vibration and Acoustics. 1996, 112 (4): 501-507.
    62 M. I. Friswell, J. E. T. Penny, and G. S. D. Using Linear Model Reduction to Investigate the Dynamics of Structures with Local Nonlinearities. Mechanical Systems and Signal Processing. 1995, 9 (3): 317-328.
    63 M. I. Friswell, J. E. T. Penny, and G. S. D. The Application of the IRS and Balanced Realization Methods to Obtain Reduced Models of Structures with Local Nonlinearities. Journal of Sound and Vibration. 1996, 196 (4): 315-339.
    64 T. D. Burton. Reduced Models of Structural Systems with Isolated Nonlinearities. 35th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, 1997.
    65 Z. Q. Qu. Model Reduction for Dynamical Systems with Local Nonlinearities. AIAA Journal. 2002, 40 (2): 327-333.
    66 J. Hua, F. Wan, and Q. Xu. Numerical and Experimental Studies on Nonlinear Dynamic Behaviors of a Rotor-fluid Film Bearing System with Squeeze FilmDampers. Journal of Vibration and Acoustics. 2001, 123: 297-302.
    67张家忠,许庆余,郑铁生.一种分析具有局部非线性的多自由度动力系统动力特性的方法.计算力学学报. 1999, 16 (1): 73-78.
    68沈松,郑兆昌.大型转子-基础-地基系统的非线性动力分析.应用力学学报. 2004, 21 (3): 9-12.
    69 M. A. Dokainish, K. Subbaraj. A Survey of Direct Time-Integration Methods in Computational Structural Dynamics-II. Implicit Methods. Computers & Structures. 1989, 32 (6): 1387-1401.
    70 Y. Xie. An Assessment of Time Integration Schemes for Non-linear Dynamic Equations. Journal of Sound and Vibration. 1996, 192 (1): 321-331.
    71于开平,李进旺,杨利芳,邹经湘.一个新的显示算法及其在转子动力学中的应用.中国电机工程学报. 2004, 24 (5): 110-114.
    72刘明辉.阻尼结构动力学计算方法及在卫星结构设计中的应用研究.哈尔滨工业大学,博士学位论文. 2009.
    73 P. Hagedorn, W. Schramm. On the Dynamics of Large Systems with Localized Nonlinearities. Journal of Applied Mechanics. 1988, 55: 946-951.
    74 J. H. Gordis, J. Radwick. Efficient Transient Analysis for Large Locally Nonlinear Structures. Shock and Vibration. 1999, 6: 1-9.
    75 Y. Iwata, H. Sato, and T. Komatsuzaki. Analytical Method for Steady State Vibration of System with Localized Non-Linearities Using Convolution Integral and Galerkin Method. Journal of Sound and Vibration. 2003, 262: 11-23.
    76 P. M. Hai, P. Bonello, and P. M. Hai. An Impulsive Receptance Technique for the Time Domain Computation of the Vibration of a Whole Aero-engine Model with Nonlinear Bearings. Journal of Sound and Vibration. 2008, 318: 592-605.
    77 I. F. Chiang, S. T. Noah. A Convolution Approach for the Transient Analysis of Locally Nonlinear Rotor Systems. Journal of Applied Mechanics. 1990, 57: 731-737.
    78文明,邓子辰.具有三次非线性隔振的主被动控制系统动力响应的研究.机械科学与技术. 2000, 19: 80-83.
    79漆文凯,高德平.带摩擦阻尼装置系统振动响应分析方法研究.航空动力学报. 2006, 21 (1): 161-167.
    80何玲,郑钢铁.流体隔振器中干摩擦对隔振特性影响分析.振动工程学报. 2007, 20 (2): 118-122.
    81 N. Pugno, C. Surace, and R. Ruotolo. Evaluation of the Non-linear Dynamic Response to Harmonic Excitation of a Beam with Several Breathing Cracks. Journal of Sound and Vibration. 2000, 235 (5): 749-762.
    82 G. V. Groll, D. J. Ewins. The Harmonic Balance Method with Arc-length Continuation in Rotor Stator Contact Problems. Journal of Sound and Vibration. 2001, 241 (2): 223-233.
    83 P. Bonello, M. J. Brennan, and R.Holmes. Non-linear Modeling of Rotor Dynamic Systems with Squeeze Film Dampers—An Efficient Integrated Approach. Journal of Sound and Vibration. 2002, 249 (4): 743-773.
    84 P. Bonello, P. M. Hai. A Receptance Harmonic Balance Technique for the Computation of the Vibration of a Whole Aero-engine Model with Nonlinear Bearings. Journal of Sound and Vibration. 2009, 324: 221-242.
    85 T. C. Kim, T. E. Rook, and R. Singh. Super- and Sub-Harmonic Response Calculations for a Torsional System with Clearance Nonlinearity Using the Harmonic Balance Method. Journal of Sound and Vibration. 2005, 281 (3-5): 965-993.
    86王光远,郑钢铁,韩潮.金属橡胶动力学建模的频域方法.宇航学报. 2008, 29 (2): 499-504.
    87王光远,郑钢铁,韩潮.连接梁的非线性耦合振动分析与实验.振动工程学报. 2009, 22 (1): 41-47.
    88 P. Ribeiro. Non-linear Free Periodic Vibrations of Open Cylindrical Shallow Shells. Journal of Sound and Vibration. 2008, 313 (1-2): 224-245.
    89 B. Zhu, A. Y. T. Leung. Linear and Nonlinear Vibration of Non-uniform Beams on Two-parameter Foundations Using P-elements. Computers and Geotechnics. 2009, 36 (5): 743-750.
    90 K. Watanabe, H. Sato. A Modal Analysis Approach to Nonlinear Multi-degrees of Freedom Systems. Journal of Vibration, Acoustics, Stress, and Reliability in Design. 1988, 110: 410-411.
    91 E. Budak, H. N. ?zgüven. Iterative Receptance Method for Determining Harmonic Response of Structures with Symmetrical Non-linearities. Mechanical Systems and Signal Processing. 1993, 7 (1): 75-87.
    92 ?. Tanrikulu, B. Kuran, and H. N. ?zgüven. Forced Harmonic Response Analysis of Nonlinear Structures Using Describing Functions. AIAA Journal. 1993, 31 (7): 1313-1320.
    93 H. N. ?zgüven. A New Method for Harmonic Response of Non-proportionally Damped Structures Using Undamped Modal Data. Journal of Sound and Vibration. 1987, 117 (2): 313-328.
    94 J. V. Ferreira, D. J. Ewins. Nonlinear Receptance Coupling Approach Based on Describing Functions. Proceedings of the 14th International Modal Analysis Conference, Dearborn, MI, 1996: 1034–1040.
    95 S. D. Jaspreet. Effect of a Nonlinear Joint on the Dynamic Performance of Machine Tool. Journal of Manufacturing Science and Engineering. 2007, 129: 943-950.
    96 R. S. Barbosa, J. a. T. Machado. Describing Function Analysis of Systems with Impacts and Backlash. Nonlinear Dynamics. 2002, 29: 235-250.
    97 H. ?zgüven, N., E. Ci?erog?lu. Nonlinear Vibration Analysis of Bladed Disks with Dry Friction Dampers. Journal of Sound and Vibration. 2006, 295 (3-5): 1028-1043.
    98 A. Besan on-Voda, P. Blaha. Describing Function Approximation of a Two-relay System Configuration with Application to Coulomb Friction Identification. Control Engineering Practice. 2002, 10 (6): 655-668.
    99 H. Elizalde, M. Imregun. An Explicit Frequency Response Function Formulation for Multi-degree-of-freedom Non-linear Systems. Mechanical Systems and Signal Processing. 2006, 20 (8): 1867-1882.
    100 J. V. Ferreira, A. L. Serpa. Application of the Arc-length Method in Nonlinear Frequency Response. Journal of Sound and Vibration. 2005, 284: 133-149.
    101 M. B. Ozer, H. N. ?zguven, and T. J. Royston. Identification of Structural Non-linearities Using Describing Functions and the Sherman-Morrison Method. Mechanical Systems and Signal Processing. 2009, 23: 30-44.
    102 T. M. Cameron, J. H. Griffin. An Alternating Frequency/Time Domain Method for Calculating the Steady-state Response of Nonlinear Dynamic Systems. Journal of Applied Mechanics. 1989, 56 (1): 149-154.
    103 J. Guillen, C. Pierre. An Efficient, Hybrid, Frequency-time Domain Method for the Dynamics of Large-scale Dry-friction Damped Structural Systems.Proceedings of the IUTAM Symposium on Unilateral Multibody Dynamics, Munich, 1989.
    104 J. J. Chen, B. D. Yang, and C. H. Menq. Periodic Forced Response of Structures Having Three-dimensional Frictional Constraints. Journal of Sound and Vibration. 2000, 229 (4): 775-792.
    105 J.-J. Sinou, A. W. Lees. A Non-linear Study of a Cracked Rotor. European Journal of Mechanics A/Solids. 2007, 26: 152-170.
    106 S. Nacivet, C. Pierre, F. Thouverez, et al. A Dynamic Lagrangian Frequency-time Method for the Vibration of Dry-friction-damped Systems. Journal of Sound and Vibration. 2003, 265 (1): 201-219.
    107 D. Laxalde, F. Thouverez, and J. P. Lombard. Forced Response Analysis of Integrally Bladed Disks with Friction Ring Dampers. Journal of Vibration and Acoustics. 2010, 132 (1): 011013.
    108 Y. M. Low, R. S. Langley. A Hybrid Time/Frequency Domain Approach for Efficient Coupled Analysis of Vessel/Mooring/Riser Dynamics. Ocean Engineering. 2008, 35 (5-6): 433-446.
    109 J.-J. Sinou, A. W. Lees. The Influence of Cracks in Rotating Shafts. Journal of Sound and Vibration. 2005, 285: 1015-1037.
    110 S. L. Lau, Y. K. Cheung. Amplitude Incremental Variational Principle for Nonlinear Vibration of Elastic Systems. Journal of Applied Mechanics. 1981, 48 (4): 959-964.
    111 Y. K. Cheung, S. H. Chen, and S. L. Lau. Application of Incremental Harmonic Banlance Method to Cubic Nonlinear System. Journal of Sound and Vibration. 1990, 140 (2): 273-286.
    112蔡铭,刘济科,杨怡.强非线性颤振分析的增量谐波平衡法.机械科学与技术. 2004, 23 (6): 742-744.
    113蔡铭,刘济科,李军.多自由度非线性颤振分析的增量谐波平衡法.应用数学和力学. 2006, 27 (7): 833-838.
    114白鸿柏,黄协清.三次非线性粘性阻尼双线性滞迟振动.西安交通大学学报. 1998, 32 (10): 35-38.
    115高阳,王三民,刘晓宁.一种改进的增量谐波平衡法及其在非线性振动中的应用.机械科学与技术. 2005, 24 (6): 663-665.
    116文明,邓子辰,张学峰.具有调谐质量阻尼器的干摩擦隔振系统的研究.振动与冲击. 2002, 21 (3): 31-36.
    117 S. H. Chen, Y. K. Cheung, and H. X. Xing. Nonlinear Vibration of Plane Structures by Finite Element and Incremental Harmonic Balance Method. Nonlinear Dynamics. 2001, 26: 87-104.
    118殷振坤,陈树辉.轴向运动薄板非线性振动及其稳定性研究.动力学与控制. 2007, 5 (4): 314-319.
    119刘海霞,王三民,范叶森,杨振.辐板阻尼对齿轮传动的非线性动力学特性影响研究.机械科学与技术. 2009, 28 (7): 965-970.
    120 A. Narimani, M. E. Golnaraghi, and G. N. Jazar. Frequency Response of a Piecewise Linear Vibration Isolator. Journal of Vibration and Control. 2004, 10: 1775-1794.
    121 T. J. Royston, R. Singh. Periodic Response of Mechanical Systems with Local Non-linearities Using an Enhanced Galerkin Technique. Journal of Sound and Vibration. 1996, 194 (2): 243-263.
    122白鸿柏,张培林,黄协清.变滑动摩擦系数振子简谐激励krylov-Bogoliubov计算方法研究.机械强度. 2002, 24 (1): 56-58.
    123 S. Narayanan, P. Sekar. A Frequency Domain Based Numeric-analytical Method for Non-linear Dynamical Systems. Journal of Sound and Vibration. 1998, 211 (3): 409-424.
    124 Y. M. Chen, J. K. Liu. A New Method Based on the Harmonic Balance Method for Nonlinear Oscillators. Physics Letters A. 2007, 368 (5): 371-378.
    125 A. A. Ferri. Modeling and Analysis of Nonlinear Sleeve Joints of Large Space Structures. Journal of Spacecraft and Rocket. 1988, 25 (5): 354-360.
    126 S. L. Folkman, E. A. Rowsell, and G. D. Ferncy. Influence of Pinned Joints on Damping and Dynamic Behavior of a Truss. Journal of Guidance, Control, and Dynamics. 1995, 18 (6): 1398-1403.
    127 J. Onoda, T. Sano. Passive Damping of Truss Vibration Using Preloaded Joint Backlash. AIAA Journal. 1995, 33 (7): 1335-1341.
    128 R. Wang, A. D. Crocombe, G. Richardson, et al. Energy Dissipation in Spacecraft Structures Incorporation Bolted Joints Operation in Macroslip. Journal of Aerospace Engineering. 2008, 21 (1): 19-26.
    129王巍,孙京,于登云,马兴瑞.基于接触理论的一类带锁定机构的间隙铰链分析模型研究.宇航学报. 2004, 25 (1): 1-4.130王天舒,孔宪仁,王本利,马兴瑞.含铰间间隙的航天器附件展开过程分析.哈尔滨工业大学学报. 2001, 33 (3): 283-286.
    131 J. Esteban, C. A. Rogers. Energy Dissipation through Joints: Theory and Experiments. Computers & Structures. 2000, 75 (4): 347-359.
    132 R. A. Ibrahim, C. L. Pettit. Uncertainties and Dynamic Problems of Bolted Joints and Other Fasteners. Journal of Sound and Vibration. 2005, 279 (3-5): 857-936.
    133彭细荣,隋允康.频率响应位移幅值灵敏度分析的伴随法.应用力学学报. 2008, 25 (2): 247-253.
    134 A. M. G. Lima, A. W. Faria, and D. A. Rade. Sensitivity Analysis of Frequency Response Functions of Composite Sandwich Plates Containing Viscoelastic Layers. Computers & Structures. 2010, 92 (2): 364-376.
    135吕忠荣,徐伟华,刘济科.计算模态响应灵敏度的两种方法比较.中山大学学报(自然科学版). 2009, 48 (4): 1-4.
    136 F. Van Keulen, R. T. Haftka, and N. H. Kim. Review of Options for Structural Design Sensitivity Analysis. Part 1: Linear Systems. Computer Methods in Applied Mechanics and Engineering. 2005, 194 (30-33): 3213-3243.
    137林砺宗,徐晓莉.结构局部非线性修改灵敏度分析及其应用.应用力学学报. 2003, 20 (3): 87-91.
    138赵群,张义民.多源激励浮筏隔振系统非线性刚度灵敏度分析.噪声与振动控制. 2009, 3: 35-38.
    139赵群,张义民.多源激励下浮筏隔振系统非线性阻尼灵敏度分析.工程设计学报. 2009, 16 (1): 21-26.
    140卜建清,罗韶湘.多自由度系统非线性参数识别的灵敏度方法.振动、测试与诊断. 2006, 26 (4): 291-295.
    141 E. P. Petrov. Analysis of Sensitivity and Robustness of Forced Response for Nonlinear Dynamic Structures. Mechanical Systems and Signal Processing. 2009, 23 (1): 68-86.
    142 E. P. Petrov. Direct Parametric Analysis of Resonance Regimes for Nonlinear Vibrations of Bladed Disks. Journal of Turbomachinery. 2007, 129: 495-502.
    143 E. P. Petrov. Method for Sensitivity Analysis of Resonance Forced Response of Bladed Disks with Nonlinear Contact Interfaces. Journal of Engineering for Gas Turbines and Power. 2009, 131 (2): 022510.
    144于德介,李睿. Sobol方法在非线性隔振系统灵敏度分析中的应用研究.振动工程学报. 2004, 17 (2): 210-213.
    145 F. Ma, H. Zhang, A. Bockstedte, et al. Parameter Analysis of the Differential Model of Hysteresis. Journal of Applied Mechanics. 2004, 71 (3): 342-349.
    146陈建兵,李杰.结构随机动力非线性反应的整体灵敏度分析.计算力学学报. 2008, 25 (2): 169-176.
    147张振华,杨雷,庞世伟.高精度航天器微振动力学环境分析.航天器环境工程. 2009, 26 (6): 528-534.
    148孙杰,赵阳,王本利.航天器反作用轮扰动精细模型.哈尔滨工业大学学报. 2006, 38 (4): 520-522.
    149 R. Masterson, D. Miller, and R. Grogan. Development of Empirical and Analytical Reaction Wheel Disturbance Models. 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, St. Louis, Missouri, 1999, 4.
    150 A. Gelb, W. E. Vander Velde. Multiple-input Describing Functions and Nonlinear System Design. McGraw-Hill, 1968.
    151 B. Jetmundson, R. L. Bielawa, and R. Flannelly. Generalized Frequency Domain Substructure Synthesis. Journal of the American Helicopter Society. 1988, 33 (1): 55-64.
    152 Y. Ren, C. F. Beards. On Substructure Systhesis with FRF Data. Journal of Sound and Vibration. 1995, 185 (5): 845-866.
    153 W. Liu, D. J. Ewins. Substructure Synthesis via Elastic Media. Journal of Sound and Vibration. 2002.
    154 A. Carrella, M. I. Friswell, A. Zotov, et al. Using Nonlinear Springs to Reduce the Whirling of a Rotating Shaft. Mechanical Systems and Signal Processing. 2009, 23 (7): 2228-2235.
    155 A. H. Nayfeh, B. Balachandran. Applied Nonlinear Dynamics. John Wiley & Sons, 1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700