用户名: 密码: 验证码:
起伏地形大地电磁、时间域瞬变电磁二维数值模拟及直接反演法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大地电磁法(MT)、瞬变电磁法(TEM)已广泛应用于地球物理勘探领域之中。起伏地形大地电磁数值模拟与反演成像、直接时间域瞬变电磁数值模拟与反演成像,是两个很有意义的研究课题,也一直是地球物理电磁法资料处理、解释的难点问题。对于前者而言,属于频率域电磁测深法,研究在频率域中、起伏地形条件下、各种地球物理模型对天然源大地电磁场的响应特征,以及对大地电磁法实测数据进行反演与成像解释;而对于后者,属于时间域电磁测深法,研究在时间域中、各种地球物理模型对人工源瞬变电磁场的响应特征,以及对瞬变电磁法实测数据进行反演与成像解释。这篇论文研究的正是这两个课题。
     1.在大地电磁数值模拟方面,提出了在起伏地形条件下、三角单元剖分、电性参数分块连续变化、二维MT有限单元数值模拟方法。为了易于模拟野外复杂地形和地下任意形状地电体模型,有限元的单元网格被设计为三角单元;考虑到在野外实际中,地球介质的电性参数均是连续变化的情况,单元内的场值和电性参数被设计为双线性变化;推导出了在二维起伏地形条件下大地电磁法有限元数值模拟算法;根据单元节点的主场值和线性插值形函数之间的关系,计算出单元节点辅助场值;在二维起伏地形条件下,定义出TE、TM模式下的视电阻率和阻抗相位。通过对多个模型的计算与分析,其结果与解析法的均方误差小于1%,地形模拟与前人的计算结果相符,对倾斜界面异常体模拟,能有效的反映出其异常形态。
     2.在Zohdy渐进迭代反演算法的基础上,提出了一种基于最小二乘意义下、既具有Zohdy比值法的特点、又具有Oldenburg差值法的特点、改进型的Zohdy-Oldenburg直接反演法,直接对模型参数进行修改和对比。并成功应用于二维MT的反演计算,提出了基于起伏地形条件下、带相位信息、二维MT改进型Zohdy-Oldenburg直接反演法。通过对模型数据、实测数据的计算与分析,表明该方法有较高的收敛速度快和拟合精度。比较常规的线性反演方法来说,计算速度至少可以提高10倍以上。
     3.在时间域瞬变电磁数值模拟方面,在Oristaglio(1984)、Adhidjaja(1985)等前人工作基础上,给出了线源二维时间域瞬变电磁二次场的DuFort-Frankel有限差分数值模拟方法,有效避免了在总场求解法中场源附近的奇异问题,并对地-空边界电导率的处理、归一化感应电动势偏导数的计算、推进时间步的确定,提出了改进和完善技术;采取地-空边界二次场向上延拓和零值边界的处理技术,从而简化了计算方法;通过对均匀大地、水平层状大地模型的计算,二次场求解法与解析法的最大相对误差小于0.01%,计算速度比总场求解法提高了约3倍;通过模拟不同时刻瞬变电磁场在地下的分布形态,描绘出感应涡流向下向外的传播特征,以及与地下异常体相互作用的物理过程。应用到生产实际中,把正演模拟曲线与实测数据曲线相结合分析,可以很好地确定出异常体的水平位置。
     4.根据全程瞬变电磁曲线的非单调性特点,提出了“分阶段搜索法”求解全区视电阻率;将全区视电阻率与TEM “烟圈”直接反演法有机相结合起来,提出了基于全区视电阻率的TEM “烟圈”直接反演法。根据瞬变电磁场在地下介质中感应涡流的扩散特征,直接对模型参数进行反演计算。通过对模型数据、实测数据的计算与分析,对50个测点的反演计算,计算时间不到10s,反演效果令人满意。
     本文针对大地电磁法、瞬变电磁法的资料处理和解释中,模拟精度差、计算速度慢的实际问题为主要研究内容。在前人成就基础上,对正演数值模拟、反演成像方法做了深入研究。在正演数值模拟方面,采用了有限单元法、有限差分法的数值模拟方法。对MT野外复杂地形下、任意形状地电体模型的模拟,提出了电性参数分块连续变化二维MT有限单元数值模拟方法;对TEM总场法数值模拟中场源附近的奇异问题,提出了线源二维时间域TEM二次场有限差分数值模拟方法。在反演成像方面,提出了二维MT改进型Zohdy-Oldenburg直接反演法、基于全区视电阻率的TEM“烟圈”直接反演法。通过对理论模型、实测数据的计算表明,研究内容提高了模拟精度和计算速度,为地球物理电磁法的理论研究、资料处理和解释提供了帮助。
Magnetotelluric (MT) and Transient Electromagnetic (TEM) have been widelyused in geophysical exploration sphere nowadays.The numerical modeling/inverseimaging for topography magnetotelluric and direct time-domain transientelectromagnetic, are not only very interesting topics, but also difficult problems ingeophysical electromagnetic. For the former is within the frequency-domainelectromagnetic sounding method, and study on modeling for electromagneticresponse characteristics of various geophysical models under conditions offrequency-domain, topography, natural source, and inverse imaging forinteterpretation of measured data. For the latter is within the time-domainelectromagnetic sounding method, and research in modeling for electromagneticresponse characteristics of various geophysical models under conditions oftime-domain, artificial source, and inverse imaging for inteterpretation of measureddata. This thesis is precisely on these two issues.
     1. In the numerical modeling for magnetotelluric, the thesis puts forward anumerical modeling of finite element method (FEM) using topography, triangularelement grid, and continuous variation of electric parameters. To model arbitrarilyshaped two-dimensional topography and structures in field work, triangular elementgrid was used in FEM. In view of the fact of continuous variation of the subterraneanrock-mineral electric parameters, the electromagnetic field and some electricparameters of models are designed to bilinear variation within each triangularelement in our numeric modeling method, and which is developed for modelingtwo-dimensional MT under the field topography condition. Calculation of theauxiliary field and definition of the apparent resistivity, and the impedance phase are deduced according to the relationship between the main fields of the three nodes andthe linear shape function within each element. By calculating a continuous mediummodel and two topography models of other scholars set up to test our method, theresult of our method show a high accuracy (the mean square error is less than1%),and the results of modeling two topography models accord with other scholar’s, too.Through modeling for a slopeing interface abnormity body, we find that our methodcan model arbitrarily complicated terrain and geoelectric bodies preferably.
     2. Based on the iterated asymptotic Zohdy method, a new direct inverse method,so-called the improved Zohdy-Oldenburg direct inverse method, is puted forward inthe sense of the least square method, which has characteristics of both Zohdy’s ratioand Oldenburg’s difference, can modify the parameters of the model throughcomparison. The method is successfully applied to two-dimensional inversion of MT,and proposed based on topography, with phase information, the two-dimensional MTimproved Zohdy-Oldenburg direct inverse method. Through calculation and analysison the model data and measured data, the method shows that the method has highconvergence speed and fitting accuracy. Compared with conventional linearedinversion method, the calculation speed of our method can be increased at least10times.
     3. In the numerical modeling for time-domain transient electromagnetic, toavoid oddity electromagnetic field response for the total-field solution effectively,the thesis puts forward a numerical modeling method on two-dimensionaltime-domain transient electromagnetic secondary-field for line source withDuFort-Frankel finite-difference. Based on study works of Oristaglio (1984) andAdhidjaja (1985), some improved and advanced technologies were designedincluding the treatment of earth-air boundary conductivity, the calculation of thenormalized partial derivative of the induced electromotive force (Emf), anddetermination of time step forward. Through adopting previous achievements onsecondary-field solution such as the technology of upward continuation from theearth-air interface field to air grid nodes and condition of zero-value boundary, themethod is not only more efficient but is also simpler than the total-field solution. Wecompute and analyze the homogeneous half-space model and the flat layered model,the results of our method show a high computation precision (the maximum relativeerror is less than0.01%between our method and analytical method),and the solutionspeed is roughly three times faster than total-field solution. Lastly, modeling andanalysis for a model which consists of a thin body embedded in a homogeneoushalf-space at different delay times, we depicted the physical downward and upward spread characteristics of the induced eddy current, and the physical interactionprocesses between electromagnetic field and the underground anomalous body.These geophysical abnormous characteristics can be applied actual production, andthe curve of forward modeling combined with the measured data curve analysis, canwell determine the level of abnormous body positions.
     4. According to the cuve of the all-time transient electromagneticnon-monotonic character, this thesis puts forward a “phased search method” tocalculate the all-time apparent resistivity. And the all-time apparent resistivity iscombined rationally with the “Smoke ring” inverse method. A improved TEMinverse method is proposed to be called the all-time resistivity “Smoke ring”inversion. Trough calculation of the spread features about the transientelectromagnetic field induced eddy currents in the underground; the method canmodify the parameters of the model directly. Though calculation and analysis for themodel data and measured data, the results show that the mothod has a rapid speed(the50mesaured points of inversion, expended time is less than10s) andsatisfactory precision.
     In the thesis, magnetotelluric method, transient electromagnetic method of dataprocessing and interpretation, modeling accuracy, calculate the actual problems ofslow as the main research. Based on the previous achievements, forward numericalmodeling and inverse imaging method will been done a thorough research. On theforward numerical modeling, this thesis used the finite element method and the finitedifference method for numerical modeling. Field of MT complex terrain, the body ofarbitrary shape to power the analog model proposed block electrical parameterschange continuously MT finite element two-dimensional numerical simulation; totalfield TEM method for numerical simulation of the singularity near the sourcemidfield issue, the line source two-dimensional time domain finite difference TEMsecondary field simulation method. On the inversion imaging, proposed atwo-dimensional MT improved Zohdy-Oldenburg direct inversion, based on theregion's apparent resistivity TEM "smoke ring" direct inversion method. Bytheoretical models, the calculations show that the measured data to study thecontents of the improved modeling accuracy and computational speed, as the theoryof electromagnetic geophysical research, data processing and interpretation hashelped.
引文
[1]Kaufman A A, Keller G V.频率域和时间域电磁测深[M].北京:地质出版社,1987.
    [2]M. N. Nabighian主编,赵经祥,等译.勘查地球物理电磁法(第一卷)理论[M].北京:地质出版社,1992.
    [3]罗延钟,张桂青.电子计算机在电法勘探中的应用[M].武汉:武汉地质学院出版社,1987.
    [4]Tikhonov A N. On determing electrical characteristics of the deep layers of theearth crust [J]. Dokl.Akad.Nauk S.S.S.S.R.,1950,73(2):295—297.
    [5]Cagniard L. Basic theory of the magnetotelluric method of geophysics prospecting[J].Geophysics,1953,18(3):605—635.
    [6]陈乐寿,王光锷.大地电磁测深法[M].北京:地质出版社,1990.
    [7]Ting S C, Hohmann G W. Integral equation modeling of three dimensionalmagnetotelluric response [J].Geophysics,1981,47(7):182—197.
    [8]Wannamaker P E, Hohmann G W, San Filipo W A. Electromagnetic modeling of threedimensional bodies in layered earths using integral equations [J].Geophysics,1984,49(2):60—74.
    [9]Xiong Z. Electromagnetic modeling of3-D structures by the method of systemiteration using integral equations [J]. Geophysics,1992,57(11):1556—1561.
    [10]Mackie R L, Madden T R, Wannamaker P E. Three-dimensional magnetotelluricmodeling using difference equations—Theory and comparisons to integralequation solutions [J]. Geophysics,1993,58(5):215—226.
    [11]Smith J T. Conservative modeling of3-D electromagnetic fields, PartⅠ:Properties and error analysis [J]. Geophysics,1996,61(8):1308—1318.
    [12]徐世浙.地球物理中的有限单元法[M].北京:科学出版社,1994.
    [13]谭捍东.大地电磁三维正反演问题研究[D].北京:中国地质大学,2000.
    [14]谭捍东,余钦范,John Booker,等.大地电磁法三维交错采样有限差分数值模拟[J].地球物理学报,2003,46(5):705—711.
    [15]Tan Handong,Tong Tuo,Lin Changhong. The parallel3D magnetotelluric forwardmodeling algorithm [J]. APPLIED GEOPHYSICS,2006,3(4):197—202.
    [16]徐世浙,阮百尧,周辉,等.大地电磁场三维地形影响的数值模拟[J].中国科学(D辑),1997,27(1):15—20.
    [17]阮百尧,徐世浙,徐志锋.三维地形大地电磁场的边界元模拟方法[J].地球科学—中国地质大学学报,2007,32(1):130—134.
    [18]谭捍东,余钦范,John Booker,等.大地电磁法三维快速松弛反演[J].地球物理学报,2003,46(6):850—855.
    [19]胡祖志,胡祥云.大地电磁法三维反演方法综述[J].地球物理学进展,2005,20(1):214—220.
    [20]胡祖志.大地电磁拟三维反演研究[D].北京:中国地质大学,2005.
    [21]胡祖志,胡祥云,何展翔.三维大地电磁数据的二维反演解释[J].石油地球物理勘探,2005,40(3):353—359.
    [22]陈小斌,赵国泽,马宵.大地电磁三维模型的一维二维反演近似问题研究[J].工程地球物理学报,2006,3(1):9—15.
    [23]毛立峰,王绪本,高永才.大地电磁概率成像及其改进方法的成像效果评价[J].石油物探,2004,43(6):612—616.
    [24]毛立峰,王绪本,高永才.大地电磁概率成像的效果评价[J].地球物理学报,2005,48(2):429—433.
    [25]周辉,杨宝俊,刘才.地震—大地电磁测深资料综合反演[J].地球物理学报,1994,37(增刊):477—485.
    [26]王巍,于鹏,陈丽萍.大地电磁全频段偏移成像技术及其应用[J].小型油气藏,2007,12(2):25—28.
    [27]宋维琪.大地电磁资料三维傅里叶变换偏移方法及其应用[J].石油大学学报(自然科学版),2005,29(4):21—25.
    [28]于鹏,王家林,吴健生.大地电磁偏移成像技术的研究进展及其解决复杂地质问题的能力[J].地震地质,2001,23(2):238—244.
    [29]于鹏,王家林,吴健生.有限差分法大地电磁多参数偏移成像[J].地球物理学报,2001,44(4):552—562.
    [30]蔚宝强,胡文宝. MT资料的遗传法反演[J].江汉石油学院学报,1999,21(3):25-29.
    [31]师学明,王家映,张胜业,等.多尺度逐次逼近遗传算法反演大地电磁资料[J].地球物理学报,2000,43(1):122—130.
    [32]Wannamaker P E, Stodt J A, Rijofi L. Two-dimensional topographic responses inmagnetotellurics modeled using finite elements [J]. Geophysics,1986,51(11):2131—2144.
    [33]Mauriello P, Patella D. Principles of Probability Topography for Natural SourceElectromagnetic Induction Fields [J]. Geophysics,1999,64(5):1403—1417.
    [34]周熙襄,钟本善,等.电法勘探数值模拟技术[M].成都:四川科学技术出版社,1986.
    [35]王绪本,李永年,高永才.大地电磁测深二维地形影响及其校正方法研究[J].物探化探计算技术,1999,21(4):328—332.
    [36]刘云,王绪本.大地电磁二维自适应地形有限元正演模拟[J].地震地质,2010,32(3):382—391.
    [37]陈小斌,张翔,胡文宝.有限元直接迭代算法在MT二维正演计算中的应用[J].石油地球物理勘探,2000,35(4):487—496.
    [38]陈小斌. MT二维正演计算中地形影响的研究[J].石油地球物理勘探,2000,39(3):112—120.
    [39]谢飞.带地形大地电磁场二维有限元数值模拟研究[D].北京:中国地质大学,2006.
    [40]徐世浙,于涛,李予国,等.电导率分块连续变化的二维MT有限元模拟(Ⅰ)[J].高校地质学报,1995,1(2):65—73.
    [41]李予国,徐世浙,刘斌,等.电导率分块连续变化的二维MT有限元模拟(Ⅱ)[J].高校地质学报,1996,2(4):448—452.
    [42]朴化荣.电磁测深法原理[M].北京:地质出版社,1990.
    [43]曾国.大地电磁二维有限元正演数值模拟[D].湖南:中南大学,2008.
    [44]高永才.大地电磁二维反演成像技术研究[D].成都:成都理工大学,2004.
    [45]De Groot-Hedion C,Constable S. Occam's inversion to generate smooth two-dimensional models from magnetotelluric data [J]. Geophysics,1990,55(12):1613—1624.
    [46]Smith J T, Booker J R. Rapid Inversion of Two-and Three-Dimensionalmagnetotelluric Data [J]. JGR,1991,96(B3):3902—3922.
    [47]Siripunvaraporn W, Eqbert G. Efficient data-subspace inversion method for2-Dmagnetotelluric data [J]. Geophysics,2000,65(3):791—803.
    [48]Rodi W,Mackie R L. Nonlinear conjugate gradients algorithm for2-Dmagnetotelluric inversion [J]. Geophysics,2001,66(1):174—187.
    [49]陈小斌,赵国泽,汤吉,等.大地电磁自适应正则化反演算法[J].地球物理学报,2005,48(4):937—946.
    [50]王家映.地球物理反演理论[M].武汉:中国地质大学出版社,1998.
    [51]陈乐寿.大地电磁测深资料处理与解释[M].北京:石油工业出版社,1989.
    [52]Zohdy A A R. A new method for the automatic interpretation of schlumberger andWenner sounding curves [J]. Geophysics,1989,54(2):245—253.
    [53]Oldenburg D W,Ellis R G. Inversion of geophysical data using an approximateinverse mapping [J]. Geophys J. int,1991,105:325—353.
    [54]徐世浙,刘斌.大地电磁一维连续介质反演的曲线对比法[J].地球物理学报,1995,38(5):676—682.
    [55]刘斌,徐世浙.电阻率测深一维反演的曲线对比法[J].物探化探计算技术,1995,17(1):23—27.
    [56]阮百尧.直流电阻率测深的渐近反演及二维时间域电磁响应的数值模拟[D].青岛:青岛海洋大学,1995.
    [57]阮百尧,徐世浙.二维直流电阻率测深曲线的快速反演[J].物探与化探,1996,20(6):455—460.
    [58]阮百尧,徐世浙,戴世坤,等.二维大地电磁测深曲线的快速反演[J].桂林工学院学报,1998,18(1):53—56.
    [59]张大海,徐世浙.带相位信息的一维大地电磁曲线对比反演法[J].地震地质,2001,23(2):227—231.
    [60]张大海,徐世浙.二维MT快速曲线对比反演方法的可行性研究[J].地震地质,2001,23(2):232—237.
    [61]Weidelt P. The inverse problem of geomagnetic induction [J]. Journal ofGeophysics(Germany),1972,38(1):257—289.
    [62]Wait J R. Transient electromagnetic propagation in a conducting medium [J].Geophysics,1951,16(2):213—221.
    [63]李金铭,罗延钟.电法勘探新进展[M].北京:地质出版社,1996.
    [64]Stoyer C H. Numerical solutions of the response of a2-D earth to an oscillatingmagnetic dipole source with applications to a ground water study [D].Pennsylvania State Univ,1975.
    [65]Stoyer C H, Greenfield R J. Numerical solutions of the response of atwo-dimensional earth to an oscillating magnetic dipole source [J].Geophysics,1976,41(3):519—530.
    [66]Snyder D D. A method for modeling the resistivity and induced polarizationresponse of two-dimensional bodies [J]. Geophysics,1976,41(5):997—1015.
    [67]Lee K H. Electromagnetic scattering by a two-dimensional inhomogeneity due toan oscillating magnetic dipole source [D]. Univ. of California,Berkeley,1978.
    [68]Fox R C, Hohmann G W, Killpack J J, et al. Topographic effects in resistivityand induced polarization surveys [J]. Geophysics,1980,45(1):75—93.
    [69]Coggon J H. Electromagnetic and electrical modeling by the finite-elementmethod [J]. Geophysics,1971,36(1):132—155.
    [70]Jianhua L,Ganquan X,Lin C C, et al.2.5Dimensional GILD electromagneticmodeling and applications[A].in: SEG Int’l Exposition and72nd AnnualMeeting,Salt Lake City,Utah,October,6—11,2002[C].
    [71]张胜业.磁偶极子场中二维导体电磁响应的数值解[D].北京:武汉地质学院北京研究生部,1981.
    [72]曾繁京.二维地电构造上水平电偶源电磁场的有限单元算法[D].武汉:中国地质大学,1988.
    [73]孟永良,罗延钟.二维地电构造上谐变电偶极子电磁场的有限单元算法.中国地球物理学会年刊,北京:地震出版社,1994:281[C].
    [74]王华军,罗延钟.中心回线瞬变电磁法2.5维有限单元算法[J].地球物理学报,2003,46(6):855—862.
    [75]熊彬.大回线瞬变电磁2.5维正演算法及其资料解释方法中若干关键技术研究[D].武汉:中国地质大学,2004.
    [76]熊彬,罗延钟.电导率分块均匀的瞬变电磁2.5维有限元数值模拟[J].地球物理学报,2006,49(2):590—597.
    [77]Yanzhong Luo, Yanjun Chang. A rapid algorithm for G-S transforms. Presentedat the3DEM-2,Salt Lake City,USA,1999[C].
    [78]罗延钟,昌彦君. G-S变换的快速算法[J].地球物理学报,2000,43(5):684-690.
    [79]Guptasarma D,Computation of the time-domain response of a polarizable ground[J],Geophysics,1982,47(11):1574—1576.
    [80]阮百尧. Guptasarma算法在瞬变电磁正演计算中的应用[J].桂林工学院学报,1996,16(2):167—170.
    [81]李建慧,刘树才,李富,等.大定源瞬变电磁法矩形发射回线激发的电磁场[J].物探化探计算技术,2008,30(2):154—157.
    [82]LIU Y, WANG X B. Complex terrain effect and studying on2.5-D TEM [A].in: RunqiuHuang,Xuben Wang, ed. Near-Surface Geophysics and Geohazards2010[C].Beijing:Science Press,Science Press USA Inc:452—456.
    [83]Oristaglio M L, Hohmann G W. Diffusion of electromagnetic fields intwo-dimensional earth: A finite difference approach [J]. Geophysics,1984,49(7):870-894.
    [84]牛之琏.时间域电磁法原理[M].长沙:中南工业大学出版社,1992.
    [85]闫述,陈明生,傅君眉.瞬变电磁场的直接时域数值分析[J].地球物理学报,2002,45(2):275—284.
    [86]阮百尧,徐世浙.线源二维时间域电磁响应的有限差分解[J].高校地质学报,1996,2(4):437—447.
    [87]Adhidjaja J I, Hohmann G W, Oristaglio M L. Two-dimensional transientelectromagnetic responses [J]. Geophysics,1985,50(12):2849—2861.
    [88]蒋邦远.实用近区磁源瞬变电磁勘探[M].北京:地质出版社,1998.
    [89]丁艳飞,白登海. TEM中大定源方式的框边效应与误差估算[A].见:阮百尧.第九届中国国际地球电磁学术讨论会论文集(2010)[C],桂林:中国地球物理学会电磁专业委员会,2010:100.
    [90]Nabighian M N. Quasi-static transient response of a conducting half-space:An approximate reresenttation [J]. Geophysics,1979,44(10):1700—1705.
    [91]Spies B R, Eggers D.E. The use and misuse of apparent resistivity inelectromagnetic methods [J]. Geophysics,1978,51(7):1462—1471.
    [92]Spies B R, Raiche A P. Calculation of apparent conductivity for the transientelectromagnetic(coincident loop)method using an HP-67calculator: CalculatorProgram [J]. Geophysics,1980,45(7):1197—1200.
    [93]Wilt M, Stark M A simple method for calculating apparent resistivity fromelectromagnetic sounding data: Short Note [J]. Geophysics,1982,47(7):1100—1105.
    [94]Raiche A P. Comparison of apparent resistivity functions for transientelectromagnetic methods: Short Note [J]. Geophysics,1983,48(6):787—789.
    [95]长谷川健.水平电气双极子によろ层状大地のスチツア应答と见挂导电率について[J].物理探矿,1985,38(3):21—31.
    [96]Sheng Y. A single apparent resistivity expression for long-offset transientelectromagnetics [J]. Geophysics,1986,51(6):1291—1297.
    [97]殷长春,朴化荣.电磁测深法视电阻率定义问题的研究[J].物探与化探,1991,15(4):290—298.
    [98]李吉松,朴化荣.电偶源瞬变电磁测深一维正演及视电阻率响应研究[J].物探化探计算技术,1993,15(2):191—200.
    [99]宋先旺,姜胜华.瞬变电磁法全期视电阻率、视深度求解方法与应用[J].矿产与地质,1997,11(2):129—134.
    [100]昌彦君,罗延钟,仇高喜.全时域时间谱视电阻率算法研究[J].物探化探计算技术,1998,20(3):193—198.
    [101]罗国平,魏凤英.瞬变电磁法磁场及其视电阻率研究[J].中国煤田地质,2000,12(2):60—62.
    [102]严良俊,胡文宝,陈清礼等.长偏移距瞬变电磁测深的全区视电阻率求取及快速反演方法[J].石油地球物理勘探,1999,34(5):532—538.
    [103]苏朱刘,胡文宝.中心回线方式瞬变电磁测深虚拟全区视电阻率和一维反演方法[J].石油物探,2002,42(2):216—221.
    [104]翁爱华,陆冬华,刘国兴.利用连分式定义瞬变电磁法全区视电阻率研究[J].煤田地质与勘探,2003,31(3):56—59.
    [105]白登海,Maxwell A Meju,卢健,等.时间域瞬变电磁法中心方式全程视电阻率的数值计算[J].地球物理学报,2003,46(5):697—704.
    [106]杨云见.中心回线瞬变电磁资料处理方法研究[D].成都:成都理工大学,2006.
    [107]郭嵩巍.中心回线瞬变电磁一维正反演算法研究[D].成都:成都理工大学,2010.
    [108]熊彬.大回线瞬变电磁法全区视电阻率的逆样条插值计算[J].吉林大学学报(地球科学版),2005,35(4):515—519.
    [109]王华军.时间域瞬变电磁法全区视电阻率的平移算法[J].地球物理学报,2008,51(6):1936—1942.
    [110]阮百尧.三角单元部分电导率分块连续变化点源二维电场有限元数值模拟[J].广西科学,2001,8(1):1—3.
    [111]阮百尧,徐世浙.电导率分块线性变化二维地电断面电阻率测深有限元数值模拟[J].地球科学—中国地质大学学报,1998,23(3):303—307.
    [112]刘德贵,费景高,于泳江等. FORTRAN算法汇编(第一分册)[M].北京:国防工业出版社,1980.
    [113]马为,陈小斌,赵国泽.大地电磁测深二维正演中辅助场的新算法[J].地震地质,2008,30(2):525—533.
    [114]马为. MT二维正演中辅助场计算新方法[D].北京:中国地震局,2007.
    [115]史明娟,徐世浙,刘斌.大地电磁二次函数插值的有限元法正演模拟[J].地球物理学报,1997,40(3):421—430.
    [116]徐世浙,王庆乙,王军.用边界单元法模拟二维地形对大地电磁场的影响[J].地球物理学报,1992,35(3):380—388.
    [117]Oristaglio M L. Diffusion of electromagnetic fields into the earth from a linesource of current [J]. Geophysics,1982,47(11):1585—1592.
    [118]何光渝,高永利. Visual Fortran常用算法集[M].北京:科学出版社,2002.
    [119]徐世良.计算机常用算法(第二版)[M].北京:清华大学出版社,1995.
    [120]Nabighian M N,Oristaglio M L. On the approximation of tinite loop sourcesby two-dimensional line source [J]. Geophysics,1984,49(7):1027—1029.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700