用户名: 密码: 验证码:
适于山地城市规划的近地层风环境研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着社会经济发展,城市发展的目标逐渐由最初的追求经济效益最大化向营造高质量的城市环境转型,许多城市均以建设“宜居城市”为发展目标。然而大多现行设计规范和研究成果多适用于平原城市,对特殊地形地貌下的山地城市针对性不强,缺乏指导意义。
     本文以山地城市为研究对象,以近地层风环境资料的获取、通风廊道规划方式的体现及城市风环境的评价三大主块为研究内容,以能为山地城市的规划设计提供有益的参考为研究目的,展开深入研究。具体内容如下:
     ①总结了由实测数据归纳得出的山地城市近地层风环境的5点特征:全年平均风速较低,介于1.3m/s~1.5m/s范围之间;静风率颇高,部分地区甚至达到41%;风速、风向空间分布不均匀,即使在相隔很近的地方亦存在不同的风速、风向分布;风向与周围地形密切相关,多与山脉延伸方向或峡谷方向一致;境内山谷风、河陆风等局地环流较为显著。分析了风玫瑰图在规划应用中存在的问题,通过实例提出风玫瑰图缺失情况下的风环境基础资料的获取方法,使规划依据更加合理可信。
     ②确立了本文研究所需的数字化技术。根据山地城市近地层风环境的特点,以搭建快速、可靠的模拟计算体系为目标,对影响模拟计算精度和速度的数值模拟方法进行了探讨。在模型基础中对比分析不同湍流模型及壁面函数类型,提出适合于大范围室外风环境模拟的Chen-Kim k ε湍流模型及适用于局地热力环流模拟的RNG k ε湍流模型和完全粗糙对数律壁面函数。介绍了GIS的特征、功能、类型及发展概况等。
     ③分析了数字高程模型的概念及获取方法等问题。在通过对多种模型数据格式分析的基础上,结合多种常用数字化技术,通过一种全新的数字建模集成方法,实现了网络地形文件与CFD(PHOENICS)实体模型之间的转化。该方法由网络地形数据直接进行建模,过程中对坐标点不进行任何的筛选或简化,可实现虚拟模型与实际地形最大程度的吻合。该集成方法的出现大大缩短城市尺度模拟周期,为模拟研究提供了一个方便快捷的途径。
     ④提出了在规划进展中不同阶段使用不同模拟方法的思路。针对城市尺度风环境模拟时重点考虑动力作用对其的影响,并对近地层风场模拟结果进行风速等级划分,便于不同风速区的地块建设,使规划师对城市整体风环境有了宏观把握。在计算机模拟时导入地形面文件,以地形曲面表面数据显示代替平面数据显示,解决困扰多年的风场结果随地形同步显示问题。针对山地城市典型局地环流(江风及山坡风)模拟时考虑热力作用与动力作用共同对其的影响,并得出一些具体结论供规划师参考:随着坡度的减小,顶端风速有所增加,江风渗入内陆的趋势增强,滨江地带近地层风速增大。渝中半岛与沙坪坝滨江地带建设模式相比,更利于引导江风深入内部;晴朗夜间的山坡风可显著影响山脚建筑群内部风环境,在坡度较缓的情况下建筑群内部近地层风速可达1.5m/s以上。高层建筑群对近地层风速有明显的促进作用,其更适合于全年风速较小的山地城市的建筑营造模式。
     ⑤阐述了通风廊道建设在现代城市中的必要性及可行性,并对山地城市通风廊道表现形式进行归纳总结,分别根据通风廊道在新城建设及旧区改造中的侧重点展开研究:新城通风廊道的规划设计侧重于大刀阔斧的建设,城市风廊的建设与城市“氧源地”建设相结合,发挥出最大的生态效益,并以具体的山地城市规划项目进行案例分析;建成区通风廊道的规划设计更加侧重于城市风廊的寻找,通过分析传统通风廊道确定的方法,给出迎风面积指数的概念,提出以建筑与地形共同作为影响因子的山地城市迎风面积指数λ f计算方法,作为判断山地城市主要通风廊道的重要指标。把传统的定性分析转化为定量分析,改变传统规划过程中凭借主观臆断确定风廊的方法,为规划师提供合理确定主要风廊的量化手段,便于“都市针灸”能快速准确的实施。最后归纳总结出通风廊道建设过程中应注意的关键原则,为规划设计提供参考。
     ⑥初步构建了城市风环境评价体系,以定性与定量相结合的方式对各子项进行评分,进而判断城市风环境的优劣情况。该评价体系的出现填补了该领域评价的空缺,与热环境、声环境和光环境共同组成完整的城市环境评价体系。
As the social and economic developing, the target of urban development has beenchanged gradually from chasing the maximizing economic efficiency to the high-qualityurban environment creating.Most cities has the goals of building "livable city".However, most of the current design specifications and research are suitable for theconstruction of Plain City, but not enough for the special topography of mountain city aswell as lacking of guidance.
     Taking the mountain town as the research object, including the follow three mainparts as the research contents: wind environment data acquisition in the near groundlayer, planning objectification on ventilated corridor and urban wind environmentevaluation. Providing the beneficial reference for mountain town in the planning anddesign as the research purposes. This article is launched an in-depth study. The mainresearch contents include as below:
     Based on the measured data, five characteristics of wind environment in mountaincity near ground layer are summarized: annual average wind speed is low, whichbetween1.3m/s~1.5m/s. The static rate is quite high and some areas even up to41%.Wind speed and wind direction are uneven distribution, even located very close. Therehas a different wind speed and wind direction distribution. The wind direction is closelyrelated with the surrounding terrain and the same with mountain extension direction.The local circulation is very significant, such as mountain and valley winds. Theproblems of wind roses in the planning application is analysed and the method of windenvironment data acquisition when the environment lacking of wind roses is solved foran actual case. All of above can make the planning basis more reasonable and credible.
     The digital technology required for this study is established. Base oncharacteristics of wind environment in mountain city near ground layer, in order to builda fast, reliable simulation system as the goal, the impact of simulation accuracy andspeed of numerical simulation are discussed. Through the comparative analysis ofdifferent types of turbulence model and wall function, the Chen-Kim turbulence modelis suitable for simulation on large-scale outdoor wind environment and the RNGturbulence model is suitable for the local thermal circulation simulation. And thendescribed the GIS characteristics, functions, types and development overview.
     Analysized the concept and acquisition method of the digital elevation model (DEM). Based on the model data format and a variety of commonly used software, anew set of outdoor complex terrain rapid digital modeling method is used for realizingthe transformation between the network terrain file and CFD (PHOENICS) solid model.The model is generated directly by DEM data. From this method, virtual model and theactual terrain have the highest fit. Because of the integrated method, the time of urbanwind environment simulation cycle is saved in a large extent. This method provides aconvenient way to the research for urban wind environment.
     A more reasonable idea for urban wind environment simulation is proposed. Thedifferent simulation schemes are carried out for different planning stages. We shouldconsider the impact of the dynamic action for wind environment in urban scale windenvironment. Wind velocity in near ground layer is divided by wind speed classificationwhich provides better guidance for block construction under different wind velocity. Inthis research, instead of the plane, the terrain curved surface file is put into computer forsimulation. The result display problem of complex terrain is solved perfectly. Theimpact of the thermal and dynamic action for wind environment must be considered intypical local circulations (river wind and slope wind) at mountain city. And somespecific conclusions are drawn for the designers. With the decreasing of the slope, thewind speed at the top increased. The trend of the river wind penetrating into inner cityenhanced and the near surface wind speed of riverside area increased. The constructionmode of Yuzhong Peninsula riverside area is better than Shapingba, where the riverwind can move into inner city more deeply. In clear night, slope-land thermalcirculation effects the building internal wind environment significantly. The near surfacelayer wind velocity even reach up to more than1.5m/s when the slope angle is small.The high-rise buildings play a significant role in promoting the near surface wind speed,which is more suitable for mountain city where full-year wind speed is small.
     This research expounded the necessity and feasibility of the ventilation corridorsconstruction in the modern city. And give summarise of status quo of mountain cityventilation corridor. This paper expounded the different focus of the ventilation corridorconstruction between the new town construction and built-up areas transformation. Thenew town ventilation corridor planning and design focuses on a radical construction.Urban ventilation corridors construction must combine with the "oxygen resource"construction, which can make the greatest ecological benefits and perform an actualmountain town planning projects. Built-up area ventilation corridor planning and designshould give more focuses on seeking urban ventilation corridor. The concept of frontal area index is given by analyzing the traditional methods for determining ventilationcorridor. Building and terrain are proposed as the impact factors of frontal area indexcalculation method in mountain city. Use the frontal area index as an important indicatorto judge the main ventilation corridor. The traditional planning process by subjectivejudgment to determine the wind corridor is changd into quantitative analysis, whichfacilitate "urban acupuncture" fast and accurate implementation. Finally the keyprinciples are summarized on the process of ventilation corridor construction, whichshould provide a reference for the planning and design.
     Urban wind environment evaluation system is constructed with a combination ofqualitative and quantitative analysis for each subkey, and then the effect of urban windenvironment can be judged. Urban wind environment evaluation system fills thevacancies of the environment field, which forms a complete urban environmentevaluation system with thermal, acoustic and light environment evaluation system.
引文
[1]徐坚.山地城市生态适应性城市设计[M].北京:中国建筑工业出版社,2008.
    [2]山地年会翻译译稿.山地人居与生态环境可持续发展国际学术研讨会论文集[M].北京:中国建筑工业出版社,2002.
    [3] Oke T R. Boundary Layer Climates [M]. New York: Routledge.1988.
    [4] Kuhn M. Greenbelt and Green Heart: separating and integrating landscapes in European cityregions [J]. Landscape and Urban Planning,2003,64(1~2):19-27.
    [5] Nguyen X T, Günter A, Bernd H, et al.Evaluation of urban land-use structures with a view tosustainable development [J]. Enviromental Impact Assessment Review,2002,22(5):475-492.
    [6] Jim C Y, Chen S S. Comprehensive greenspace planning based on landscape ecologyprinciples in compact Nanjing city,China [J]. Landscape and Urban Planning,2003,65:95-116.
    [7]冯娴慧.城市近地面层的风场特征与导风体系构建的研究——以广州、江门为例[D].中山大学,2006.
    [8]李天民.园林小环境设计与自然风[J].浙江师范大学学报(社会科学版),2002,27(4):22-24.
    [9]香港中文大学建筑学院.空气流通评估方法可行性研究[J].2005.
    [10]姜允芳,石铁矛,王丽洁.都市气候图与城市绿地系统的发展[J].现代城市研究,2011,6:39-44.
    [11] Georgakis C, Santamouris M. Experimental investigation of air flow and temperaturedistribution in deep urban canyons for natural ventilation purposes [J]. Energy and Buildings,2006,38(4):367-376.
    [12] Niachou K, Livada I, Santamouris M. Experimental study of temperature and airflowdistribution inside an urban street canyon during hot summer weather conditions. Part II:Airflow analysis [J]. Building and Environment,2008,43(8):1393-1403.
    [13] Georgakis C, Santamouris M. On the air flow in urban canyons for ventilation purposes [J].The International Journal of Ventilation,2004,3(1):1-9.
    [14] Georgakis C, Santamouris M. Experimental investigation of air flow and temperaturedistribution in deep urban canyons for natural ventilation purposes [J]. Energy and Buildings,2006,38(4):367-76.
    [15] Huang H, Ryozo O, Shinsuke K. Urban thermal environment measurements and numericalsimulation for an actual complex urban area covering a large district heating and coolingsystem in summer [J]. Atmospheric Environment,2005,39(34):6362-6375.
    [16] Chang C H, Meroney R N. Concentration and flow distributions in urban street canyons: windtunnel and computational data [J]. Journal of Wind Engineering and Industrial Aerodynamics,2003,91(9):1141-1154.
    [17] Ahmad K, Khare M, Chaudhry K K. Wind tunnel simulation studies on dispersion at urbanstreet canyons and intersections—a review [J]. Journal of Wind Engineering and IndustrialAerodynamics,2005,93(09):697-717.
    [18] Duijm N J. Dispersion over complex terrain: wind-tunnel modelling and analysis techniques[J]. Atmospheric Environment,1996,30(16):2839-2852.
    [19] Mfula A M, Kukadia V, Griffiths R F, et al. Wind tunnel modelling of urban building exposureto outdoor pollution [J]. Atmospheric Environment,2005,39(15):2737-2745.
    [20] Dudhia J, Gill D, Manning K, Wang W, Bruyere C. PSU/NCAR mesoscale modeling systemtutorial class notes and user's guide: MM5modeling system version3. NCAR;2003.
    [21] Baik J J, Kim J J. A numerical study of flow and pollutant dispersion characteristics in urbanstreet canyons [J]. Journal of Applied Meteorology,1999,38(11):1576-1589.
    [22] Blocken B, Carmeliet J, Stathopoulos T. CFD evaluation of the wind speed conditions inpassages between buildings-effect of wall-function roughness modifications on theatmospheric boundary layer flow [J]. Journal of Wind Engineering and IndustrialAerodynamics,2007,95(9):941-962.
    [23] Kondo H, Asahi K, Tomizuka T, Suzuki M. Numerical analysis of diffusion around asuspended expressway by a multi-scale CFD model [J]. Atmospheric Environment,2006,40(16):2852-2859.
    [24] Shinsuke K, Huang H. Ventilation efficiency of void space surrounded by buildings with windblowing over built-up urban area [J]. Journal of Wind Engineering and IndustrialAerodynamics,2009,97(7-8):358-367.
    [25] Kazuya T. Measurement of thermal environment in Kyoto city and its prediction by CFDsimulation [J]. Energy and Buildings,2004,36(8):771-779.
    [26] Taiki S, Shuzo M, Ryozo O. Analysis of regional characteristics of the atmospheric heatbalance in the Tokyo metropolitan area in summer[J]. Journal of Wind Engineering andIndustrial Aerodynamics,2008,96(10-11):1640-1654.
    [27] Rajagopalan P, Nyuk H W, Wai D C K. Microclimatic modeling of the urban thermalenvironment of Singapore to mitigate urban heat island[J]. Solar Energy,2008,82(8):727-745.
    [28] Yim S H J, Fung J C H, Lau A K H. Air ventilation impacts of the “wall effect” resulting fromthe alignment of high-rise buildings[J]. Atmospheric Environment,2009,43(32):4982-4994.
    [29] Emmanuel R, Rosenlund H, Johansson E. Urban shading-a design option for the tropics? Astudy in Colombo, Sri Lanka[J].International Journal of Climatology,2007,27(14):1995-2004.
    [30] Johansson E, Emmanuel R. The influence of urban design on outdoor thermal comfort in thehot, humid city of Colombo, Sri Lanka[J]. International Journal of Biometeorology.2006,51(2):119-133.
    [31] Parham A M, Fariborz H. A novel approach to enhance outdoor air quality: Pedestrianventilation system [J]. Building and Environment,2010,45(7):1582-1593.
    [32]陈炯.城市建筑物对城市边界层三维结构影响的数值模拟[J].北京大学学报(自然科学版),2007,43(3):343-350.
    [33]赵敬源.数字街谷及其热环境模拟[J].西安建筑科技大学学报(自然科学版),2007,39(2):219-222.
    [34] Huang H, Ryozo O, Chen H. CFD analysis on traffic-induced air pollutant dispersion undernon-isothermal condition in a complex urban area in winter [J]. Journal of Wind Engineeringand Industrial Aerodynamics,2008,96(10-11):1774-1788.
    [35] Li K, Yu Z. Comparative and Combinative Study of Urban Heat island in Wuhan City withRemote Sensing and CFD Simulation [J]. Sensors,2008,8(10):6692-6703.
    [36] Chen H, Ryozo O, Kazuya H. Study on outdoor thermal environment of apartment block inShenzhen,China with coupled simulation of convection, radiation and conduction [J]. Energyand Buildings,2004,36(12),1247-1258.
    [37] Li Q, Meng Q L, Zhao L H. Numerical research on pedestrian wind environment aroundresidential buildings in South China[J].2010International Conference on Advances in EnergyEngineering (ICAEE2010),2010:299-303.
    [38]李鹍.基于气候调节的城市通风道探析[J].自然资源学报,2006,21(6):991-997.
    [39] Ashie Y, Tokairin T, Kono T, et al. Numerical simulation of urban heat island in a ten-kmsquare area of central Tokyo [J]. Annual Report of the Earth Simulator Center,2007:45-49.
    [40]彭佳,何杰,赵池航,等.山体坡度对山体周围高速公路路面风速及行车安全的影响[J].东南大学学报(自然科学版),2010,40(1):201-206.
    [41]陈平.地形对山地丘陵风场影响的数值研究[D].杭州:浙江大学,2007.
    [42] Maurizi A, Palma J M J M, Castro F A. Numerical simulation of the atmospheric flow in amountainous region of the North of Portugal [J]. Journal of Wind Engineering and IndustrialAerodynamics,1998,74-76:219-228.
    [43]周志勇,肖亮,丁泉顺,等.大范围区域复杂地形风场数值模拟研究[J].力学季刊,2010,31(1):101-107.
    [44] Germano M. Assessing the natural ventilation potential of the Basel region [J]. Energy andBuildings,2007,39(11):1159-1166.
    [45] Yang L, Zhang G, Li Y, et al. Investigation potential of natural driving forces for ventilation infour major cities in China [J]. Building and Environment,2005,40(6):739-46.
    [46] Morhmald B, Shinsuke K. Assessment of wind ventilation performance inside a street locatedwithin a dense urban area using exceedance probability [J]. Seisan-Kenkyu,2008,60(1):5-13.
    [47] Miao S G, Jiang W M, Wang X Y. Impact assessment of urban meteorology and theatmospheric environment using urban sub-domain planning [J]. Boundary-Layer Meteorology,2006,118(1):133-150.
    [48] Fang X Y, Jiang W M, Miao S G. The multi-scale numerical modeling system for research onthe relationship between urban planning and meteorological environment [J]. Advances inAtmospheric Sciences,2004,21(1):103-112.
    [49] Zhao L H, Zheng Z J, Li L. Discussion of the Evaluation Indexes of Outdoor WindEnvironment Quality for the Enclosed Residential Quarter in Guangzhou [J].5th InternationalWorkshop on Energy and Environment of Residential Buildings/3rd International Conferenceon Built Environment and Public Health,vol1and2, Proceedings,2009:1264-1270.
    [50] Yang L N, Li Y G. City ventilation of Hong Kong at no wind conditions [J]. AtmosphericEnvironment,2009,43(19):3111-3121.
    [51]刘加平.城市环境物理[M].北京:中国建筑工业出版社,2011.
    [52]卢军,陈金花.山地城市热污染研究及治理对策[J].四川环境.2007,26(1):95~99.
    [53]高阳华,王堰,邱新法,等.基于GIS的复杂地形风能资源模拟研究[J].太阳能学报,2008,29(2):163-169.
    [54] Yang L N, Li Y G. Thermal conditions and ventilation in an ideal city model of Hong Kong [J].Energy and Buildings.2011,43(5):1139-1148.
    [55]韩志伟,张美根,雷孝恩.复杂地形局地环流的数值模拟研究[J].气候与环境研究,1999,4(2):200-223.
    [56]维基百科编者.墨西哥城[G/OL].维基百科,2012(2012-03-16)[2012-03-22].http://zh.wikipedia.org/w/index.php?title=%E5%A2%A8%E8%A5%BF%E5%93%A5%E5%9F%8E&oldid=19585089.
    [57]严邦良,黄荣辉.长江重庆地段河陆风的模拟及三峡水利工程后河陆风变化的预测研究[J].大气科学,1989,13(2):150-157.
    [58]卢晨晨.三峡坝区河陆风的理论与观测研究[D].南京:南京信息工程大学,2009.
    [59] American Meteorological Society. Glossary of Meteorology [EB/OL]. http://amsglossary.allenpress.com/glossary/search?id=urban-heat-island1.
    [60]杨吾扬,董黎明.关于气象在城市规划和工业布局中的运用[J].中国科学A辑,1979(11):1101-1107.
    [61]王新生.浅谈风玫瑰图在城市规划中的应用[J].测绘信息与工程,1994(3):35-38.
    [62]宋丽莉,吴战平,秦鹏,等.复杂山地近地层强风特性分析[J].气象学报.2009,67(3):452-460.
    [63]李先庭,赵彬.室内空气流动数值模拟[M].北京:机械工业出版社,2009.
    [64]胡隐樵.边界层气象学[J].地球科学进展,1991,6(6):57-59.
    [65] Taylor C. Eddy motion in the atmosphere [J]. Philosophical Transactions of the Royal Societyof London,1915,215(1):1-26.
    [66] Taylor C. Statistical theory of turbulence [J]. Proceedings of the Royal Society of London,1935,151(873):421-444.
    [67]张兆顺.湍流理论与模拟[M].北京:清华大学出版社,2005.
    [68] Kolmogorov A N. The local structure of turbulence in incompressible viscous fluid for verylarge Reynolds number [J]·Proceedings of the Royal Society of London,1991,434(1890):9-13.
    [69] Priestley C H B. Turbulent Transfer in the Lower Atmosphere [M].Chicago: University ofChicago Press,1959.
    [70] Moinn A S, Obukhov A M. Basic laws of turbulent mixing in the atmosphere near the ground[J]. Tr. Akad. Nauk SSSR Geophiz. Inst,1954,24(151):163-187.
    [71] Businger J A,Wyngaard J C, Izumi Y,et al. Flux profile relationships in the atmosphericsurfure layer [J]. Journal of the Atmospheric Sciences,1971,28(2):181-189.
    [72] Wyngaard J C, Cote O R, Izumi Y. Local free convection, similarity, and the budgets of shearstress and heat flux[J]. Journal of Atmospheric Sciences,1971,28(7):1171-1182.
    [73] Dyer A J, Bradley E F. An alternative analysis of flux-gradient relationships at the1976ITCE[J]. Boundary-Layer Meteorology,1982,22(1):3-19.
    [74]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [75] Speziale C G, Thangam S. Analysis of an RNG based turbulence model for separated flows [J].International Journal of Engineering Science,1992,30(10):1379-1388.
    [76] Launder B E, Spalding D B. The numerical computation of turbulent flows [J]. ComputerMethods in Applied Mechanics and Engineering,1974,3(2):269–289.
    [77] Paul A L, Michael F G, David J M, et al. Geographical Information System and Science [M].Publisher: JolmWiley&Sons, Inc,2005.
    [78]王学军,贾冰媛.地理信息系统[M].北京:中国环境科学出版社,1993.
    [79]石青云.北大院士文集一石青云文集[M].北京:北京大学出版社,2001.
    [80]国家自然地图集编委会(廖克主编).中华人民共和国国家自然地图集.北京:中国地图出版社,1999.
    [81]廖克,齐清文,池天河.中国国家自然地图集-电子地图集的研制[J].地球信息科学,2008,10(3):284-290.
    [82]郑华利.彩色地形图的自动识别与矢量化研究[D].南京:南京理工大学,2004.
    [83]柯正谊,何建邦,池天河.数字地面模型[M].北京:中国科学技术出版社,1993.
    [84]刘学军.基于规则格网数字高程模型解译算法误差分析与评价[D].武汉:武汉大学,2002.
    [85]汤国安,刘学军,阊国年.数字高程模型及地学分析的原理与方法[M].北京:科学出版社,2005.
    [86]李志林,朱庆.数字高程模型[M].武汉:武汉测绘科技大学出版社,2000.
    [87]卢华兴. DEM误差模型研究[D].南京:南京师范大学,2008.
    [88]周启鸣,刘学军.数字地形分析[M].北京:科学出版社,2006.
    [89]郭薇.空间数据索引技术[M].上海:上海交通大学出版社,2006.
    [90]乔利军. DEM数据提取关键技术研究[D].湖南:国防科学技术大学,2005.
    [91]姜保宋.基于GIS平台的复杂地形风场模拟[D].上海:同济大学,2008.
    [92]薛亚婷.基于Google Earth及KML的数字校园设计与实现方法研究[D].兰州:兰州大学,2007.
    [93]刘斌,黄树槐.快速成型技术中数据模型的自动诊断与修复[J].华中理工大学学报,1996,24(9):61~64.
    [94]徐拥军,廖婷.基于Google Earth的高程图制作方法[J].中国西部科技,2010,09(11):29-31.
    [95]刘锋,张继贤,李海涛. SHP文件格式的研究与应用[J].测绘科学,2006,31(6):116-117.
    [96]夏明.基于MTM的男上装样板快速生成系统研究[D].上海:东华大学,2006.
    [97]石勇,蒋维楣.小尺度深凹地形边界层影响因子的数值试验研究[J].高原气象,2000,19(1):91-99.
    [98]姜金华,彭新东.复杂地形城市冬季大气污染的数值模拟研究[J].高原气象,2002,21(1):1-7.
    [99]马雁军,左洪超,王扬锋,等.本溪复杂地形条件下三维多源SO2浓度场模拟[J].高原气象,2006,25(4):704-709.
    [100]郑飞,张镭,朱江,等.复杂地形城市冬季边界层气溶胶扩散和分布模拟[J].高原气象,2007,26(3):532-540.
    [101]刘丽,王体健,王勤耕.区域复杂地形大气污染扩散的模拟研究[J].高原气象,2008,27(5):1074-1082.
    [102]高丽,张镭.兰州东部地区冬季风场和温度场模拟[J].兰州大学学报(自然科学版),2001,38(3):120-126.
    [103]王桂玲,蒋维楣.复杂地形上的低层风场特征[J].解放军理工大学学报(自然科学版),2006,7(5):491-495.
    [104]蒋维楣,王咏薇,刘罡,等.多尺度城市边界层数值模式系统[J].南京大学学报(自然科学版),2007,43(3):221-237.
    [105] Tokairin T, Sofyan A, Kitada T.Effect of land use changes on local meteorological conditionsin Jakarta, Indonesia: toward the evaluation of the thermal environment of megacities in Asia[J]. International Journal of Climatology,2010,30(13):1931-1941.
    [106]李磊,胡非,程雪玲,等. FLUENT在城市街区大气环境中的一个应用[J].中国科学院研究生院学报,2004,21(4):476-480.
    [107]蒋德海,蒋维楣,苗世光.城市街道峡谷气流和污染物分布的数值模拟[J].环境科学研究,2006,19(3):7-12.
    [108]程雪玲,胡非.复杂地形网格生成研究[J].计算力学学报,2006,23(3):313-316.
    [109] Akashi M, Isaac Y F L. Prediction of wind environment and thermal comfort at pedestrianlevel in urban area[J]. Journal of Wind Engineering and Industrial Aerodynamics,2008,96(10):1498-1527.
    [110]肖仪清,李朝,欧进萍,等.复杂地形风能评估的CFD方法[J].华南理工大学学报(自然科学版),2009,37(9):30-35.
    [111]李鹍.基于遥感与CFD仿真的城市热环境研究——以武汉市夏季为例[D].武汉:华中科技大学,2008.
    [112]魏奇科,李正良,孙毅,等.山地风加速效应的计算模型[J].华南理工大学学报(自然科学版),2010,38(11):54-58.
    [113]张楠.基于多孔介质模型的城市滨江大道风环境数值模拟研究[D].长沙:中南大学,2005.
    [114]史彦丽.建筑室内外风环境的数值方法研究[D].长沙:湖南大学,2008.
    [115] Wieringa. Representativeness of wind observations at airports [J]. Bulletin of the AmericanMeteorological Society,1980,61(9):962-971.
    [116] Wieringa. An objective exposure correction method for average wind speeds measured at asheltered location [J]. Quarterly Journal of the Royal Meteorology Society,1976,102(431):241-253.
    [117] Wieringa. Roughness-dependent geographical interpolation of surface wind speed averages[J]. Quarterly Journal of the Royal Meteorology Society,1986,112(473):867-889.
    [118]冯源.山地城市室外热环境的模拟与预测[D].重庆:重庆大学,2005.
    [119]赵炎.住宅小区室外热环境的实测与模拟[D].重庆:重庆大学,2008.
    [120]甘源.居住区热环境规划与微气候设计研究[D].重庆:重庆大学,2010.
    [121]扈万泰,翟长旭,周涛.长江上游城市滨江地带规划与发展研究——基于重庆滨江道路建设的思考[J].城市发展研究,2007,14(2):102-105,114.
    [122] Hunt J C R, Poulton E C, Mumford J C. The effects of wind on people:new criteria based onwind tunnel experiments [J]. Building and Environment,1976,11(1):15–28.
    [123] Rotach M W. Profiles of turbulence statistics in and above an urban street canyon [J].Atmospheric Environment,1995,29(13):1473–1486.
    [124] Stathopoulos T. Design and fabrication of a wind tunnel for building aerodynamics [J].Journal of Wind Engineering and Industrial Aerodynamics,1984,16(2-3):361–376.
    [125] Evola G, Popov V.Computational analysis of wind driven natural ventilation in buildings [J].Energy and Buildings,2006,38(5):491-501.
    [126] Ghiaus C, Allard F, Santamouris M, et al.Urban environment influence on natural ventilationpotential [J]. Building and Environment,2006,41(4):395-406.
    [127]柏春.城市路网规划中的气候问题[J].西安建筑科技大学学报(自然科学版).2011,43(4):557-562.
    [128]麦克哈格著.芮经纬译.设计结合自然[M].北京:中国建筑工业出版社,1992.
    [129] Lettau H. Note on aerodynamic roughness-parameter estimation on the basis ofroughness-element description [J]. Journal of Applied Meteorology,1969,8:828-832.
    [130] Counihan J. Adiabatic atmospheric boundary layers: a review and analysis of data from theperiod1880-1972[J]. Atmospheric Environment,1975,9(10):871-905.
    [131] Grimmond C S B, Oke T R. Aerodynamic properties of urban areas derived from analysis ofsurface form [J]. Journal of Applied Meteorology,1999,38(9):1262-1292.
    [132] Burian S J, Brown M J, Linger S P. Morphological analysis using3D building databases [J].LA-UR-02-0781, Los Alamos National Laboratory,2002,863:36-42.
    [133] Bottema M. Urban roughness modelling in relation to pollutant dispersion [J]. AtmosphericEnvironment,1997,31(18):3059-3075.
    [134] Matzarakis A, Mayer H. Mapping of urban air paths for planning in Munchen.Wissenschaftlichte Berichte Institut for Meteorologie und Klimaforschung, Univ. Karlsruhe,1992,16:13–22.
    [135]刘姝宇,沈济黄.基于局地环流的城市通风道规划方法——以德国斯图加特市为例[J].浙江大学学报(工学版),2010,44(10):1985-1991.
    [136] Davenport A G, Grimmond C S B, Oke T R, et al. Estimating the roughness of cities andsheltered country [J]. In: Proceedings of the12th conference on applied climatology. Boston:American Meteorological Society,2000:96–99.
    [137] Grimmond C S B, King T S, Roth M, et al. Aerodynamic roughness of urban areas derivedfrom wind observations [J]. Boundary-Layer Meteorology,1998,89(1):1–24.
    [138] Bottema M. Urban roughness modelling in relation to pollutant dispersion[J]. AtmosphericEnvironment,1997,31(18):3059–3075.
    [139] Macdonald R W, Griffiths R F, Hall D J. An improved method for estimation of surfaceroughness of obstacle arrays [J]. Atmospheric Environment,1998,32(11):1857–1864.
    [140] Petersen R L. A wind tunnel evaluation of methods for estimating surface roughness length atindustrial facilities [J]. Atmospheric Environment,1997,31(1):45–57.
    [141] Oke T R. Siting and exposure of meteorological instruments at urban sites [C]. In: Proceedingsof the27th NATO/CCMS international technical meeting on air pollution modelling andapplication. Kluwer, Banff, Canada,2004.
    [142] Wieringa J, Davenport A, Grimmond C S B, et al. New revision of Davenport roughnessclassification [C]. In: Proceedings of the3rdEuropean&African conference on windengineering, Eindhoven, The Netherlands,2001.
    [143] Oke T R. Towards better scientific communication in urban climate [J].Theoretical and AppliedClimatology,2006,84(1-3):179–190.
    [144] Bottema M, Mestayer P G. Urban roughness mapping–validation techniques and some firstresults [J]. Journal of Wind Engineering and Industrial Aerodynamics,1998,74–76:163–173.
    [145] Bottema M. Roughness parameters over regular rough surfaces: Experimental requirementsand model validation [J]. Journal of Wind Engineering and Industrial Aerodynamics,1996,64(2-3):249-265.
    [146] Gal T, Unger J. Detection of ventilation paths using high-resolution roughness parametermapping in a large urban area [J]. Building and Environment,2009,44(1):198-206.
    [147] Man S W, Janet E N, Pui H T, et al. A simple method for designation of urban ventilationcorridors and its application to urban heat island analysis [J]. Building and Environment,2010,45(8):1880-1889.
    [148] Edward N, Yuan C, Chen L, et al. Improving the wind environment in high-density cities byunderstanding urban morphology and surface roughness: A study in Hong Kong [J].Landscape and Urban Planning,2011,101(1):59–74.
    [149] Jim C Y. Impacts of intensive urbanisation on trees in Hong Kong [J]. EnvironmentalConservation,2004,25(2):146-159.
    [150]斯泰里奥斯·普莱尼奥斯编著.可持续建筑设计实践[M].北京:中国建筑工业出版社,2006.
    [151]美国绿色建筑委员会编.绿色建筑评估体系(第二版)LEEDTM2.0[M].北京:中国建筑工业出版社,2002.
    [152]日本可持续建筑协会编. CASBEE一建筑物综合环境性能评级体系一绿色设计工具[M].北京:中国建筑工业出版社,2003.
    [153]聂梅生,秦佑国.中国生态住宅技术评估手册[M].北京:中国建筑工业出版社,2002.
    [154]绿色奥运建筑研究课题组著.绿色奥运建筑评价体系[M].北京:中国建筑工业出版社,2003.
    [155]中华人民共和国建设部. GB/T-50378-2006绿色建筑评价标准[S].中华人民共和国建设部,2006.
    [156]重庆市建设技术发展中心. DBJ/T50-066-2009绿色建筑评价标准[S].重庆市城乡建设委员会,2009.
    [157]陈士凌,卢军,李永财.太阳能相变蓄能通风实验研究[J].土木建筑与环境工程,2011,33(2):97-100.
    [158]李永财.太阳能通风技术结合相变蓄热材料自然通风效果实验研究[D].重庆:重庆大学,2009.
    [159] Emil S, Robert H S.风对结构的作用-风工程导论[D].上海:同济大学出版社,1992.
    [160] Soligo M J, Irwin P A, Williams C J, et a1. A comprehensive assessment of pedestrian comfortincluding thermal effects[J]. Journal of Wind Engineering and Industrial Aerodynamics,1998,77-78(8):753-766.
    [161]何开远,甘灵丽,周海珠.绿色建筑中风环境模拟流程的标准化研究[J].建筑节能,2011,39(246):22-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700