用户名: 密码: 验证码:
面向AUV回收控制的水下机器视觉研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自主水下航行器(简称:AUV)是高技术的集成体,AUV的水下回收问题是其诸多关键技术中迫切需要研究、解决的关键技术之一。为此,本文深入丌展了AUV回收过程中的视觉测量定位以及AUV与水下回收平台对接的关键性技术研究。
     1、针对水下机器视觉实现困难、图像处理十分复杂的特点,本文将高性能的数字摄像机与先进的HALCON图像处理软件有机结合,在程序语言接口、图像采集接口、数据格式和摄像机触发控制上进行软硬件匹配,使之能够正确、实时地获取水下空间的视觉信息;针对AUV运动时双摄像机曝光不同步所产生的异位采集问题,设计了摄像机外触发同步器,利用此装置对双目视觉摄像机成功进行了外触发实验;针对水下照明功率问题和光源发散问题,设计了由发光二极管组合而成的多种易于辨别和区分的形状阵列,解决了水下对接的目标显示问题。
     2、针对回收过程中视觉定位的误差问题,采用一种基于投影矩阵的摄像机水下立体标定方法,提高了目标定位过程中的测量精度。该方法通过线性模型分析计算得出摄像机的内外参数,用最大似然法对其进行非线性优化并考虑镜头畸变的目标函数,最后求出每个摄像机的内、外参数,标定方法准确性高,不需昂贵的器材,简单实用,比较适合水下现场标定;针对标定板图像中的特征圆分割与提取问题,采用最优阈值分割算法分割标定板图像,提出基于区域标记的噪声点消除算法,消除水下噪声干扰,精确提取出所有特征圆。为检验标定结果的准确性,进行水下目标靶三维测量实验,实验测量的绝对误差在±5mm毫米之内。
     3、针对水下图像的噪声问题和细节模糊问题,设计了高斯平滑滤波器对水下图像进行平滑滤波处理,采用形态学滤波消除物体边界点,利用灰度线性变换的方法,增加水下图像的对比度,使图像细节更容易看清;针对水下目标的轮廓提取问题,采用的Canny亚像素边缘检测算法提取水下图像中所有物体的边缘,利用改进的Snake模型算法在所有物体的边缘中精确提取封闭的目标图形轮廓。
     4、针对水下回收平台的目标识别问题,设计了多个内部形状不同的圆形目标安放在回收舱底部,采用形状模型匹配的方法来寻找所有的圆形目标;针对目标图像的模型搜索问题,提出了基于规则的模型搜索策略,通过调整和优化搜索参数,提高了模型搜索的速度和准确性;针对水下回收平台的圆形目标定位问题,通过计算每一个目标点和镜头焦点连线与成像平面的交点坐标,结合标定后摄像机的内参和外参,进行视差计算和坐标转化,精确计算出所有目标点与摄像机的相对坐标。为验证视觉定位算法的可行性,进行了夜间水下实验,成功模拟AUV在深水环境中对目标的精确定位。
     5、针对AUV运动过程中存在的严重非线性和不确定性,在建立AUV六自由度数学模型的基础上,设计了用于AUV回收的H_∞鲁棒控制器,并对AUV的运动控制进行了仿真。为了验证视觉导引算法的正确性,根据设定的比例,结合11自由度实验台架,搭建了AUV回收物理模拟实验平台,设计和开发了视觉算法程序和AUV回收控制程序。在模拟实验中,将AUV水下对接分为四自由度接近、悬停定位、逼近以及入舱操作三个阶段。在夜暗环境下成功进行了基于视觉的回收模拟验证,为下一阶段的AUV回收水池试验打下了基础。
     本文为了实现AUV水下自主回收,对视觉导引方法进行了探索性地研究,实现了定位偏差达到毫米级的摄像机水下立体标定,在立体视觉的匹配过程中,提出了基于规则的形状模型搜索策略,利用视差法对目标点进行定位计算。通过缩尺度模拟实验,验证了本论文视觉导引方法的有效性和适用性。本论文的研究成果和结论对于AUV安全、可靠、高效地完成远程航海与地形勘察作业使命,具有重要的理论意义和实际应用价值。
Autonomous Underwater Vehicle(AUV) is an important research field which is integrated with many an oceanic high technology.The reclaim problem is one of the most demanding technologies of AUV that need to be researched and tackled.In this paper,the technologies of vision guidance of AUV docking are researched primarily.
     Firstly,the digital camera with high performance and advanced HALCON software are combined to overcome the difficulty of underwater machine vision and the complicity of image processing.To obtain the underwater space vision information properly and promptly,the programming language,images collecting, data format and camera triggering controlling are matched through soft and hard ware.The outer triggering synchronization of camera is designed to address the problem of asynchronism collecting which is caused by exposure asynchronism of double-camera when AUV is moving,which can be used to operate outer triggering experiment.The figuring array consisted by luminous diode is designed to deal with the problems of illumination power and light-house radiation,which solved target displaying for AUV docking.
     Secondly,the method of underwater stereo calibration based on projection homography is designed to resolve error precision of vision position in the process of docking,improve the measurement precision during the process of target position.The method utilize linear model to calculate the optimization of the parameters of camera,and figure the non-linear precision by considering the target function of lens aberration,together with the result of internal and external parameters,which is highly precision,lower cost,simply operated and adapted to underwater local calibration.The algorithm of noising point eliminating based on region marked is proposed by adopting calibration board images through optimized algorithm of threshold segmentation,to settle the problem of feature circle segmentation and abstraction,which can also eliminate the disturb of underwater noise and abstract all feature circles.To verify the veracity of calibration result,the 3-D measuring experiment of underwater target is carried out,the absolute error of the precision degree is±5mm level.
     Thirdly,due to the problems of noise and detailed fuzzy for underwater images,gauss smoothly filter is developed.The object edge point is eliminated through morphologic filter,and the contrast of underwater images is enhanced and the detail of images is distinguished more easily by using prey linear transform method.The algorithm of Canny sub-pixel edge detecting is introduced to do with the problem of contour abstraction for underwater target,and use the improved snake module to abstract the graphics contour from all the objects precisely.
     Fourthly,a few circle targets which is different in internal shape is proposed to install on the bottom of the docking cabin to overcome the target recognizing problem during underwater docking process,all circle targets are searched through shape template matching method.Because of model searching problem, the searching tactic is put forward based on regular model,and through adjusting and optimizing parameters,the searching rate and accuracy is improved. According to the target position demanding of the underwater docking platform, the relative coordinate between all the target points and camera is figured out precisely,through calculating the intersection points coordinate of each target and lens and combing the internal and external parameters after calibrating.To validate the practicality of vision position algorithm,the night experiment is made out,and simulates the correct target position for AUV in the underwater environment successfully.
     Lastly,according to the nonlinear and uncertainty during AUV movement,the H_∞controller is developed for AUV reclaiming,which is based on 6 DOFs of AUV mathematics modeling.To verify the effectiveness of vision guidance algorithm,according to the designed proportion and combing 11 freedom degree of the test shelf,the AUV docking simulating platform is set up,and vision algorithm and docking controlling programming are designed and developed. During the experiment,the docking process is divided into 4 freedom degree approaching phase,suspending position phase and entrance cabin phase.The docking test in the night environment is processed successfully,which can make a good basis for the pool experiment for the AUV docking.
     In order to achieve autonomous reclaiming technology for AUV,vision guidance method is researched,accomplish camera stereo calibration,and the poison precision degree is mm level.In the process of stereo vision matching,the searching tactic is put forward based on regular model,and calculate the position through vision difference.The effectiveness and practicality of the presented methods are verified through deflating scaling experiment.The research and conclusion of the thesis have a great both theoretical and practical value for the AUV,such as safety,reliability,remotely sailing and landform reconnaissance.
引文
[1]Oh,Myung-Hwan.Oh,Jun-Ho.Homing and docking control of AUV using model predictive control.Proceedings of the Fifth 2002 ISOPE Pacific/Asia Offshore Mechanics Symposium.Daejeon,South Korea:2002.p138-142.
    [2]燕奎臣,吴利红.AUV水下对接关键技术研究.机器人.2007(5):267-273页.
    [3]Singh H,JanesG.Docking for an autonomous ocean sampling network.IEEE Journal of Oceanic Engineering,2001,26(4):p498-514.
    [4]BryanD,Gillcrist B,ReichR.The underwater docking and transfer of high bandwidth data between an unmanned submersible and a remote underwater platform.Proceedings of Oceans'91.Piscataway,NJ,USA:IEEE,1991.p1275-1281.
    [5]Stokey R,Purcell M,Forrester N,et al.A docking system for REMUS,an autonomous underwater vehicle.Proceedings of the OCEANS'97MTS/IEEE Conference.New York,NY,USA:IEEE,1997.p1132-1136.
    [6]Tan W K.Horizontal steering control in docking the ARIES AUV.Monterey,CA,USA:Naval Postgraduate School Master's Thesis,2003.
    [7]Cowen S.Flying plug,a small UUV designed for submarine data connectivity.http://www.spawar.navy.mil/robots/pubs/subtech.pdf,1997-05-14.
    [8]Military Analysis Network.Near-term mine reconnaissance system[NMRS][EB/OL].http://www.fas.org/man/dod-101/sys/ship/weaps/nmrs.htm,1999-01-01.
    [9]Brighenti A,Zugno L,Mattiuzzo F,et al.EURODOCKER a universal docking-downloading recharging system for AUVs:conceptual design results.Proceedings of the OCEANS'98 Conference.New York,NY,USA:IEEE,1998.p1463-1467.
    [10]Hobson,B.W,McEwen,R.S,Erickson,J,et al.The Development and Ocean Testing of an AUV Docking Station for a 21' AUV.Oceans 2007 Sept. 29 2007-Oct.4 2007.1-6.
    [11]Kawasaki T,Noguchi T,Fukasawa T,et al.Development of AUV "Marine Bird" with underwater docking and recharging system.Proceedings of the 3rd International Workshop on Scientific Use Submarine Cables and Related Technologies.New York,NY,USA:IEEE,2003.p166-170.
    [12]Fukasawa,T.Noguchi,T.Kawasaki,T.et al."Marine Bird",A new experimental AUV with underwater docking and recharging system.Proceedings of the OCEANS'2003 Conference.San Diego,CA.,USA:IEEE,2003.p2195-2200.
    [13]Lambiotte J C,Coulson R,Smith SM.Results from mechanical docking tests of a morpheus class AUV with a dock designed for OEX class AUV.Oceans Conference Record.Piscataway,NJ,USA:IEEE,2002.p260-265.
    [14]Chardard Y,Copros T.SWIMMER:final sea demonstration of this innovative hybrid AUV/ROV system.Proceedings of the 2002 International Symposium on Underwater Technology.New York,USA:IEEE,2002.p17-23.
    [15]于开洋,徐凤安,王棣棠等.“探索者”号无缆水下机器人水下回收系统的设计与应用.机器人,1996,18(1):179-184页.
    [16]郑可为,边信黔,施小成.基于混杂系统理论的救生艇自动对接过程协调控制.哈尔滨工程大学学报,2007,28(8):885-889页.
    [17]Kevin M B.Real-Time Modeling of Cross-Body Flow for Torpedo Tube Recovery of the Phoenix Autonomous Underwater Vehicles.USA:Naval Postgraduate School Master's Thesis,1998.
    [18]索胜军.潜器对接过程智能控制技术的研究.哈尔滨:哈尔滨工程大学博士学位论文,2001.
    [19]Hutchins R G,Roque J P C.Filtering and control of an autonomous underwater vehicle both target intercept and docking.Proceedings of the 1995 IEEE Conference on Control Applications.Piscataway,NJ,USA:IEEE,1995.p1162-1163.
    [20]Rae G J S,Smith S M.A fuzzy rule based docking procedure for autonomous underwater vehicles.Proceedings of the Oceans'92 Conference.New York,NY,USA:IEEE,1992.p539-546.
    [21]Kato N,Endo M.Guidance and control of unmanned,untethered submersible for rendezvous and docking with underwater station.Oceans 89.Part3:Navigation;Remote Sensing;Underwater Vehicles/ Exploration.Piscataway,NJ,USA:IEEE,1989.p804-809.
    [22]吕春旺.海底管道的自主探测与识别技术研究.哈尔滨:哈尔滨工程大学硕士学位论文,2007.
    [23]游思翔.水下历史遗迹图像的预处理及其分析研究.南京:南京理工大学硕士学位论文,2008.
    [24]王雪峰,吕汝信.水下航行体位置指示及打捞、回收新技术研究.船舶工程,2002,13(4):52-55页.
    [25]张法全,郑承栋,陈良益等.水下电视图像预处理方法研究.电视技术,2008,32(3):16-18页.
    [26]张铁栋,万磊,秦再白等.基于离散分数布朗随机场的水下图像目标检测.光电工程,2008,35(8):41-46页.
    [27]严卫生,宋保维,潘光.水下航行器导航与控制实时仿真系统.西北工业大学学报.2003,21(4):424-427页.
    [28]赵会滨,战兴群,张炎华.水下图像导航技术在潜艇上的应用.中国惯性技术学报.2001,9(1):64-67页.
    [29]陈宇新,安东,任思聪.INS/GPS/SAR组合导航系统研究.中国惯性技术学报,1997,5(4):23-25页.
    [30]张宾,孙长瑜.水声信号处理中的多传感器数据融合.传感器与微系统.2007,26(12):41-46页.
    [31]冷洁.水下光学成像系统的研究现状和展望.激光杂志.2008,29(1):7-8页.
    [32]Negahdaripour S,Xu X,Jin L.Direct estimation of motion from sea floor images for automatic;station keeping of submersible platforms.IEEE Journal of Oceanic Engineering,1999,24(3):p370.
    [33]Jin L,Xu X,Negahdaripour S,Tsukamoto C,et al.A realtime vision-based station keeping system for underwater robotics applications.In:OCEANS'96 MTS/IEEE Prospects for the 21st Century Conference Proceedings,March.p1996-1076.
    [34]Bird L.E,Graves D,Massion G,et al.Establishing a benthic cabled observatory with ROV based cable deployment.OCEANS 2006,Boston,MA,USA,18-21 Sept.2006.p4244.
    [35]Lots J F,Lane DM,Trucco E,et al.A2-D visual servoing for underwater vehicle station keeping.In:Proceedings of the 2001 IEEE International Conference on Robotics & Automation,March 2001.p2767.
    [36]Zwaan S,Santos-Victor J.Real-time vision-based station keeping for underwater robots.In:OCEANS 2001 MTS/IEEE Conference and Exhibition,Feb 2001.p1058.
    [37]Fishier M A,Bolles R C.Random sample consensuss:A paradigm for model fitting with applications to image analysis and automated cartomated cartogramphy.Comm.ACM,1981,24(6):p381-395.
    [38]Shuo Li,Shihua Tang,Qingxiao Wu,et al.Positioning of an underwater vehicle based on model-known vision system.OCEANS,2005.Proceedings of MTS/IEEE Vol.1,2005.p571-575.
    [39]Jin-Yeong Parkt,Bong-Huan Junt,Pan-Mook Leet.Experiment on underwater docking of an autonomous underwater vehicle TSiMI' using optical terminal guidance.OCEANS 2007-Europe,OCEANS 2007-Europe,2007,p4302370.
    [40]Lee,Pan-Mook,Jeon,Bong-Hwan,Kim,Sea-Moon.Visual servoing for underwater docking of an autonomous underwater vehicle with one camera.Oceans Conference Record (IEEE),v 2,2003.p677-682.
    [41]HALCON the power of Machine Vision-HDevelop User's Guide.Germany,München:MVTec Software GmbH,2005.
    [42]HALCON/HDevelop Reference Manual.Germany,München:MVTec Software GmbH,2007.
    [43]庞蕴凡.视觉与照明.北京:中国铁道出版社,1993.
    [44]段德山.工件非接触检测中机器视觉的研究与应用.北京:北京邮电大学工学硕士学位论文,2007.
    [45]马颂德,张正友.计算机视觉--理论与算法基础.北京:科学出版社,1998.
    [46]Tsai R.Y,An efficient and accurate camera calibration technique for 3D machine vision.Proc.CVPR'86.p364-374.
    [47]高立志,方勇,林志航.高精度立体视觉测量中一种通用的摄像机标定技术.机械科学与技术,1998,17(5):808-811页.
    [48]Juyang Weng,Paul Cohen,Marc Herniou.Camera Calibration with Distortion Models and Accuracy Evaluation,IEEE Trans,on PAMI,1992,Vol.14(10):p965-980.
    [49]R.Y.Tsai.A versatile camera calibration technique for high accuracy 3D machine vision metrology using off-the-shelf TV camera and lenses.IEEE Journal of Automation,1987,3(4):p323-344.
    [50]R.Y.Tsai.An efficient and accurate camera calibration technique for 3D machine vision.Proc.IEEE Conf.On Computer Vision and Pattern Recognition,1986,p364-374.
    [51]Zhang zhengyou.Flexible Camera Calibration By Viewing a Plane From Unknown Orientations.Proc.IEEE Conf.On Computer Vision,1999,Vol 1:p666-673.
    [52]Weng J,Cohen P,Hemiou M.Camera calibration with distortion models and accuracy evaluation.IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(10):p965-980.
    [53]Wei J,Ma S.Implicit and explicit camera calibration:Theory and experiments.IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16(5):p469-480.[54]马桂珍.基于立体视觉的三维景物重建与跟踪技术研究.长沙:国防科学技术大学硕士研究论文,2004.[55]Zhengyou Zhang.A Flexible New Technique for Camera Calibration.IEEE Transactions on Pattern Analysis and Machine Intelligence,2000, 22(11):p1330-1334.
    [56]章毓晋.图像分割.北京:科学出版社,2001.
    [57]孙仲康,沈振康.数字图像处理及其应用.北京:国防工业出版社,1985.
    [58]王平凯.基于机器视觉技术的偏心桶口自定位系统研究.长春:长春工业大学硕士学位论文,2006.
    [59]苏晓萍.关于希尔排序算法的讨论.青海大学学报(自然科学版),1999,17(1):36-40页.
    [60]吴立德.计算计视觉.上海:复旦大学出版社,1993.
    [61]Abdel-Aziz Y I,Karara H M.Direct linear transformation from comparator coordinates into object space coordinates.ASP Symposium on Close-Range Photogrammetry,1971,p1-18.
    [62]Tsai R,Lenz R K.A technique for fully autonomous and efficient 3D robotics hand/eye calibration.IEEE TRANS.On Rbotics and Automation,1989,5(3):p345-358.
    [63]Weng J Y,Paul Cohen and Marc Herniou.Camera calibration with distortion model and accuracy evaluation.IEEE PAMI,1992,14(10):p965-980.
    [64]Milan Sonka,Vaclav Hlavac,Roger Boyle.Image Processing,Analysis and Machine Vision.by Thomson Learning and PT Press,1999,p309-321.
    [65]邱茂林,马颂德,李毅.计算机视觉中摄像机定标综述.自动化学报,2000,26(1):43-55页.
    [66]Ma S,Wei G.A self-calibration technique for active vision system.IEEE Trans.Robotics and Automation,1996,12:p114-120.
    [67]Armstrong M,Zisserman A and Hartley R.Self-Calibration from image triples.ECCV'96,1996.p3-16.
    [68]Heyden A Astrom K.Euclidean reconstruction from image sequences with varying and unknown focal length and principal point.CVPR'97,1997.p438-443.
    [69]Longuet Higgins H C,A computer algorithm for reconstructing a scene from two projections.Nature,Vol.293,No.10,1981.p133-135.
    [70]Ma S.A self-calibration technique for active vision system,IEEE Trans.Robotics and Automation,No.12,1996.p114-120.
    [71]Heyden A.reconstruction from image sequences by means of relative depths.Proc.ICCV'9,1995.p1058-1063.
    [72]Maybank S J,Faugeras O D.A theory of self-calibration of a moving camera.Computer Vision.1992,8(2):p123-151.
    [73]Faugeras O D,Mourrain B.On tbe geometry and algebra of the point and line correspondences between images,Proc.ICCV'95,1995.p951-956.
    [74]Hatrley R,Hamyan E,L.de Agapito and I Reid.Camera calibration and the search for infinity ICICY'9,1999.p510-516.
    [75]刘传才.图像理解与计算机视觉.福建:厦门大学出版社,2002.
    [76]J.More.The Levenberg-Marquarat algorithm,implementation and theory.In G A.Watson,editor,Numerical Analysis,Lecture Notes in Mathematics 630.Springer-Verlag,1977
    [77]贾云得.机器视觉.北京:科学出版社,2000.
    [78]王磊.三维重构技术的研究与应用.北京:清华大学硕士学位论文,2000.
    [79]陈荣盛,袁小海,胡震等.水下机器人光视觉信息获取及处理算法.船舶力学.1999,3(2):65-66页.
    [80]夏良正.数字图像处理.南京:东南大学出版社,1999.
    [81]魏鈺.基于数字图像轮廓特征的机械零件识别.北京:华北电力大学硕士学位论文,2004.
    [82]田捷,沙飞,张新生等.实用图像分析与处理技术.北京.电子工业出版社,1995.
    [83]Wesley E.Snyder Hairong Qi.Machine Vision.England:Cambridge University Press,2004.
    [84]姚峰林,詹海英,李元宗.机器视觉中的边缘检测技术研究.机械工程与自动化,2005.1(2):108-110页.
    [85]D.Demigny.On optimal linear filtering for edge detection.IEEE Trans.Image Processing.2002,7(11):p728-737.
    [86]D.Demigny,F.G Lorca.Evaluation of Edge Detectors Performances with a Discrete Expression of Canny's Criteria.In Proc.Int.Conf.Image Processing,1995,2(10):pl69-172.
    [87]Robert M.Haralick.Digital Step Edges from Zero Corssing of Second Directional Derivatives.IEEE Trans.Pattern Analysis and Machine Intelligence,1984.PAMI-6(1):p58-68.
    [88]刘变莲.亚像素边缘检测技术的研究.电脑开发与应用,2005,55(18):736-737页.
    [89]A.J.Tabatabai.Edge Location to Subpixel Values in Digital Image.IEEE,1984,TransPAMI-6(1):p188-201.
    [90]Lyvers E P,Mitchel O R.Precision edge contrast and orientation estimation.IEEE,1988,Trans on PAMI-10(6):p927-937.
    [91]于烨,陆建华,郑君里.基于Hermite插值的彩色图像边缘检测技术.清华大学学报(自然科学版),2008,48(4):553-557页.
    [92]朱颖,江泽涛.基于Sobel算子的亚像素边缘检测方法.南昌航空工业学院学报(自然科学版),2005,6(19):100-102页.
    [93]陆宗骐,梁诚.用Sobel算子细化边缘.中国图像图形学报,2000,6(5):516-520页.
    [94]吴晓波,钟先信.应用多项式插值函数提高面阵CCD尺寸测量分辨力.仪器仪表学报,1996,4(17):154-159页.
    [95]Peterfreund N.The velocity snake:Deformable Contour for Tracking in Spatio--Velocity Space.Computer Vision and lmage Understanding,1999,73:p346-356.
    [96]Kassm,Witkina,Terzopoulousd.Snakes:active contour models.In Proceedings of the 1st International conference on computer vision.London.IEEE Computer Society Press,1987.p259-268.
    [97]王换清.平均曲率平方的变分问题.北京:北京交通大学硕士学位论文,2008.
    [98]Prince J,Xu C.A new external forcemodel for snakes.InProc.1996 Image and Multidimensional Signal Processing Workshop.1996.p30-31.
    [99]Xu C,Prince J.Snake,shapes and gradient vector flow.IEEE Transactions on Image Processing,1998,7(3):p359-369.
    [100]李潇,李平,文玉梅等.基于改进蛇模型的步态轮廓提取.计算机应用.2007,27(6):1468-1471页.
    [101]Wiliams,D,Shahm.A fast algorithm for active contours.Computer Vision,1990.Proceedings,Third Internationa Conference on 4-7 Dec.1990.p592-595.
    [102]罗钟铱,刘成明.灰度图像匹配的快速算法.计算机辅助设计与图形学学报,2005,17(5):966-970页.
    [103]龙世清,黄载禄,曹汉房.一种立体视觉图像的特征选择与匹配方法.华中理工大学学报,1994,11(11):2831页.
    [104]朱兵,李金宗,陈爱军.基于知识的快速港口识别.计算机应用,2006,26(3):729-732页.
    [105]Anil K.Jain,Yu Zhong,etal.Object Matching Using Deformable Templates,PAMI Vol.18,No.3,1996,p267-277.
    [106]Cootes T,Taylor C,Lanitis A.Active shape models evaluation of a multi-resolution method for improving image search.Proceedings of the British Machine Vision Conferences.1994,p327-336.
    [107]姚春生.基于目标轮廓的图像检索模型.广州:暨南大学硕士学位论文,2005
    [108]邓秀娟.机器人视觉中基于轮廓提取的模型匹配算法研究.大连:大连铁道学院工学颂士学位论文,2002.
    [109]李介谷.计算机视觉的理论和实践.上海:上海交通大学出版社,1991.
    [110]Blostein S.D.,Huang T.S.,Error analysis in stereo determination of 3-d point position,IEEE Trans,on PAMI,1987,9(6):p752-765.
    [111]蒋新松,封锡盛,王棣棠,水下机器人,沈阳:辽宁科学技术出版社,2000.
    [112]李殿璞.船舶运动与建模.哈尔滨:哈尔滨工程大学出版社,1999.
    [113]陈厚泰.潜艇操纵性.北京:国防工业出版社,1981.
    [114]张铭钧.水下机器人.北京:海洋出版社,2000.
    [115]熊华胜.自治式水下机器人的H_∞鲁棒控制技术研究.哈尔滨:哈尔滨工程大学博士学位论文,2006.
    [116]褚健,俞立,苏宏业.鲁棒控制理论及应用.杭州:浙江大学出版社,2000.
    [117]申铁龙.H_∞控制理论及应用.北京:航空工业出版社,1998.
    [118]Jing Li,Hua O W,David N.Dynamic parallel distributed compensateion for Takagi-Sugeno fuzzy systems an LMI approach.Information Science,2000,123(3/4):p201-221
    [119]Tanaka K,Sugeno M.Stability analysis and design of fuzzy control system.Fuzzy Sets and System,1992,45:p135-156.
    [120]Tanaka K,Sano M.Fuzzy stability criterion of a class of nonlinear system.Information Science,1993,70(1):p1-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700