用户名: 密码: 验证码:
双馈风力发电系统变流器控制的相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着新能源产业的发展,双馈发电系统被广泛应用于大功率风力发电中。研究双馈型风力发电系统的工作原理及存在的问题对于新能源的利用有重要意义。
     双馈电机定、转子与各自所连接的电源均有有功功率和无功功率的交换,其机电能量转换过程中功率关系复杂。本文对转子电路频率符号的问题和无功功率特性进行了研究,指出了超同步运行转子频率取负值的必要性和物理意义,指出应用双馈电机等效电路计算转子无功功率时出现的“无功功率变性”现象;对双馈电机等效电路进行了与物理部分一一对应的划分,明确了其中代表转轴作用的等效元件并将其消耗的无功功率定义为机械无功功率,在此基础上解释了能量转换过程中无功功率的流动特点和守恒特性;避开复杂而不直观的表达式,采用四维图的形式直观地表现了双馈电机在整个三维工作区间的运行特性。
     双馈电机能量转换过程由连接在转子和电网之间的背靠背变流器来控制。本文建立了双馈电机数学模型和网侧变流器数学模型,分别构建了网侧变流器电压定向矢量控制策略和机侧变流器定子磁链定向矢量控制策略,实现了背靠背变流器的有功功率和无功功率解耦控制;分析对比了双馈电机并网前后数学模型,指出并网前后耦合项和电流调节器参数设置的差异;说明了忽略并网前后数学模型变化对双馈电机转矩动态性能设计和调试带来的不利影响;构建了带电压闭环的双馈电机并网控制策略,在该策略中耦合项和电流调节器参数并网前后保持不变,从并网前后差异的角度对该控制策略进行了分析和实验研究。
     在定子磁链定向的双馈风力发电控制系统中,定子磁链准确与否直接关系到双馈电机有功功率和无功功率能否被准确控制。在电网电压跌落期间,定子磁链中出现直流分量和负序分量,且磁路出现非线性现象,此时就对定子磁链检测方法提出了更为苛刻的要求。本文对定子磁链检测的直接计算法和闭环计算法的原理进行了分析,着重研究了各种方法在低电压穿越期间的动态性能。对不同方法应用于低电压穿越控制时,系统的低电压穿越能力进行了实验研究和结果分析,为LVRT控制中定子磁链检测方法的选取提供了依据。
     转子位置的准确获得是双馈电机矢量控制的必要条件。本文分别研究了有位置传感器和无位置传感器两种情况下转子位置检测方法。对于有位置传感器的情况,提出了同步旋转坐标系中编码器安装位置的直接计算法,避免了对并网前含有大量高频分量的定子电压相位的检测,减小了编码器安装位置检测运算量。在无位置编码器的情况下,控制系统需采用无位置算法先计算出转子位置,然后才能实施矢量控制。本文分析了无位置编码器运行的开环算法和闭环算法,着重研究了基于定子磁链和转子电流的模型参考自适应算法,通过对其等效闭环结构的分析证明了这两种方法的同一性;对基于转子电流的模型参考自适应算法中自适应PI调节器的输入信号进行了改进,使得自适应PI调节器的输入误差与转子位置检测误差的成线性关系;推导了自适应PI调节器的参数计算方法,对不同参数下转子位置检测动态性能进行了实验研究。
Along with the development of new and renewable energy industry, doubly-fed induction machine wind power generation systems are widely used in large wind power generation occasions. Research of the principle and existing problems of doubly-fed induction machine wind power generation system is really meaningful to renewable energy application.
     Both the stator and rotor of (DFIM) exchange active and reactive power with the sources connected to them, so the power relationship in the energy conversion is complicate. This dissertation analyses rotor's algebraic sign and reactive power, and give the necessity of minus frequency in super-synchronous speed area. The physical meaning of minus frequency is illustrated. When reactive power is computed by equivalent circuit,"reactive power character change" phenomenon occurs. The equivalent circuit of DFIM is divided according related physical element. The mechanical shaft related element is defined, so its reactive power. Then the reactive power flow and conservation character in energy conversion is illustrated. Instead of complicated equation, four-dimensional figures are used to express DFIM working characteristics in three-dimensional area.
     The energy conversion of DFIM is controlled by back-to-back converters between its rotor and the grid. This dissertation builds mathematical models of back-to-back converters. Grid side converter's grid voltage oriented vector control and machine rotor side converter's staton flux oriented control are employed and the decoupled control of back-to-back converter's active and reactive power is reached. The mathematical models of DFIM before and after grid connection are researched. The couple items and parameters of DFIM before and after grid connection are found different. The drawbacks of ignoring the difference of DFIM before and after grid connection in torque dynamic performance design and implement are illustrated. The grid connection scheme with voltage close loop is built and analyzed from the point of difference before and after grid connection. Then the corresponding experiment is done and the results are analyzed in comparison.
     In stator flux oriented vector control DFIM wind power generation system, the accuracy of complex power control is decided by stator flux detection performance. During low grid voltage period dc composition and negative sequence occurs in stator flux and magnetic circuit non-linear character occurs too. This puts more slashing requirements on stator flux detection algorithm. This dissertation analyzed the direct computation methods and close loop method of stator flux detection. The dynamic performance of different methods during low voltage ride through is emphasized. The system LVRT ability with different flux detection methods is researched in principle and experiments. The research provides groundwork in stator flux detection method choosing during LVRT.
     Rotor position is necessary in vector control of DFIM. This dissertation researches rotor position detection methods in both position sensor existing and position sensor non-existing conditions. In position sensor existing condition, a position sensor mounting detection method in synchronous reference frame is proposed. This method avoids phase judge of stator voltage before grid connection, which has a lot of harmonics. So the computation workload in position sensor mounting detection is reduced largely. In position sensor non-existing condition, the control algorithm has to compute rotor position firstly to implement vector control scheme. This dissertation researches open loop and close loop algorithm of rotor position detection. The model reference adaptive system based on stator flux and rotor current are analyzed in detail. Their equivalent close loop structure shows the sameness of the two algorithms. The input of adaptive mechanism in rotor current based MRAS is improved. As a result, the adaptive mechanism input has a linear relationship with rotor position detection error. The parameters design method is deduced for PI adaptive mechanism. The dynamic performance of system with different parameters is researched in experiment.
引文
[I]Xia Yang, Yonghua Song, Guanghui Wang, Weisheng Wang. A Comprehensive Review on the Development of Sustainable Energy Strategy and Implementation in China[J]. IEEE Transactions on Sustainable Energy.2010.1(2). pp.57-65.
    [2]贺德馨.中国风能发展战略研究[J].中国工程科学.2011.13(6):95-100.
    [3]苏明军.风力发电-中国重要的后续能源[J].能源环境保护.2005.19(6):12-14.
    [4]Zhe Chen, Guerrero J.M., Blaabjerg F.. A Review of the State of the Art of Power Electronics for Wind Turbines[J]. IEEE Transactions on Power Electronics.2009.24(8). pp.1859-1875.
    [5]Global Wind Energy Council. Global Wind Stastics 2011(2012-7-2). http://www.gwec.net/.
    [6]贺德馨.对中国风能可持续发展的几点思考[J].风能.2011.(4):14-16.
    [7]於岳亮.风电机组发电机的技术发展和展望[J].电力与能源,2011,32(4):325-327.
    [8]Hatziargyriou, N., Zervos A. Wind power development in Europe[J]. IEEE Proceedings.2001, 89(12).pp.1765-1782.
    [9]王素霞.国内外风力发电的情况及发展趋势[J].电力技术经济,2007,19(1):29-31,36.
    [10]林鹤云,郭玉敬,孙蓓蓓,蒋彦龙,黄允凯,张建润,卢熹.海上风电的若干关键技术综述[J].东南大学学报(自然科学版).2011.41(4):882-888.
    [11]Chen Z., Spooner E.. Grid power quality with variable speed wind turbines[J]. IEEETransactions on Energy Conversion.2001.16(2). pp.148-154.
    [12]夏长亮,宋战锋.变速恒频风力发电系统变桨距自抗扰控制[J].中国电机工程学报,2007,27(14):91-95.
    [13]陈瑶.直驱型风力发电系统全功率并网变流技术的研究[博士学位论文].北京.北京交通大学.2008.
    [14]H. Li*, Z. Chen. Overview of different wind generator systems and their comparisons[J]. IET Renewable Power Generation.2008.2(2).123-138[6] H. Li*, Z. Chen. Overview of different wind generator systems and their comparisons[J]. IET Renewable Power Generation. 2008.2(2).123-138.
    [15]叶杭治.风力发电机组的控制技术[M].北京.机械工业出版社.2002
    [16]Datta, R., Ranganathan, V.T. Variable-speed wind power generation using doubly fed wound rotor induction machine-a comparison with alternative schemes [J]. IEEE Transactions on Energy Conversion.2002. vol.17. No.3. pp.414-421.
    [17]Nicolas Patin. Eric Monmasson, and Jean-Paul Louis. Analysis and control of a cascaded doubly-fed induction generator. IEEE IECON. PP.2487-2492. Nov.2005.
    [18]阳锦刚,潘再平.级联式无刷双馈发电机的仿真研究[J].中国电机工程学报,2008,29(8):1015-1020.
    [19]刘其辉贺益康张建华.交流励磁变速恒频双馈型异步发电机的稳态功率关系[J].电工技术学报,2006,21(2):3944,62.
    [20]Qihui Liu, Zhiming Wang, Wanjie Li. Study on reactive power characteristics of doubly fed variable speed constant frequency wind power generators[C]. Electrical Machines and Systems, ICEMS 2010, IEEE Conference Publications, pp:547-552.
    [21]李辉,杨顺昌.考虑转子谐波电流影响后双馈电机电磁功率的分析与计算(英文)[J].中国电机工程学报,2003,23(7):123-128.
    [22]姚兴佳,刘君,邢作霞等.双馈变速恒频风电机组的功率特性[J].沈阳工业大学学报,2008,30(3):270-275.
    [23]陈学顺,许洪华.双馈电机变速恒频风力发电运行方式研究[J].太阳能学报,2004,25(5):583-586.
    [24]Tamura J., Sasaki T., Ishikawa S., Hasegawa J. Analysis of the steady state characteristics of doubly fed synchronous machines[J]. IEEE Transactions on Energy Conversion. 1989,4(2),pp:250-256.2009,pp:1-5.
    [25]吴国祥,马炜,陈国呈,俞俊杰.双馈变速恒频风力发电空载并网控制策略[J].电工技术学报,2007,22(7):170-175.
    [26]卞松江.变速恒频风力发电关键技术研究[博士论文].浙江大学博士论文,2003-6.pp:23-23.
    [27]汤蕴璆:电机学(第一版)[M].北京:机械工业出版社,1999.
    [28]邓先明,姜建国,方荣惠.笼型转子无刷双馈电机的电磁分析和等效电路[J].电工技术学报,2005,20(9):19-28.
    [29]Cadirci I., Ermis M. Double-output induction generator operating at subsynchronousand supersynchronousspeeds:steady-state performance optim isat ion and wind-energy recovery[J]. Electric Power Applications, IEE Proceedings B.1992,139(5):429-442.
    [30]Djurovic, M., Joksimovic, G., Saveljic, R., Maricic, I. Double fed induction generator with two pair of poles[C]. Electrical Machines and Drives,1995. IET Conference Publications,pp: 449-452.
    [31]邱培基汤宁平.串联联接双馈同步感应发电机的分析及设计特点[J].电工技术学报,1996,11(5):1-5.
    [32]邱培基夏书杰卓忠疆.双馈调速同步感应电动机的分析及控制[J].电工技术学报,1994,(3):5-10.
    [33]林成武,王晓东,姚兴佳.双馈风力发电机功率特性的理论分析及实验研究[J].太阳能学报,2008,29(3):328-331.
    [34]Tapia A., Tapia G., Ostolaza J.X., Saenz J.R. Modeling and control of a wind turbine driven doubly fed induction generator[J]. IEEE Transactions on Energy Conversion,2003,18(2),pp: 194-204.
    [35]邱培基,郑宁,卓忠疆.自励双馈同步感应发电机的分析与单片机控制[J].电工技术学报,1992,(11):9-13.
    [36]战亮宇,金新民,张禄.双馈电机超同步运行转子电路复功率的负频率分析法[J].电工技术学报.2011.26(10):161-166
    [37]Vicatos M.S., Tegopoulos J.A. Steady State Analysis of a Doubly-Fed Induction Generator under Synchronous Operation[J]. Energy Conversion, IEEE Transactions on. 1989,4(3):495-501.
    [38]陈希有,刘凤春,盛贤君.相量变换在正弦电路功率分析中的应用[J].电气电子教学学报,2007,29(3):42-44.
    [39]解培中,史学军.正弦稳态电路功率问题[J].电气电子教学学报,2001,23(2):31-33.
    [40]王茂海,孙元章.三相电路中功率现象的解释及无功功率的分类[J].中国电机工程学报,2003,23(10):63-66.
    [41]郎永强,张学广,徐殿国,马洪飞,Hadianmrei S.R.双馈电机风电场无功功率分析及控制策略[J].中国电机工程学报,2007,27(9):77-82.
    [42]张学广,刘义成,海樱,徐殿国.改进的配电网双馈风电场电压控制策略[J].中国电机工程学报,2010,30(7):29-35.
    [43]Martinez M.I., Tapia G., Susperregui A., Camblong H. DFIG Power Generation Capability and Feasibility Regions Under Unbalanced Grid Voltage Conditions[J]. IEEE Transactions on Energy Conversion,2011,26(4),pp:1051-1062.
    [44]Wang Jianliang, Zhang Yihuang, Li Jinze. The Separation Method for the Equivalent Circuit Parameter of DFIG[C]. Power and Energy Engineering Conference (APPEEC),2011 Asia-Pacific, pp:1-4.
    [45]Jianyun Chai, Zhou Zhang. Calculation of Equivalent Circuit Parameters of Doubly Fed Induction Generator Based on Magnetic Field Finite Element Analysis[C]. Electrical Machines and Systems,2008. ICEMS 2008, pp:3767-3771
    [46]张凤阁,王凤翔,徐隆亚.磁阻和笼型转子无刷双馈电机的统一等效电路和转矩公式[J].中国电机工程学报,1999,19(11):28-31,45.
    [47]邓先明,谭国俊,袁启东,拾华杰.无刷双馈电机的功率研究[J].电气自动化,2008,30(1):16-20,40.
    [48]黄守道,王耀南,王毅,高剑.无刷双馈电机有功和无功功率控制研究[J].中国电机工程学报,2005,25(4):87-93.
    [49]邓先明,姜建国,伍小杰,方荣惠.笼型转子无刷双馈电机的无功功率和稳定性[J].电工技术学报,2008,23(1):40-47.
    [50]王奎,郑泽东,李永东.基于新型模块化多电平变换器的五电平PWM整流器[J].电工技术学报,2011,26(5):34-38.
    [51]张崇巍,张兴.PWM整流器及其控制.北京:机械工业出版社,2003.
    [52]B K Bose. Modern power electronics and AC drives. Beijing:China Machine Press,2003.
    [53]J R Rodriguez, J W Dixon, J R Espinoza, et al. PWM regenerative rectifiers:state of the art. IEEE Transactions on Industrial Electronics,2005,52(1):5-22.
    [54]汪万伟,尹华杰,管霖.双闭环矢量控制的电压型PWM整流器参数整定[J].电工技术学报,2010,25(2):67-72,79.
    [55]Qingrong Zeng, Liuchen Chang. Study of advanced current control strategies for three-phase grid-connected PWM inverters for distributed generation[C]. Control Applications, IEEE Conference on,2005, pp:1311-1316.
    [56]Wang Xu, Huang Kaizheng, Wang Wanwei. Modeling and Simulation Research for Three-Phase Voltage Source PWM Rectifier[J]. Journal of System Simulation,2008,20(19): 5204-5207.
    [57]A Draou, Y Sato, T Kataoka. A new state feedback based transient control of PWM AC to DC voltage type converters. IEEE Transactions on Power Electronics,1995,10(6):716-724.
    [58]Cortes P., Vattuone L., Rodriguez J. A comparative study of predictive current control for three-phase voltage source inverters based on switching frequency and current error[C]. Power Electronics and Applications (EPE 2011), pp:1-8.
    [59]Bode G.H., Poh Chiang Loh, Newman M.J., Holmes D.G. An improved robust predictive current regulation algorithm[J]. Industry Applications, IEEE Transactions. 2005,41 (6):1720-1733.
    [60]W McMurray. Modulation of the chopping frequency in DC choppers and PWM inverters having current-hysteresis controllers. IEEE Transactions on Industry Applications,1984, IA-20(4):763-768.
    [61]L Malesani, P Tenti. A novel hysteresis control method for current-controlled voltage-source PWM inverters with constant modulation frequency. IEEE Transactions on Industry Applications,1990,26(1):88-92.
    [62]I Nagy. Novel adaptive tolerance band based PWM for field oriented control of induction machines, IEEE Transactions on Industrial Electronics,1994,41(4):406-417.
    [63]C Cecati, A Dell'Aquila, M Liserre, et al. A Fuzzy-Logic-Based Controller for Active Rectifier. IEEE Transactions on Industry Applications,2003,39(1):105-112.
    [64]S Saetieo, D A Torrey. Fuzzy logic control of a space-vector PWM current regulator for three-phase power converters. IEEE Transactions on Power Electronics,1998,13(3):419-426.
    [65]C Cecati, A Dell'Aquila, A Lecci, et al. Implementation issues of a fuzzy-logic-based three-phase active rectifier employing only Voltage sensors. IEEE Transaction on Industrial Electronics,2005,52(2):378-385.
    [66]G Joos, H Pinheiro, K Khorasani. DSP implementation of neural network-based controller for voltage PWM rectifier neural. IEEE TENCON Digital Signal Processing Applications Proceedings, Perth, WA, Australia,1996,2:883-888.
    [67]M Cichowlas, M P Kazmierkowski. Comparison of current control techniques for PWM rectifiers. IEEE International Symposium on Industrial Electronics, L'Aquila, Italy,2002,4: 1259-1263.
    [68]L H Tey, P L So, Y C Chu. Adaptive neural network control of active filters. Electric Power Systems Research,2005,74(1):37-56.
    [69]Serpa L.A., Barbosa P.M., Steimer P.K., Kolar J.W. Five-level virtual-flux direct power control for the active neutral-point clamped multilevel inverter[C]. Power Electronics Specialists Conference, Power Electronics Specialists Conference,2008.pp:1668-1674.
    [70]Venkateshwarlu S., Muni B.P., Rajkumar A.D. Analysis of VF-DPC PWM converter based STATCOM[C]. India Conference,INDICON 2008, Annual IEEE, pp:431-436.
    [71]M Liserre, A Dell'Aquila, F Blaabjerg. Stability improvements of an LCL-filter based three-phase active rectifier.33rd Annual IEEE Power Electronics Specialists Conference, Cairns, Qld., Australia,2002,3:1195-1201.
    [72]Liserre M., Blaabjerg F., Hansen S. Design and control of an LCL-filter based three-phase active rectifier[C]. Industry Applications Conference,2001, IEEE, pp:299-307,vol.1.
    [73]M Liserre, F Blaabjerg, S Hansen. Design and control of an LCL-filter-based three-phase active rectifier. IEEE Transactions on Industry Applications,2005,41 (5):1281-1291.
    [74]M Malinowski, M P Kazmierkowski, S Bernet. New simple active damping of resonance in three-phase PWM converter with LCL filter. IEEE International Conference on Industrial Technology, Hong Kong, China,2005:861-865.
    [75]E Twining, D G Holmes. Grid current regulation of a three-phase voltage source inverter with an LCL input filter. IEEE Transactions on Power Electronics,2003,18 (3):888-895.
    [76]Guofeng Yuan, Jianyun Chai, Yongdong Li. Vector control and synchronization of doubly fed induction wind generator system[C]. The 4th International Power Electronics and Motion Control Conference, IPEMC'2004,2004:886-890.
    [77]Peresada S., Tilli, A., Tonielli, A. Indirect stator flux-oriented output feedback control of a doubly fed induction machine[J]. IEEE Transactions on Control Systems Technology,2003, 11(6):875-888.
    [78]赵栋利,许洪华,赵斌,等.变速恒频风力双馈发电机并网电压控制研究[J].太阳能学报,2004,25(5):587-591.
    [79]刘其辉,贺益康,卞松江.变速恒频风力发电机空载并网控制[J].中国电机工程学报,2004,24(3):6-11.
    [80]苑国锋,柴建云,李永东.变速恒频风力发电机组励磁变频器的研究[J].中国电机工程学报,2005,25(8):90-94.
    [81]Holdsworth L., Wu X.G., Ekanayake J.B., et al. Comparison of fixed speed and doubly-fed induction wind turbines during power system disturbances[J]. IEE Proceedings-Generation, Transmission and Distribution,2003,150(3):343-352.
    [82]Gomez S.A., Amenedo J.L.R. Grid synchronisation of doubly fed induction generators using direct torque control,2002:3338-3343.
    [83]杨淑英,张兴,张崇巍,谢震,曹仁贤.变速恒频双馈风力发电机投切控制策略[J].中国电机工程学报,2007,27(7):103-108.
    [84]彭凌,李永东,柴建云,苑国锋.独立运行的双馈异步轴带发电机矢量控制系统[J].清华大学学报(自然科学版)[J].,2009,49(7):922-926.
    [85]付旺保,赵栋利,潘磊,许洪华.基于自抗扰控制器的变速恒频风力发电并网控制[J].中国电机工程学报,2006,26(3):13-18.
    [86]郎永强,徐殿国,Hadianmrei S.R,马洪飞.交流励磁双馈电机分段并网控制策略[J].中国电机工程学报,2006,26(19):133-138.
    [87]Pena R, Clare J C, Asher G M. Doubly fed induction generator using back to back PWM converter and its application to variable speed wind energy generation[J]. IEE Proc., Electrical Power Application,1996,143(3):231-241.
    [88]Yifan Tang, Longya Xu. Vector control and fuzzy logic control of doubly fed variable speed drives with DSP implementation[J]. IEEE Transactions on Energy Conversion,1995,10(4): 661-668.
    [89]Gomez S.A., Amenedo J.L.R. Grid synchronisation of doubly fed induction generators using direct torque control[C], IECON 2002, pp:3338-3343, vol.4.
    [90]Mohammed O.A., Liu Z., Liu S. Stator power factor adjustable direct torque control of doubly-fed induction machines[C].2005 IEEE International Conference on Electric Machines and Drives, pp:572-578.
    [91]Wang Weiguang, Qiu Tian. A review of direct power control technologies of DFIG with constant switching frequency[C]. Control and Decision Conference (CCDC),2011 Chinese, pp:2819-2822.
    [92]Lie Xu, Cartwright P. Direct active and reactive power control of DFIG for wind energy generation[J]. IEEE Transactions on Energy Conversion.2006,21(3):750-758.
    [93]Kolodziejek, P. Transient States of the Multiscalar Controlled Double Fed Induction Generator in the Wind Farm[C].2011 10th International Conference on Machine Learning and Applications and Workshops (ICMLA), pp:302-307, vol.2.
    [94]Yu Fang, Liu Qi-hui, Zhang Jian-hua. Flexible Grid-connection Technique and Novel Maximum Wind Power Tracking Algorithm for Doubly-Fed Wind Power Generator[J]. Industrial Electronics Society, IECON 2007, pp:2098-2103.
    [95]Billah M.M., Hosseinzadeh N., Ektesabi M.M. Modelling of a doubly fed induction generator (DFIG) to study its control system[C].2010 20th Australasian Universities Power Engineering Conference (AUPEC), pp:1-6.
    [96]李辉,杨顺昌,廖勇.并网双馈发电机电网电压定向励磁控制的研究[J].中国电机工程学报,2003,23(8):159-162.
    [97]Chondrogiannis S., Barnes M. Stability of doubly-fed induction generator under stator voltage orientated vector control[J]. Renewable Power Generation, IET.2008,2(3):170-180.
    [98]Mitsutoshi Yamamoto, Osamu Motoyoshi. Active and reactive power control for doubly fed wound rotor induction generator[J]. IEE Trans. Power Electron,1991,6(4):624-629.
    [99]万能,于克训,刘志华.双馈电动机矢量控制系统性能分析[J].电机与控制学报,2006,10(2):138-142.
    [100]王亮,林成武,姚鹏.双馈风力发电机的直接转矩控制技术[J].沈阳工业大学学报,2006,28(2):206-209,229.
    [101]高景德,王祥珩,李发海著.交流电机及其系统的分析,北京,清华大学出版社,2005年1月.
    [102]Krzeminski Z. Sensorless multiscalar control of double fed machine for wind power generators[C]. Power Conversion Conference,PCC Osaka 2002, pp:334-339 vol.1.
    [103]吴国祥,马神炜,陈国呈,俞俊杰.双馈变速恒频风力发电空载并网控制策略[J].电工技术学报,2007,22(7):169-175.
    [104]Gerardo Tapia, Giovanna Santamaria, Mikel Telleria, Ana Susperregui. Methodology for Smooth Connection of Doubly Fed Induction Generators to the Grid [J]. IEEE Transactions on Energy Conversion.2009.24(4):959-971.
    [105]关宏亮,赵海翔,王伟胜,戴慧珠,杨以涵.风电机组低电压穿越功能及其应用[J].电工技术学报,2007,22(10):173-177.
    [106]张兴,张龙云,杨淑英,余勇,曹仁贤.风力发电低电压穿越技术综述[J].电力系统及其自动化学报,2008,20(2):1-8.
    [107]贾俊川,刘晋,张一工.电网电压故障时双馈异步发电机定子磁链的动态特性研究[J].中国电机工程学报,2011,31(3):90-96.
    [108]王勇,张纯江,柴秀慧,高俊娥,杜翠.电网电压跌落情况下双馈风力发电机电磁过渡过程及控制策略[J].电工技术学报,2011,26(12):14-19.
    [109]Lu Zhang, Xinmin Jin, Liangyu Zhan. A Novel LVRT Control Strategy of DFIG Based Rotor Active Crowbar [C]. APPEEC.2011.1-6.
    [110]Ling Peng, Francois B., Yongdong Li. Improved Crowbar Control Strategy of DFIG Based Wind Turbines for Grid Fault Ride-Through[C]. Applied Power Electronics Conference and Exposition,APEC 2009.pp:1932-1938.
    [111]Karimi-Davijani H., Sheikholeslami A., Livani H., Norouzi, N. Fault ride-through capability improvement of wind farms using doubly fed induction generator[C]. The 43rd International Universities Power Engineering Conference,UPEC 2008.pp:1-5.
    [112]Yulong Wang, Jianlin Li, Shuju Hu, Honghua Xu. Analysis on DFIG Wind Power System Low-Voltage Ridethrough[C]. International Joint Conference on Artificial Intelligence,JCAI '09.pp:676-679.
    [113]Morneau J., Abbey C., Joos G. Effect of Low Voltage Ride Through Technologies on Wind Farm[C]. Electrical Power Conference, EPC 2007, IEEE Canada, pp:56-61.
    [114]Xiang Dawei, Yang Shunchang, Ran Li. System Simulation of a Doubly Fed Induction Generator Ride-through Control for Symmetrical Grid Fault[J]. Proceedings of the Chinese Society for Electrical Engineering,2006,(10):130-135.
    [115]Dawei Xiang, Li Ran, Tavner P.J., Yang S. Control of a doubly fed induction generator in a wind turbine during grid fault ride-through[J]. IEEE Transactions on Energy Conversion, 2006,21 (3):652-662.
    [116]张学广,徐殿国,潘伟明,姚春光.基于电网电压定向的双馈风力发电机灭磁控制策略[J].电力系统自动化,2010,34(7):95-98.
    [117]蔚兰,陈宇晨,陈国呈,吴国祥.双馈感应风力发电机低电压穿越控制策略的理论分析与实验研究[J].电工技术学报,2011,26(7):30-36.
    [118]蔚兰,陈国呈,宋小亮,曹大鹏,吴国祥.一种双馈感应风力发电机低电压穿越的控制策略[J].电工技术学报,2010,25(9):170-175.
    [119]梅柏杉,王晗,杨林涛.双馈感应电机间接转矩控制策略的研究[微电机].2011,44(5):64-67.
    [120]Guofeng Yuan, Jianyun Chai, Yongdong Li. Vector control and synchronization of doubly fed induction wind generator system[C]. The 4th International Power Electronics and Motion Control Conference, IPEMC'2004,2004:886-890.
    [121]Ohtani Tsugutoshi. Vector control of induction motor without shaft encoder[J]. IEEE Transactions on Industry Applications,1992,28(1):157-164.
    [122]Hu Ju. New integration algorithms for estimating motor flux over a wide speed range[C]. Power Electronics Specialists Conference, PESC'97,1997:1075-1081.
    [123]唐芬,金新民,姜久春,童亦斌,周飞.兆瓦级直驱型永磁风力发电机无位置传感器控制[J].电工技术学报,2011,26(4):19-25.
    [124]Jun Hu, Bin Wu. New Integration Algorithms for Estimation Motor Flux over a Wide Speed Range[J]. IEEE Trans. Power Electronics.1998. vol.13(5). pp.969-977.
    [125]何志明,廖勇,向大为.定子磁链观测器低通滤波器的改进[J].中国电机工程学报,2008,28(18):61-65.
    [126]Forchetti D.G., GarcIa GO., Valla M.I. Adaptive Observer for Sensorless Control of Stand-Alone Doubly Fed Induction Generator[J]. IEEE Transactions on Industrial Electronics, 2009,56(10):4174-4180.
    [127]李永东,曾毅,谭卓辉,侯轩.无速度传感器三电平逆变器异步电动机直接转矩控制系统(Ⅱ)—基于全阶定子磁链观测器的参数和速度辨识[J].电工技术学报.2004.19(8).88-92.
    [128]邹旭东,赵阳,刘新民,段善旭,康勇.双馈发电机转子位置检测及初始定位方案[J].电机与控制应用.2009.36(1):5-7,10
    [129]李岚,孙峰,杨一雄.双馈发电机转子位置角及转速的检测[J].太原理工大学学报,2009,40(3):297-299
    [130]许正望.双馈电机转差角的软件检测方法[J].湖北工业大学学报,2006,21(6):11-13
    [131]Xibo Yuan, Jianyun Chai, Yongdong Li. A doubly fed induction machine based solution to medium frequency power supply[C]. Power Electronics and Motion Control Conference, IPEMC '09. pp:1055-1059.
    [132]Cortajarena J.A., De Marcos J., Alvarez P., Vicandi F.J., Alkorta P. Start up and control of a DFIG wind turbine test rig[C]. IECON 2011-37th Annual Conference on IEEE Industrial Electronics Society. pp:2030-2035.
    [133]Jung-Woo Park, Ki-Wook Lee, Dong-Wook Kim, Kwang-Soo Lee, Jin-Soon Park. Control Method of a Doubly-fed Induction Generator with a Grid Synchronization against Parameter Variation and Encoder Position[C]. Industry Applications Conference,42nd IAS Annual Meeting,2007. pp:931-935.
    [134]Zhong Wang, GuoJie Li, Yuanzhang Sun, Ooi, B.T. Effect of Erroneous Position Measurements in Vector-Controlled Doubly Fed Induction Generator[J]. IEEE Transactions on Energy Conversion,2010,25(1):59-69.
    [135]Xin Hao, Chong Wei Zhang, Xing Zhang. A Comparision of Sensorless Control Strategies of Doubly Fed Induction Generator[C]. Energy and Environment Technology, ICEET'09. pp:3-6, vol.2.
    [136]陈国富,黄守道,陈顺,黄科元.双馈感应电机无速度传感器控制策略[J].电力电子技术,2009,43(8):26-27.
    [137]Hopfensperger B., Atkinson D.J., Lakin R.A. Stator-flux-oriented control of a doubly-fed induction machine with and without position encoder[J]. IEE Proceedings-Electric Power Applications,2000,147(4):241-250.
    [138]Morel L., Godfroid H., Mirzaian, A., Kauffmann J.M. double-fed induction machine: converter optimisation and field oriented control without position sensor[J]. IEE Proceedings-Electric Power Applications,1998,145(4):360-368.
    [139]Datta R, Ranganathan V T. Direct power control of grid-connected wound rotor induction machine without rotor position sensors[J]. IEEE Transactions on Power Electronics,2001, 16(3):390-399.
    [140]黄晟,廖武,黄科元.双馈风力发电系统无速度传感器控制[J].电气传动,2010,40(3):3-5.
    [141]Datta R., Ranganathan V.T. Decoupled control of active and reactive power for a grid-connected doubly-fed wound rotor induction machine without position sensors[C]. Industry Applications Conference,1999,Thirty-Fourth IAS Annual Meeting. pp:2623-2630,vol.4.
    [142]Datta.R., Ranganathan.V.T. A Simple Position-Sensorless Algorithm for rotor-side field-oriented control of wound-rotor induction machine [J]. IEEE Trans. Industrial Electronics.2001.vol.48(4). pp.786-793.
    [143]Longya Xu, Wei Cheng. Torque and reactive power control of a doubly fed induction machine by position sensorless scheme[J].IEEE Transactions on Industry Applications, 1995,31(3):636-642.
    [144]Bogalecka, E. Power control of a double fed induction generator without speed or position sensor[J]. Fifth European Conference on Power Electronics and Applications,1993. pp:224-228,vol.8.
    [145]Mohammed O.A., Liu Z., Liu S. A novel sensorless control strategy of doubly fed induction motor and its examination with the physical modeling of machines[J]. IEEE Transactions on Magnetics,2005,41(5):1852-1855.
    [146]Baike Shen, Boon-Teck Ooi, Novel Sensorless Decoupled P-Q Control of Doubly-Fed Induction Generator(DFIG) Based on Phase Locking to Gamma-Delta Frame[C]. Power Electronics Specialists Conference, PESC'05.pp:2670-2675.
    [147]Cardenas R., Pena R., Proboste J., Asher G., Clare J. MRAS observer for sensorless control of standalone doubly fed induction generators[J]. IEEE Transactions on Energy Conversion, 2005,20(4):710-718.
    [148]Cardenas R., Pena R., Asher G., Clare J., Cartes J. MRAS observer for doubly fed induction Machines[J]. IEEE Transactions on Energy Conversion,2004,19(2)467-468.
    [149]Cardenas R., Pena R., Proboste J., Asher G., Clare J. Sensorless control of a doubly-fed induction generator for stand alone operation[C]. Power Electronics Specialists Conference, PESC 04. pp:3378-3383,Vol.5.
    [150]Carmeli S., Dezza F.C., Perini R. Double fed induction machine drive:proposal of a speed sensorless control based on a MRAS[C].2005 IEEE International Conference on Electric Machines and Drives. pp:404-410.
    [151]Cardenas R., Pena R., Proboste J., Asher G., Clare J. Rotor current based MRAS observer for doubly-fed induction machines[J]. Electronics Letters,2004,40(12):769-770.
    [152]Pena R., Cardenas R., Proboste J., Asher G., Clare J. Sensorless Control of a Slip Ring Induction Generator based on Rotor Current MRAS Observer[C]. Power Electronics Specialists Conference,PESC '05. pp:2508-2513.
    [153]Sheng Yang, Ajjarapu V. Sensorless Control of the Doubly-Fed Induction Generator for Wind Energy Generations Using a Speed-Adaptive Full-Order Flux Observer[J]. Applied Power Electronics Conference and Exposition,APEC 2009. pp:1951-1957.
    [154]刘丛伟,李崇坚,苏鹏声,李发海.双馈电机无速度传感矢量控制调速系统的研究[J].清华大学学报(自然科学版),1999,39(5):54-57.
    [155]宁玉泉,李炜,涂光瑜.双馈交流励磁变速电机的稳态特性及励磁容量分析[J].大电机技术.2005(6):24-27,30.
    [156]林成武,王风翔,姚兴佳.变速恒频双馈风力发电机励磁控制技术研究[J].中国电机工程学报.2003.23(11):122-125.
    [157]邱关源:电路(第四版)[M].北京:高等教育出版社,1999:176-179,190-191,248.
    [158]Theodore Wildi. Electrical Machines, Drives, and Power Systems(Fifth Edition)[M]. Beijing: Science Press and Pearson Education,2002:136-154.
    [159]曹承志,党长征.交流电机等效电路的推导[J].沈阳工业大学学报,1994,16(4):77-82.
    [160]P. Vas, Sensorless Vector and Direct Torque Control. New York:Oxford Univ. Press,1998.
    [161]P. Vas, Vector Control of AC Machines. New York:Oxford Univ. Press,1990.
    [162]赵新.双馈型风力发电机控制策略及低电压穿越技术研究[硕士学位论文].北京.北京交通大学.2010.
    [163]邓雅.不平衡电网电压下双馈风力发电系统变流器控制策略研究[硕士学位论文].北京.北京交通大学.2011.
    [164]杨淑英.双馈型风力发电变流器及其控制[博士学位论文].合肥.合肥工业大学.2007.
    [165]苑国峰.大容量变速恒频双馈异步风力发电机系统实现[博士学位论文].北京.清华大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700