用户名: 密码: 验证码:
牵引电机无速度传感器间接定子量控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国轨道交通建设正进入高速发展的高峰期,轨道交通车辆市场有着广阔的前景,牵引系统是轨道交通车辆的核心部分,直接决定着车辆运行性能,关系到车辆的安全性、运行质量以及对能源的消耗。在我国自主知识产权轨道交通车辆交流传动系统中,传统的直接转矩控制还是存在转矩脉动较大,电流谐波较大等缺点,特别是在直流供电的地铁牵引系统中,容易引起直流侧电流及电压振荡等问题,需要对电机控制策略进行进一步优化改进。另外,由于速度传感器安装和维护都非常不便,并且由于其工作环境恶劣,是引起车辆故障的主要根源,因此研究无速度传感器电力牵引控制系统具有十分重要的理论和现实意义。本论文从这两方面入手对轨道交通电力牵引交流传动关键技术进行了深入研究。
     首先回顾了电机控制策略的发展,总结分析了无速度传感器控制技术的发展现状,并介绍了轨道交通电力牵引传动系统的概况。从异步电机的数学模型出发,阐述了异步电机的T-和Γ-型等效电路、逆变器的数学模型和电压空间矢量的概念以及电压空间矢量调制(SVPWM)相关理论。
     针对轨道交通车辆交流传动系统中传统直接转矩控制方法存在的缺点,对全速度范围牵引电机间接定子量控制进行研究,提出了一种能同时准确观测异步电机定子和转子磁链的全阶磁链观测器,提出了两种弱磁控制方法,提出了一种便于工程实现的过调制方法,提出了一种基于时间的死区补偿方法,成功的将间接定子量控制拓宽到全速度范围,且通过了仿真和实验验证。仿真结果表明采用全速度范围间接定子量控制可以获得高动态响应并能达到抑制谐波的效果,且能解决目前城轨地铁牵引系统主回路振荡问题,为该方法在城轨地铁牵引系统中的应用奠定了良好的基础。
     针对无速度传感器技术中应用最广泛的基于观测器的模型参考自适应速度辨识方法进行了深入研究。从传统的利用极点配置选取观测器增益的方法入手,针对工程应用提出了基于定子磁链U-N模型的速度自适应辨识方法,并分析了其与传统基于观测器的速度辨识方法异同。针对目前多数速度辨识方法低速范围速度辨识不准确的特点,分析了其不稳定的原因,提出了一种新型无速度传感器方法,应用鲁棒控制理论、利用Matlab的LMI工具箱通过求解两个双线性矩阵不等式(BMIs)得到观测器的增益矩阵,并结合Lyapunov稳定性理论推出速度自适应律。并将该速度辨识方法应用到牵引电机直接转矩控制系统和间接定子量控制系统中,进行了Matlab仿真和实验验证,仿真和实验结果表明该方法在全速度范围各种工况下都能稳定工作,准确辨识转速,解决了多种速度辨识方法在低速发电时的不稳定问题。最后,对这种基于观测器的新型无速度传感器方法进行扩展,提出了一种基于观测器的定子电阻辨识方法,实现了转速和定子电阻的同时辨识。
     研制了城轨地铁交流传动系统半实物仿真平台,介绍了半实物仿真平台组成结构、软硬件平台和被控对象实时仿真建模方法,并通过多个地铁应用项目验证并完善了该仿真平台。基于该平台,完成了无速度传感器间接定子量控制系统的DSP软件编制与调试工作。
The construction of China's rail transit is entering the peak period of rapid development, the market of rail transit vehicle has broad prospects. As the key of mass transit vehicles, traction system determines the vehicle's performance directly, which relates to the safety of vehicles, operation quality and energy consumption. In our own independent intellectual property of the rail transit vehicle AC drive system, there are some defects in the traditional direct torque control system, such as large torque ripple,high current harmonics。Particularly in metro traction system of DC power supply, it's easy to cause a large DC current and voltage oscillations problems. The control strategies of motor need to be further optimized and improved. In addition, because the speed sensors are very inconvenient to install and maintain, and their working environment is bad, which are the major source of vehicle failure. Therefore, the study of speed sensorless of electric traction control system is of great theoretical and practical significance. The key technology of rail transit traction power AC drive is studied deeply from these two aspects in this paper.
     Firstly, the development of AC motor control strategy is reviewed, the development Status of sensorless control technology is summarized and analyzed, and overview of rail electric traction drive system is introduced. T-andΓ-type equivalent circuit of asynchronous motor, mathematical model of inverter, the concept of voltage space vector, and the theory of voltage space vector modulation (SVPWM) are clarified based on mathematical model of asynchronous motor.
     According to the defects of the traditional method of direct torque control in rail transit vehicle AC drive system, indirect stator quantities control of full range of speed traction motor is studied. A full order flux observer is proposed, which can observe stator and rotor flux of asynchronous motor accurately. Two methods of Flux-weakening control are presented, and a method of over-modulation which can be easy to implement is provided. Also, a time-based deadtime compensation method is proposed. Indirect stator quantities control has been expand to full speed range successfully, which have been verified by simulation and experiment. Simulation results show that the whole speed range of indirect stator quantities control can obtain high dynamic response and suppress the effects of harmonics, it can also solve oscillation of main circuit of mass transit metro rail traction system, which lay a good foundation for the method to apply for the traction of mass transit metro rail system.
     An in-depth study is carried out for the method of model reference adaptive speed estimation based on Observer, which is widely used in speed sensorless. Starting from traditional method of select the observer gain by using pole placement, a method of model based on the stator flux speed of U-N adaptive identification is proposed for engineering application, and similarities and differences from traditional observer-based speed estimation method are analyzed. According to the characteristic of identification of low speed range is not accurate for the majority speed estimation method at present, the causes of its instability are analyzed, and a new method of speed sensorless is proposed, Which adopts robust control theory to obtain observer gain matrix by solving two bilinear matrix inequalities (BMIs) with MATLAB's LMI toolbox, and Lyapunov stability theory is combined to derive the speed adaptive law. The speed estimation method is applied to direct torque control system and the indirect stator quantities control system of traction motor, MATLAB simulation and experiment are carried out, which show that there are some advantages of this approach, such as system with good stability in the whole range of different conditions, speed can be identified accurately, and the problem of instability in variety of speed estimation method in the low power generation are solved. Finally, the new observer-based speed sensorless method is expended. A observer-based stator resistance identification method is proposed to achieve the speed and stator resistance identification at the same time.
     Hardware-in-loop (HIL) simulation platform of AC drive of urban rail metro is developed. The composition of the HIL simulation platform, software and hardware platforms, and the method of establishing the real time simulation model of the controlled object are introduced. The simulation platform is verified and improved by some metro application projects. DSP software of speed sensorless indirect stator quantities control system is established and debugged completely based on this platform.
引文
[1]陈伯时,陈敏逊.交流调速系统.北京:机械工业出版社,2003
    [2]F. Blaschke, A new method for the structural decoupling of A.C. induction machines, in Conf. Rec. IF AC, Duesseldorf, Germany, Oct.1971, pp.1-15
    [3]Abdellfattah Ba-Razzouk, Ahmed Cheriti, Pierre Sicard. Field-Oriented Control of Induction Motors Using Neural-Network Decouplers. IEEE Trans. Power Elec,1997,12(4):752~763
    [4]Bong-Hwan Kwon, Byung-Duk Min, Jang-Hyoun Youm. An Improved Space-Vector Based Hysteresis Current Controller. IEEE Trans. Ind, Eleec. 1998,45(5):752~759
    [5]Joachim Holtz. Sensorless Position Control of Induction Motors-An Emerging Technology. IEEE Trans. Ind. Elec.1998,45(6):840~852
    [6]Joachim Holtz, Thomas Thimm. Identification of the Machine Parameters in a Vector Controlled Induction Motor Drive. Conf.Rec.IEEE-IAS annual Meeting. 1989:601-606
    [7]Ju-Suk Lee, Takaharu Takeshita, Nobuyuki Matsui. Stator-Flux-Oriented Sensorless Induction Motor Drive for Optimum Low-Speed Performance. IEEE Trans. Ind. Appl.1997,33(5):1170~1175
    [8]M.Depenbrock. Direct self control(DSC) of inverter-fed induction machine. IEEE Trans. PE,1988,13(4):420~429
    [9]I.Takahashi, T.Noguchi. A new quick response and high efficiency control strategy of an induction motor. IEEE Trans.IA,1986,22(5):820~827
    [10]I.Takahashi, Y.Ohmori. High-performance direct torque control of an induction motor. IEEE Trans.IA,1989,25(2):257~265
    [11]胡虎,李永东.交流电机直接转矩控制策略——现状与趋势.电气传动,2004,(3):3-8
    [12]陶红明,龚春文等.基于DSP的全数字化异步电动机直接转矩控制系统.电气传动,1997,(4):3-6
    [13]杨玉巍,田梦君等.基于三点式转矩调节的交流电机直接转矩控制系统仿真研究.控制与检测,2006,(1):41-44
    [14]T.G.Habetler, etal. Control strategies for direct torque control of using discrete pulse space modulation. IEEE Trans.IA,1991,27(5):893~901
    [15]T.G.Habetler, etal. Direct Torque Control of Induction Machines Using Space Vector Modulation. IEEE Trans, on Industry Applications 1992, 28(5):1045~1053
    [16]Li Y D. Direct Torque Control of Induction Motors for Low Speed Drives Considering Discrete Effects of Control and Dead-time of Inverters.in Conf. Rec. on Industry Applications 1997:781~788
    [17]Li Yongdong,HuHu. Predictive Control of Torque and Fluxof Induction Motor with an Improved Stator Flux Estimator.in Conf. Rec. PESC2001.3:1464~1469
    [18]Jun-Koo Kang, Seung-Ki Sul. Torque Ripple Minimization Strategy for Direct Torque Control of Induction Motor. In Conf. Rec. on Industry Applications 1998,1:438~443
    [19]Koang-Kyun La. Direct Torque Control of Induction Motor with Reduction of Torque Ripple in Conf. Rec. on IECON2000:1087~1092
    [20]Kenny B H, Lorenz R D. Stator and Rotor Flux Based Deadbeat Direct Torque Control of Induction Machines. In Conf. Rec. on Industry Applications 2001,1:133~139
    [21]Domenico Casadei. Implementation of a Direct Torque Control Algorithm for Induction Motors Based on Discrete Space Vector Modulation. IEEE. Trans, on Power Electronics 2000,15(4):769~777
    [22]姚玮,金阳等.采用离散空间电压矢量调制方法的异步电机直接转矩控制.浙江工业大学学报,2002,30(1):17-21
    [23]Plunkett A B. Direct Flux and Torque Regulation in a PWM Inverter-induction Motor Drive. IEEE Trans, on Industry Applications 1977,13(2):139~146
    [24]Domenico Casadei. Analytical Investigation of Torque and Flux Ripple in DTC Schemes for Induction Motors. In Conf. Rec. IECON 1997,2:552~556
    [25]Yen Shin Lai. A New Approach to Direct Torque Control of Induction Motor Drives for Constant Inverter Switching Frequency and Torque Ripple Reduction. IEEE Trans, on Energy Conversion 2001,16(3):220~227
    [26]Sung Don Wee. Stator Flux Oriented Control of Induction Motor Considering Iron Loss. IEEE Trans, on Industrial Electronics 2001,48(3):602~608
    [27]Luis A Cabrera. Learning Techniques to Train Neural Networks as a State Selector for Inverter-fed Induction Machines Using Direct Torque Control.IEEE TRANS.on Power Electronics,1997,12(5)
    [28]Sayeed Mir,Malik E Elbuluk.Fuzzy Implementation of Direct Self Control of Inductance Machines. IEEE Trans. On Industry Application,1994,30(3):729~ 735
    [29]ARIAS A, ROMERAL L, ALDABAS E, etal Improving DirectTorque Control byMeans of Fuzzy Logic. Electronics Letters,2001,37(1):69~71.
    [30]Cabrera L A-et al-Learning techniques to train neural networks as a state selector for inverter-fed induction machines using direct torque control-IEEE Trans-Power Electronics,1997, PE-12 (5):788~799
    [31]Baburaj Karanayil, Muhammed Fazlur Rahman and Colin Grantham, Stator and rotor resistance observers for induction motor drive using fuzzy logic and artificial neural networks, IEEE. Trans. Energy Conversion.,2005,(20): 771~779
    [32]Xiaohong Nian, Tao Wang, Jian Wang, Weihua Gui, Jirong Huang. Adaptive resistance estimation method for speed sensorless DTC controlled IM drives, IEEE. Applied Power Electronics Conference.,2007,(2):214~221,
    [33]Zhou Lawu, Wang Yi, Huang Shoudao. Study for Neural Network Application on Direct Torque Control of Induction machine. Explosion-Proof electric machine.2002,110(1):4-7
    [34]Luis A Cabrera. Learning Techniques to Train Neural Networks as a State Selector for Inverter-Fed Induction Machines Using Direct Torque Control. IEEE TRANS. On Power Electronics.1997,12(5):12-16
    [35]H.Tajima, Y.Hori. Speed sensorless field-orientation control of the induction machine. IEEE Trans.IA.1993,29(1):175~180
    [36]U.Baader, M.Depenbrock. Direct self control(DSC) of inverter-fed induction machine:A basis for speed control without speed measurement. IEEE Trans.IA. 1992,28(3):581~588
    [37]I.Miyashita, Y.Ohmori. A new speed observer for an induction motor using the speed estimation technique. Conf.Rec.EPE'93.1993:349~353
    [38]韩炎清,佟纯厚,电势定向式矢量变换控制变频调速系统.电气传动,1990,20(1):2-5
    [39]Shinnaka S, Frequency hybrid Vector Control for Sensorless Induction Motor Drive, Proc. Of IPEC Tokyo 2000:1848~1855
    [40]S.Tamai, etal. Speed sensorless vector control of induction motor with model reference adaption system. IEEE IAS,1987,23:189~195
    [41]C.Schauder. Adaptive speed identification for vector control of induction motors without rotational transducers. IEEE Trans.IA,1992,28(5):1054~1061
    [42]崔江霞,张爱玲.感应电动机直接转矩控制系统的模型参考自适应辨识.太原理工大学学报,2004,35(2):137-140
    [43]姬志艳,李永东等.无速度传感器异步电动机直接转矩控制系统的研究.电工技术学报,1997,12(4):15-19
    [44]H.Kubota, K.Matsuse,T.Nakano. New adaptive flux observer of induction motor for wide speed range motor drives. In Conf.Rec. IEEE IECON'90,1990:921~ 926
    [45]H.Kubota, K.Matsuse,T.Nakano. Dsp-based speed adaptive flux observer of induction motor. IEEE Trans.IA.1993,29(2):344~348
    [46]H.Kubota, K.Matsuse. Speed sensorless field oriented control of induction motor with rotor resistance adaptation. IEEE Trans.IA.1994,30(5):1219~1224
    [47]Geng Yang, Tung-Hai Chin. Adaptive speed identification scheme for vector controlled speed sensor-less inverter-induction motor drive. IEEE Trans.IA. 1993,29(4):820~825
    [48]James N.Nash. Direct torque control, induction motor vector control without an encoder. IEEE Trans.IA.1997,33(2):333~341
    [49]L.Ben-Branhim, Atsuo Kawamura. A fully digitized field-oriented controlled induction motor drive using only current sensors. IEEE Trans.IA. 1992,39(3):241~249
    [50]L.Ben-Branhim, Atsuo Kawamura. Digital current regulation of field-oriented controlled induction motor based on predictive flux observer. IEEE Trans.IA. 1991,27(5):956~961
    [51]M.Marchesoni, etal. A simple approach to flux and speed observation in induction motor drives. IEEE Trans.IA.1997,44(4):528~535
    [52]V.Lovati, M.Marchesoni, etal. A microcontroller-based sensorless stator flux-oriented asynchronous motor drive for traction applications. IEEE Trans.IA. 1998,13(4):777~784
    [53]V.Lovati, M.Marchesoni, etal. Implementation of a sensorless stator flux oriented asynchronous motor drive with high performances at low-speed operation. Conf.Rec.PESC'96.1996:1427~1433
    [54]J. Maes and J. A. Melkebeek. Speed sensorless direct torque control of induction motor using an adaptive flux observer, IEEE Trans. Ind. Applicat.2000,30(4): 778-785
    [55]李磊,胡育文.一种新型的磁链与速度观测器在异步电机直接转矩控制系统中的应用.电气传动,2001,(3):26-28
    [56]Y.R.Kim, etal. Speed sensorless vector control of an induction motor using an extended Kalman filter. IEEE Trans.IA.1994,30(5):1225~1233
    [57]G.Henneberger, B.J.Brunsbach. Field oriented control of synchronous and asynchronous drives without mechanical sensors using a Kalman filter. EPE'91,Firenze.1991,3:3664~3671
    [58]L.EI Hassan, etal. Original direct torque control strategy for speed-sensorless induction motors using extended kalman filtering.1998:32~37
    [59]M.Godoy Simoes, etal. Neural network based estimation of feedback signals for a vector controlled induction motor drive. IEEE Trans.IA.1995,31(3):620~629
    [60]M.Tsuji. A speed sensorles vector-controlled method for induction motors using q-axis flux. Conf.Rec.IPEMC,1997:353~358
    [61]L.Ben-Branhim,R.Kurosawa. Identification of induction motor speed using neural networks. IEEE PCC-Yokohama.1993:689~694
    [62]P.Mehrotra,etal. Induction motor speed estimation using artificial neural networks. IEEE CCECE.1996:607~610
    [63]L.Ben-Branhim. Motor speed identification via neural networks. IEEE Trans.LAM.1995,1(1):28~32
    [64]A.Ferrah,etal. Sensorless speed detection of inverter fed induction motors using rotor slot harmonics and fast fourier transform. IEEE PESC,1992:279~286
    [65]Sung-H Yong,etal. Sensorless vector control of induction machine using high frequency current injection. Conf.Rec.IEEE-IAS'94,1994:503~508
    [66]J.Holtz.Sensorless control of induction motor drives. Proceedings of the IEEE,2002,90(8):1359-1394.
    [67]Dusan Drevensek,Damir Zarko,and Thomas A Lipo.A study of sensorless control of induction motor at zero speed utilizing high frequency voltage injection. EPE-PEMC,2002.
    [68]Jung-Ik Ha,Seung-Ki Sul.Sensorless field-orientation control of an induction machine by high-frequency signal injection. IEEE transactions.on industry applications,1999,35(1):45-51.
    [69]Jung-Ik Ha,Seung-Ki Sul,Kozo Ide,etal.Physical understanding of high frequency injection method to sensorless drives of an induction machines. Conf.Rec.IEEE IAS annual meeting,Rome,Italy,2000
    [70]秦峰,贺益康,刘毅等.2种高频信号注入法的无传感器运行研究.中国电机工程学报,2005,25(5):116-121
    [71]冯江华.电力电子技术与铁路机车牵引动力的发展.变流技术与电力牵引,2006,(2):63-66
    [72]丁荣军,陈文光.地铁车辆用交流传动系统的设计.机车电传动,2001,(5)17-]9
    [73]荣智林.TGN10型地铁车辆用DC 1500V IGBT牵引逆变器.机车电传动,2004,(4):31-33
    [74]翁星方.北京地铁国产化列车IGBT牵引逆变器.机车电传动,2008,(4):45-47
    [75]陶生桂,胡兵.城市轨道车辆电气传动系统发展综述.电力机车与城轨车辆,2007,30(2):1-5
    [76]陶生桂,崔俊国.城市轨道车辆电力传动系统及其控制的发展.电力机车技术,2001,24(3):6-9
    [77]Steimel, Bochum. Control of the Induction Machine in Traction, eb.1998, 12(6):361-369
    [78]Steimel A. Direct self-control and synchronous pulse techniques for high-power traction inverters in comparison. IEEE Transactions on Industrial Electronics.2004,51(4):810-820
    [79]Worner, Kai.Steimel,Andreas, Hoffmann,Frank.Highly Dynamic Stator Flux Track Length Control for High Power IGBT Converter in Traction Drives. EPE Lausanne.1999,5(6):124-126
    [80]陈高华,冯江华等.折角控制的谐波分析及实现.大连铁道学院学报,2001,22(2):46-51
    [81]倪大成,年晓红,刘可安.十八边形磁链直接转矩控制算法设计及实现.铁道学报,2008,30(2):28-33
    [82]Steimel. Wiesemann. Further Development of Direct Self Control for Application in Electric Tranction.IEEE, ISIE96.1996,4(7):180-185
    [83]Janecke M, Hoffmann F. Fast torque control of an IGBT-inverter-fed three-phase AC drive in the whole speed range-experimental results. EPE Conference, Sevilla.1995,3(5):399-404
    [84]Steimel. Stator-Flux-Oriented High Performance Control in Traction.35th Annual Meeting IEEE IAS Industry Application Society.2000,34(6):1562-1569
    [85]夏雷等.大功率系统的直接转矩控制新方法.同济大学学报,1998,26(6):697-700
    [86]夏雷等.直接转矩控制的ISR方法.电力电子技术,1998,(4):26-29
    [87]陈坚.交流电机数学模型及调速系统.上海:上海交通大学出版社,1984
    [88]胡崇岳.现代交流调速技术.北京:机械工业出版社,1998
    [89]李夙,《异步电动机直接转矩控制》.北京:机械工业出版社,1994
    [90]冯江华,陈高华等.异步电动机的直接转矩控制.电工技术学报,1999,14(3):29-33
    [91]黄济荣.电力牵引交流传动与控制.北京:机械工业出版社,1998
    [92]冯江华,陈高华.大功率交流传动系统.机车电传动,2003,5:46-50
    [93]刘可安,高首聪等.地铁车辆交流传动系统主电路振荡抑制研究.机车电传动,2006,(3):48-53
    [94]Vranka P., Griva G, Profumo F. Practical improvement of simple U-I flux estimator for sensorless F.O. controllers operation in the low speed region. IEEE PESC’2000,1615~1620
    [95]Nik R.N.I., Adbul H.M.Y. An improved stator flux estimation in steady-state operation for direct torque control of induction machines. IEEE Trans. On Industry Applications,2002,38(1):110~116
    [96]Hu J., Wu B. New intergration algorithms for estimating motor flux over a wide speed range. IEEE Trans. On Power Electronics,1998,13(5):969~977
    [97]Choi Y.O., Lee K.Y., Seo K.S, etal. Performance analysis of the DTC using a closed loop stator flux observer for induction motor in the low speed range. ICEMS'2001, Shenyang China,2001,1:89~93
    [98]Hur N., Hong K., Nam K. A robust adaptive sensorless field-oriented control using a modified stator flux observer. PESC'1997, St.Louis,1997,2:1050~1054
    [99]NIed A., Seleme I., Parma G., etal. On-line training algorithms for an induction motor stator flux neural observer. IECON'2003, Roanoke, Virginia, USA,2003, 129~134
    [100]李磊,胡育文.基于速度自适应磁链状态观测器的感应电机直接转矩控制系统研究.电工技术学报,2001,16(4):25—29
    [101]谢鸿鸣,陈伯时.异步电机定子磁链的间接观测方法.电气传动,1999,(1):11-15
    [102]王长江,李崇坚,李发海.感应电机状态观测器的设计.清华大学学报(自然科学版),1997,37(4):36-39
    [103]Shin M.H., Hyun D.S. Speed sensorless stator flux-oriented control of induction machine in the field weakening region. IEEE Trans. On Power Electronics, 2003,18(2):580~586
    [104]Kwon T.S., Shin M.H, Hyun D.S. Speed sensorless stator flux-oriented control of induction motor in the field weakening region using luenberger observer. IEEE Trans. On Power Electronis,2005,20(4):864~869
    [105]Shin M.H., Hyun D.S., Cho S.B. Maximum torque control of stator flux oriented induction machine drive in the field weakening region. IEEE Trans. On Industry Applications,2002,38(1):117~122
    [106]梁振鸿,温旭辉,应用过调制技术扩展永磁同步电机运行区域.电工电能新技术,2003,22(1):39-42.
    [107]童亦斌,刘京斗.空间电压矢量PWM过调制区连续控制方法研究.机车电传动,2004,3:21-22
    [108]Joachim Holtz, Wolfgang Lotzkat, Ashwin M, Khambadkone. On continuous control of PWM inverters in the Overmodulation range including the six-step mode. IEEE Trans. Power Electron.,1993,8(4):546~553
    [109]Dong-Choon Lee and G-Myoung Lee. Linear control of inverter output voltage in overmodulation. IEEE Trans. Ind. Electron.,1997,44(4):590~592
    [110]Ahmet M. Hava, Russel J. Kerkman, Thomas A. lipo. Carrier-based PWM-VSI overmodulation strategies:analysis, comparison, and design. IEEE Trans. Power Electron.,1998,13(4):674~689
    [111]Ahmet M. Hava, Seung-Ki Sul, Russel J. Kerkman, and Thomas A. Lipo. Dynamic overmodulation characteristics of triangle intersection PWM methods. IEEE Trans. Ind. Applicat.,1999,35(4):896~907
    [112]陈伯时,杨耕.无速度传感器高性能交流调速控制的三条思路及其发展建 议.电气传动,2006,36(1):3-8
    [113]谢新民,丁锋.自适应控制系统.北京:清华大学出版社,2002
    [114]陈际达.线性控制系统.长沙:中南工业大学出版社,1987
    [115]L. Harnefors, Instability phenomena and remedies in sensorless indirect field oriented control, IEEE Trans. Power. Electron.,2000, vol.15:733-743.
    [116]Kubota, H. Sato.I, Tamura.Y etal. Regenetating-mode Low-speed Operation of Sensorless Induction Motor Drive with Adaptive Observe, IEEE Trans. Ind. Applicat.,2002, vol.38, No.4:1081-1086.
    [117]S. Suwankawin, S. Sangwongwanich, A speed-sensorless IM drive with decoupling control and stability analysis of speed estimation, IEEE Trans. Ind. Electron.,2003, vol.49, No.2:444-455.
    [118]M. Hinkkanen, Analysis and design of full-order flux observers for sensorless induction motors, IEEE Trans. Ind. Applicat,2004, vol.51,No.5:1033-1040.
    [119]M. Hinkkanen and J. Luomi, Stabilization of regenerating-mode operation in sensorless induction motor drives by full-order flux observer design, IEEE Trans. Ind. Applicat.,2004, vol.51, No.6:1318-1328
    [120]M. Hinkkanen, V.-M. Lepp,nen, and J. Luomi, Flux Observer Enhanced With Low-Frequency Signal Injection Allowing Sensorless Zero-Frequency Operation of Induction Motors, IEEE Trans. Ind. Applicat.,2005,41:52-59.
    [121]S. Sangwong wanich. Speed-sensorless vector control of induction motors stability analysis and realization, Proceedings IPEC-Yokohama.2004, 1(6):310-315
    [122]Boyd, S.,Cgaoui, L. E., Feron, E., Balakrishnan, V. Linear matrix inequalities in system and control theory.1994, Philadelphia, SIAM.
    [123]Gahinet, P., Nemirovski, A., Laub A., Chilali, M. The LMI control toolbox, 1994, The math Works, Inc.
    [124]Goh, K. C, Turan, L. Safonov, M. G. et al. Baffine matrix inequality properties and computational methods, Proceedings of the American Control Conference, Baltimore, Maryland,1994,850-855
    [125]张志涌等.精通MATLAB6.5版.北京:北京航空航天大学出版社,2003
    [126]杨涤,李立涛,杨旭,朱承元.系统实时仿真开发环境与应用.北京:清华大学出版社,2002
    [127]薛定宇,陈阳泉.系统仿真技术与应用.北京:清华大学出版社,2002
    [128]王秀利.电力机车交流传动系统半实物仿真的研究.浙江大学博士后工作报告,2005
    [129]北京九州恒润科技有限公司.dSPACE——基于Windows平台的实时快速原型及半实物仿真的一体化解决途径,2004
    [130]dSPACE ControlDesk Experiment Guide. Realease4.2, Paderborn:dSPACE GmbH,2005
    [131]Lee B.-K, Ehsoni M.. A simplified functional simulation model for three-phase voltage-source inverter using switching function concept. IEEE transactions on Industrial Electronics.2001,48:309-321
    [132]Keller Th..铁道车辆用数字化实时硬件回路仿真的实例研究.变流技术与电力牵引,2000,3:11-17
    [133]卢子广,柴建云,王详珩.电力驱动系统逆变器实时仿真.电子技术应用,2003,3:31—33
    [134]Salazar and G. Joos. PSPICE Simulation of Three-phase Inverter by Means of Switching Functions. IEEE Trans, on Power Electron,1994:9(1):35-42
    [135]徐德丰,韩中林.PWM控制方式下死区对逆变频器性能的影响分析.低压电器,2004(12):53-57
    [136]Summers, T.,Betz, R.E. Dead-time issues in predictive current control. IEEE Industry Applications Conference,37th IAS Annual Meeting,2002, (3):2086-2093
    [137]张德荣,王新民,高安民.计算方法与算法语言.北京:高等教育出版社,1981
    [138]李江红,马健,彭辉水.机车粘着控制的基本原理和方法.机车电传动,2002,6:4-8
    [139]李治,盛小军.机车空转问题的理论及仿真研究.机车电传动,1998,5:73-77
    [140]王辉,肖建.机车模糊粘着控制及其仿真研究.机车电传动,2002,3:19-23
    [141]王辉,肖建.小波分析在机车优化粘着控制中的应用.铁道学报,2003,5:32-38
    [142]左野孝.提高粘着性能的新的控制方式.变流技术与电力牵引,2000,4:6-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700