用户名: 密码: 验证码:
超高盐高磷废水磷酸盐还原系统构建研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,对于高磷废水的处理主要方法有吸附法、化学法和生物法。吸附法和化学法分别存在吸附剂的抗干扰性差、溶解损失、再生困难和运行费用较高、化学污泥量大、处置难度大等问题;而聚磷菌生物除磷工艺则存在富磷剩余污泥排放量大、二次污染和污泥处置等问题。近年来,随着水环境氮磷污染和富营养化的加剧,以及氮磷排放标准的提高,开发高效除磷技术成为当务之急。本研究以超高盐高磷榨菜腌制废水为研究对象,开展基于磷酸盐生物还原的新型除磷技术研究,以实现磷的高效低耗去除和剩余污泥的减排。
     研究以在反应器中构建磷酸盐生物还原系统为目标,对负荷、温度及进水pH值对磷酸盐生物还原系统构建的影响进行了系统研究,通过正交试验,探讨了各因素对系统构建的综合影响,并建立了厌氧条件下的定量正交回归方程。经过对多种磷酸盐生物还原系统构建方式的研究比较,采用先好氧再转厌氧的启动方式,首次在生物反应器中成功地构建了磷酸盐生物还原系统,得出了系统构建的方法及关键控制参数;同时实现了嗜盐菌系统的快速构建。主要研究成果如下:
     ①采用直接厌氧启动方式时,盐度提升方式、负荷和温度对反应器降解COD效能的影响较大,而对反应器去除正磷酸盐效能的影响较小。水温30℃,负荷为1.0kgCOD/m~3·d,盐度提升方式采用初始盐度为2.0%(NaCl计,下同),在某一盐度下反应器的COD去除率达到70%后,然后每次提升0.5%的盐度直至达到目标盐度7%,反应器启动完成时间为127d,COD去除率达70%;但相应条件下,反应器的正磷酸盐去除率较低,最高时只有15%左右。此时,反应器中优势菌种为杆状嗜盐菌。
     ②采用先好氧再转厌氧的启动方式时,好氧条件下,盐度提升方式对反应器COD及正磷酸盐处理效能的影响不显著。负荷对COD去除的影响不显著,当负荷为0.5kgCOD/m~3·d和1.0kgCOD/m~3·d时,反应器的COD去除率均达90%以上;但负荷对反应器正磷酸盐去除效能影响较显著,负荷为1.0kgCOD/m~3·d时正磷酸盐去除率较高,维持在40%左右。此时,优势菌群为杆状嗜盐菌。反应器在好氧启动过程中未排除剩余污泥,泥龄较长,为长泥龄系统。
     ③反应器好氧启动再转厌氧运行稳定后,负荷和温度对反应器COD及正磷酸盐处理效果的影响较显著,进水pH值的影响较小。采用正交试验考察了负荷、温度及进水pH值对构建磷酸盐还原系统的综合影响,研究结果表明,负荷对反应器COD及正磷酸盐处理效能的影响高度显著,温度次之,进水pH值的影响不显著,并得出Nv、t与出水COD的回归方程和Nv、pH、t与出水正磷酸盐的回归方程,分别为COD=8122.5+1378NV-241.8t+322和(NV-1.5)(t-27.5)PO_4~(3-)-P=122.87+5.64NV-1.13t-6.73pH。30℃下、负荷为1.0kgCOD/m~3·d和进水pH值为7.1时,反应器对COD及正磷酸盐处理效能较高,去除率分别为73.73%和44.88%,初步构建了磷酸盐生物还原系统。
     ④通过氧环境对磷酸盐还原系统影响研究发现, NO_3~--N可以促进磷酸盐还原作用;好氧条件下反应器的正磷酸盐去除效能高于厌氧条件下,正磷酸盐去除率为42.43%,比厌氧条件下高25.61%。
     研究内容针对性强,研究结果具有重要的实用价值,为开发基于磷酸盐还原的新型生物除磷工艺提供了理论和技术支持,具有相当的前沿性,是现有生物除磷的革新技术,研究具有重要的现实意义。
In general, the high phosphorus treatment technics were mainly absorb, chemical and biological technics. The absorption has disadvantages of anti-jamming in sorbent, loss in dissolve and difficulty in regeneration, etc, while the chemical phosphorus removal technic was problematic in high running cost, huge chemical sludge produce, difficult disposition, etc. And, there is disadvantage of mass in discharge of rich-phosphorus sludge in the PAO biological phosphorus removal technique. In recent years, with the aggravation of nitrogen and phosphorus pollution and eutrophication of water environment, as well as the improvement in discharge standards of nitrogen and phosphorus, it is urgent affairs to exploit a highly efficient phosphorus technic. This thesis, focusing on hypersaline and high phosphorus wastewater, studied the newly phosphorus removal technique based on phosphate bio-reduction to achieve high efficiency and low cost in phosphorus removal and decrease in discharge of surplus sludge.
     Aiming to build the phosphate bio-reduction in reactor, the thesis systemically researched on the effect of organic loading, temperature and influent pH value on building the phosphate bio-reduction. During orthogonal experiment, the integration influence of each factor was discussed, and the quantitative orthogonal regress equation in anaerobic was found. By comparing some building manners of phosphate bio-reduction, and adopting startup manner of aerobic first and anaerobic subsequently, it succeeds in building the phosphate bio-reduction system in biological reactor for the first time, and gained the manner of building system and the key control parameters. Besides, quickly building of halophilic system was achieved in this thesis. The main conclusions are as follows:
     ①When adopting direct anaerobic startup, the salinity shift manners, organic loading and temperature had more impact on the removal of COD, but minor impact on the removal of phosphate. With the temperature of 30℃, organic loading of 1.0kgCOD/m~3·d, the salinity shift manner adopted 2.0% initial salinity (NaCl calculated, take the same as follows); when the removal rate of COD achieved 70% in some salinity, and then upgraded 0.5% salinity each time until the goal salinity, the time of reactor complete startup was 127d, the removal rate of COD achieved 70%; however, under the same condition, the removal of phosphate was low, the top removal rate was about 15%. The predominance bacterium was halophilic bacillus in the reactor.
     ②When adopting startup manner of aerobic first and anaerobic subsequently, the salinity shift manners had no prominent impact on the removal of COD and phosphate in the condition of aerobic. The organic loading had minor impact on the removal of COD. When the organic loading was 0.5kgCOD/m~3·d and 1.0kgCOD/m~3·d, the removal rate of COD all achieved more then 90%; but the organic loading has marked impact on the removal of phosphate. When the loading was 1.0kgCOD/m~3·d, the removal rate of phosphate was rather higher, keeping about 40%. This way, the predominance bacterium was halophilic bacillus in the reactor. During the aerobic startup, the reactor didn’t discharge the surplus sludge, and the sludge age of it was rather long, which was a long sludge age system.
     ③After the stabilization of reactor anaerobic running which aerobic startup first, the organic loading and temperature had the rather prominent impact on the removal of COD and phosphate, but the influence of influent pH value was minor. The integration influence of organic loading, temperature and influent pH value to build the phosphate bio-reduction by orthogonal experiments was studied. The main results indicated that the organic loading has marked prominent impact on the removal of COD and phosphate, temperature second, and the influence of influent pH value is no prominence. Besides, the thesis achieved the regress equation between Nv, t and effluent COD and the regress equation between Nv, pH, t and effluent phosphate, which were COD=8122.5+1378NV-241.8t+322(NV-1.5)(t-27.5) and PO_4~(3-)-P=122.87+5.64NV- 1.13t-6.73pH, respectively. When the temperature is 30℃, organic loading is1.0kgCOD/m~3·d and influent pH value is 7.1, the removal rate of COD and phosphate were rather higher with 73.73% and 44.88% respectively, which preliminarily built the phosphate bio-reduction system.
     ④Through the study of the influence of oxygen condition on phosphate bio-reduction system, conclusions were drawn as follows: the concentration of NO3--N could accelerate the phosphate bio-reduction process; the removal rate of phosphate in aerobic condition was higher than that in anaerobic condition, the removal rate of phosphate was 42.43%, which was higher than 25.61% in anaerobic condition.
     The contents of this thesis were strong in pertinency, and the results were important in practicality value, which could provide theory and technic support in exploiting the new biological phosphorus technic based on phosphate reduction, and the thesis has considerable cutting-edge, which was a reformable technic to the biological phosphorus removal technics in existence. And, the research has an important realistic significance.
引文
[1]安立超,严学亿等.嗜盐菌的特性与高盐废水生物处理的进展[J].环境污染与防治,2002,24(5):293-296.
    [2]李耀辰,鲍建国等.高盐度有机废水对生物处理系统的影响研究进展[J].环境科学与技术,2006,29(6):108-111.
    [3]黄民生.适盐细菌生物技术处理高含盐量有机工业废水[J].污染防治技术,1998,11(1):30-31.
    [4]刘铁汉,周培瑾.嗜盐微生物[J].微生物学通报,1999,26(3):232.
    [5]刘会强,张立丰等.嗜盐菌的研究新进展[J].新疆师范大学学报,2005,24(3):84-88.
    [6] Ludzack. F. J. . Tolerance of high salinities by conventional wastewater treatment process[J].Wat. Pollut Control Fed,1965,37:1404-1416.
    [7]申屠青春,董双林,赵文等.盐度、碱度对浮游生物和水化因子的影响[J].应用生态学报,2000,11(5):449-454.
    [8]雷中方.高浓度钠盐对废水生物处理系统的失稳影响综述[J].工业水处理,2000,20(4):6-10.
    [9] C. R. Woolard and R. L. Irvine..Treatment of hypersaline wastewater in the sequencing batch reactor [J].Wat. Res.,1995,29:1159-1168.
    [10] Bozo Dalmacija,Elvira Karlovic,et al..Purification of High-Salinity Wastewater by Activated Sludge Process [J].Wat. Res.,1996,30(2):295-298.
    [11] C. Dahl,C. H. Kristensen,et al..Combinde biological nitrification and denitrification of high-salinity wastewater [J].Wat. Sci. Tech.,1997,36(2):345-352.
    [12] Thongchai Panswad and Chadarut Anan.Specific oxygen, ammonia, and nitrate uptake rates of a biological nutrient removal process treating elevated salinity wastewater [J].Bioresource Technology,1999,70:273-243.
    [13]彭光霞,周岳溪,何绪文等.高含盐有机废水MDAT-IAT生物处理工艺研究[J].环境科学研究,2006,19(3):71-74.
    [14]何健,李顺鹏等.含盐工业废水生化处理耐盐污泥驯化及其机制[J].中国环境科学,2002,22(6):546-550.
    [15]王新刚,关卫省,吕锡武.水解酸化—生物接触氧化处理高盐含油废水研究[J].工业水处理,2006,26(10):43-45.
    [16]杨健,王士芬.高含盐量石油发酵工业废水处理研究[J].工业给排水,1999,25(3):35-38.
    [17]张雨山,王静等.海水盐度对二沉池污泥沉降性能的影响[J].中国给水排水,2000,16(2):18-19.
    [18]魏呐,王祥河等.复合高效微生物处理高含盐石油开采废水[J].城市环境与城市生态,2003,16(6):10-12.
    [19] M. F. Hamoda,I. M. S. Al-attar.Effect of high sodium chloride concentrations on activated sludge treatment [J].Wat. Sci. Tech.,1995,31(9):61-72.
    [20] J. L. Campos,A. Mosquera-Corral,M. Sanchz,et al..Nitrification in Saline Wastewater with High Ammonia Concentration in An Activated Sludge Unit [J].Water Research,2002,36:2555-2560.
    [21] Fikret Kargi and Ali R Dincer.Biological treatment of saline wastewater by fed-batch operation [J].J. Chem. Tech. Biotech-nol.,1997,69:167-172.
    [22]何健,陈立伟,李顺鹏.高盐度难降解工业废水生化处理的研究[J].中国沼气,2000,18(2):12-16.
    [23]杨健,郭长虹.废水中高浓度钠盐对活性污泥法系统的影响[J].污染防治技术,1998,11(4):199-203.
    [24]郑展飞.高盐分食品废水的治理实践[J].工业水处理,2002,22(4):58-60.
    [25]冯叶成,占新民,文湘华等.活性污泥处理系统耐含盐废水冲击负荷性能[J].环境科学,2000,21(1):106-108.
    [26]张学洪,李艳红,曾全方等.高含盐含氯采油废水生物处理现场试验[J].给水排水,2005,31(10):48-51.
    [27]刘锋,吴建华,马向华等.上流式厌氧生物滤池处理高含盐废水的试验研究[J].苏州科技学院学报,2003,16(2):34-38.
    [28]王发珍,陈晞,蒋进元等.A/DAT-IAT生物膜法处理高含盐废水[J].安全与环境学报,2006,6(6):25-28.
    [29] Thongchai Panswad and Chadarut Anan . Impact of high chloride wastewater on an anaerobic/anoxic/ aerobic process with and without inoculation of chloride acclimated seeds [J].Wat. Sci. Tech.,1999,33(5):1165-1172.
    [30] Motoki Kubo,Jyunichi Hiroe,et al..Treatment of Hypersaline-Containing Wastewater with Salt- Tolerant Microorganisms [J].Journal of Bioscience and Bioengineering,2001,91(2):222-224.
    [31] Fikret Kargi and Ali R. Dincer.Saline wastewater treatment by halophile- supplemented activated sludge culture in an aerated rotating biodisc contactor [J].Enzyme and Microbial Technology,1998,22:427-433.
    [32] Fikret Kargi.Enhanced biological treatment of saline wastewater by using halophilic bacteria[J].Biotechnology Letters,2002,24:1569-1572.
    [33] Ali. R. Dincer,F. Kargi.Performance of rotating biological disc system treating saline wastewater [J].Process Biochemistry,2001,36:901-906.
    [34] Fikret Kargi.Empitical models for biological treatment of saline wastewater in rotaing biodisc contactor [J].Process Biochemistry,2002,38:399-403.
    [35] B. H. Moon,G. T. Seo. et al..Effects of salt concentration on floc characteristics and pollutants removal efficiencies in treatment of seafood wastewater by SBR [J].Water Science and Technology,2002,47(1):65-70.
    [36] Carla A. Nicholson and Carla A.Nicholson. Biodegradation of Benzene by Halophilic and Halotolerant Bacteria under Aerobic Conditions [J].Environmental Microbiology,2004,70(2): 1222-1225.
    [37] C. Y. Gomec,S. Gonuldinc,et al.. Behavior of an Up-flow Anaerobic Sludge Bed (UASB) reactor at extreme salinity [J].Water Science and Technology,2005,51(11):115-120.
    [38] O. Lefebvre,N. Vasudevan,et al..Halophilic biological treatment of tannery soak liquor in a sequencing batch reactor [J].Water Research,2005,39:1471-1480.
    [39] Ahmet Uygur.Specific nutrient removal rates in saline wastewater treatment using sequencing batch reactor [J].Process Biochemistry,2006,41:61-66.
    [40] Nugul Intrasungkha,Jurg Keller,Linda L. Blackall.Biological Nutrient Removal Efficiency in Treatment of Saline Wastewater [J].Warer Science&Technology,1999,39(6):183-190.
    [41] Matsuo, Y.,Hosobora, K.An experiment study on anaerobic aerobic sludge process characteristic of the phosphorus uptake reaction [C].The Third WPCF/JSWA Joint Technical Seminar on Sewage Treatment Technology, Tokyo, 1998.
    [42]郑兴灿,李亚新.污水除磷脱氮技术[M].中国建筑工业出版社,1998.
    [43] Liu W.–T.,Matsuo T. and Nakamura K..Biological phosphorus removal processes-effect of pH on anaerobic substrate metabolism [J].Water Sci. Technol.,1996,24(1-2):25-32.
    [44] Liu W.–T,Nakamura K.,Matsuo T. and Mino T..Internal energy-based competition between polyphosphate-and glycogen-accumulating bacteria in biological phosphorus removal reactors-effect of P/C feeding ratio [J].Water Res.,1997,31(6):1430-1438.
    [45] Kuba T.,Wachtmeister A.,van Loosdrecht M. C. M. and Heijnen J. J..Effect of nitrate on phosphorus release in biological phosphorus removal systems [J].Water Sci. Rechnol.,1994,30(6):263-269.
    [46] Roels J. and Verstraete W. . Biological formation of volatile phosphorus compounds [J].Bioresource Technol.,2001,79:243-250.
    [47] Tsubota G.Phosphate reduction in the paddy field [J].Soil and Plant Food,1959,5(1):10-15.
    [48] Skinner, F. A..The anaerobic bacteria of soil.In: Gray, T. R. G., Parkinson, D. (Eds.),The Ecology of Soil Bacteria.Liverpool University Press,Liverpool,pp.573-592.
    [49] Burford J. R. and Bermner J. M..Is phosphate reduced to phosphine in wterlogged soil? [J].Soil Biol. Biochem.,1972,4:489-495.
    [50] Dévai[0] I.,Felfǒldy L.,Wittner I. and Plosz S..Detection of phosphine: new aspects of the phosphorus cycle in the hydrosphere [J].Nature,1988,333(6171):343-345.
    [51] Gassmann G. and Glindemann D..Phosphan(PH3)in the biosphere [J]. Angew. Chem. Int. Edit.,1993,32(5):761-763.
    [52] Rutishauser B. V. and Bachofen R..Phosphine formation from sewage sludge cultures [J].Anaerobes,1999,5:525-531.
    [53] Gassmann G . and Schorn F . Phosphine from harbor surface sediments [J]. Naturwissenschaften,1993,80(2):78-80
    [54] Eismann F.,Glindemann D.,Bergmann A. and Kuschk P..Balancing phosphine in manure fermentation [J].J. Environ. Sci Heal..B,1997,32:955-968.
    [55] Jenkins R. O.,Morris T. A.,Craig P. J.,Ritchie A. W. and Ostah N..Phosphine generation by mixed-and monoseptic-cultures of anaerobic bacteria [J].Sci. Total Environ.,2000,250:73-81.
    [56] Roels J,Verstraete W.Biological formation of volatile phosphorus compounds [J].Bioresource Technology,2001,79:243-250.
    [57] Esimann F,et al..Balancing phosphine in manure fermentation [J].J. Environ.,2000,258:195-203.
    [58] Esimann F,Glindemann D,et al..Soils as source and sink of phosphine [J].Chemosphere,1997,35(3):523-533.
    [59]郭夏丽,郑平.接种物对磷酸盐的厌氧转化作用[J].浙江大学学报,2005,31(1):88-91.
    [60]曹海峰,刘季昂,庄亚辉.环境中磷化氢的源及厌氧条件下前体物类型的研究[J].中国科学,2000,30(1):63-68.
    [61]郭夏丽,郑平,梅玲玲.厌氧除磷种源的筛选与厌氧除磷条件的研究[J].环境科学学报,2005,25(2):238-241.
    [62] Glindemann D.,Edwards M. et al..Phosphine in soils, sludges, biogases and atmospheric implications—a review [J].Ecological Engineering,2005,24(5):457-463.
    [63] Zhu Renbin , Sun Liguang , et al. . Matrix-bound phosphine in Antarctic biosphere [J].Chemosphere, 2006,64(8):1429-1435.
    [64]朱益新,丁丽丽,任洪强等.结合态磷化氢在厌氧微生物产酸过程中的释放行为[J].环境科学,2005,26(4):139-142.
    [65]国家环境保护总局,HJ/T70-2001,高氯废水化学需氧量的测定——氯气校正法[S],2001.12.1实施.
    [66]刘真.高氯废水中有机物污染指标CODcr测定方法研究[J].中国环境监测,2000,16(4):39-40.
    [67]罗平,邹家庆,陆雪梅.高浓度含盐废水COD测定中Cl-的影响及消除[J].南京化工大学学报,1999,21(6):76-78.
    [68]闫敏,商连,朱浚黄.COD测定中消除氯离子干扰的方法[J].中国给水排水,1998,14:38-40.
    [69]王泾阳,孙丽亚.标准曲线扣除法测定化学需氧量的研究[J].工业水处理,2003,23(7):44-47.
    [70]顾国维.水污染治理技术研究[M].上海:同济大学出版社,1997.
    [71]刘正.高含盐废水生物处理技术探讨[J].给水排水,2001,27(11):54-57.
    [72]王志霞,王志岩,武周虎.高盐度废水生物处理现状与前景展望[J].工业水处理,2002,22(11):1-4.
    [73]柴宏祥.常温ASBBR反应器处理高盐高浓度有机榨菜废水效能研究[D].重庆大学,2005.
    [74]丁丽丽.颗粒污泥、污水处理系统磷化氢释放及环境因素研究[D].南京大学,2005.
    [75] B?rjesson G,Sundh I,Svensson B.Microbial oxidation of CH4 at different temperatures in landfill cover soils [J].FEMS Microbiology Ecology,2004,48:305-312.
    [76]郭夏丽.厌氧生物除磷技术的基础研究[D].浙江大学,2005.
    [77]马溪平等.厌氧微生物学与污水处理[M].北京:化学工业出版社,2005.
    [78]丁丽丽,朱益新等.大型UASB系统磷化氢分布及磷平衡研究[J].南京大学学报,2005,41(6):620-627.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700