用户名: 密码: 验证码:
低浓度CMC生产废水好氧生物处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CMC,英文名Carboxymethyl Cellulose (Sodium),中文名羧甲基纤维素(钠),是一种羧甲基团(-CH2-COOH)结合至羟基(-OH)上的纤维素衍生物。CMC在民用、工业各类产品中被广泛用作增稠剂、乳化剂等,是当今全球产量最大、用途最广的纤维素类工业产品。
     CMC生产废水的主要化学组分是:水、羟乙酸钠和氯化钠,另含少量纤维素(及其杂质)、氢氧化钠、乙醇和CMC。CMC生产废水是典型的高浓度高盐度有机废水,最高COD浓度可达80000mg/L以上、盐度150000mg/L以上,较低COD浓度也在20000mg/L左右、盐度40000mg/L左右,因此在纳入排污管网前,必需得到有效处理。
     本文源于低浓度CMC生产废水好氧生物处理的一个工程案例,针对工程中出现的三项棘手问题,分析问题成因、研究解决方案。
     首先,本文分析归纳江苏省泰兴市一家特种化学品工厂采用好氧膜生物反应器(MBR)处理低浓度CMC生产废水的三个工程技术问题,进水COD浓度约20000mg/L、盐度约40000mg/L的,处理目标是出水COD浓度低于500mg/L。经过三个月污泥驯化期,生物处理系统在随后的四个月正式运行期内表现较为理想,大部分时间出水浓度都能达到预订排放目标。不过存在三个问题。第一,超滤系统产水通量下降速度过快,降速随盐度升高更快;常规的气水反洗物理清洗手段无法有效地恢复产水通量,只能缩短化学清洗的周期;虽然提高物理清洗的频率和强度可以起到一定的缓解作用,可是效果仍然非常有限。第二,生物处理系统对于进水盐度冲击出现明显不适应,特别是在污泥驯化期内,尚未稳定的生物系统对于废水盐度变化非常敏感,因此在这个阶段内必须严格遵循缓步提升进水盐度的原则;进入运行期后,生物系统对于盐度冲击的耐受能力明显增强,但是CMC生产废水水质较大波动(一波高于35000mg/L的盐度冲击)使得生物系统遭受严重损害。第三,大量的黄褐色泡沫层层叠叠溢出好氧池外,尽管泡沫问题不会对生物处理系统的处理效率造成影响,但是却破坏厂区的卫生环境状况。本文通过参阅大量科研文献,关注废水成分,分析得出:CMC生产废水的主要有机组分羟乙酸钠可能是造成这些工程问题的原因之一;CMC生产废水缺乏微量营养物质可能是造成这些工程问题的原因之二。再次基础上,提出了采用耐冲击性更佳、悬浮污泥更少的移动床生物膜反应器(MBBR)的工艺改进方案。
     接着,本文通过实验室试验,考察和比较了添加微量营养物质的活性污泥反应器和未添加微量营养物质的移动床生物膜反应器对于过滤性能、沉降性能和耐盐冲击性能的改善作用。其中,添加微量营养物质又分别通过向废水中添加天然水和投加化学药剂两种途径来实现的。结果,向废水中添加天然水可以明显改善混合液的过滤性能和耐盐冲击性能,不过对于沉降性能却无特别显著的改善作用;向废水中投加化学药剂没有任何改善作用,甚至还有一定负作用:移动床生物膜反应器内混合液的过滤性能最差,远远差于任何一个活性污泥反应器;三项方案对于处理效果皆无明显改善效果,同时发现维持活性污泥浓度的食微比介乎0.3-0.5kg COD/kg MLSS之间。根据试验结果得出结论:天然水中的微量营养物质能够有效改善活性污泥在处理CMC生产废水时的过滤性能和耐盐冲击性能,而在实际工程中可以将CMC生产废水与生活废水混合来补充微量营养物质。还采用珀金埃尔默Optima8300电感耦合等离子体发射光谱仪测定试验中所用天然水的微量元素成分和含量。
     然后,通过实验室小试和工程中试,研究了CMC生产废水与生活废水混合之后对于过滤性能的改善作用。小试结果表明CMC生产废水与生活废水混合可以明显改善活性污泥的过滤性能,不过效果略次于天然水。中试在生产现场进行,高浓度CMC生产废水与生活废水按照1:3混合,混合废水的SCOD浓度约18000mg/L、盐度约32000mg/L;采用推流好氧膜生物反应器进行处理,设计有机负荷为0.4kgSCOD/kgMLSS。结果:出水COD浓度低于1000mg/L,超滤系统通量下降缓慢,化学清洗周期延长至两个月以上。
     再后,针对泡沫问题,经过查阅科研文献,明确稳定泡沫是在发泡物质(表面活性剂)和稳泡物质的协同作用下所形成的。通过对过滤前后的CMC生产废水进行曝气,以及对过滤前后的CMC生产废水与活性污泥的混合液进行曝气,从而确定在CMC生产废水好氧生物处理中泡沫问题的成因。根据试验结果得到结论:表面活性剂CMC是CMC生产废水中的发泡物质;CMC生产废水中的悬浮固体天然纤维及其杂质是稳泡物质,具有非常良好的稳泡效果。在实际工程中可以采用以下两种解决方案:一是对CMC生产废水进行一段时间的预曝气,撇去浮渣之后进入好氧生物处理;二是滤去CMC生产废水中的悬浮固体之后进入好氧生物处理。
     最后,本文选用国际水协会(IWA)开发的活性污泥一号模型(ASM1),构建一个可以模拟活性污泥处理CMC生产废水过程的数学模型。活性污泥一号模型以死亡再生理论为基础,模拟活性污泥处理废水中的8个生物反应,涉及到13个反应组分,在数学模拟中用到了5个化学计量参数和14个动力学参数。经仔细研究活性污泥一号模型的内涵,同时结合CMC生产废水的水质特点,构建了CMC生产废水—活性污泥一号模型。这个模型将原本活性污泥一号模型中的8个生物反应简化为3个,将13个反应组分简化为8个,将5个化学计量参数简化为4个,其中需要测算的是1个,将14个动力学参数简化为5个,其中需要测算的是2个。经过测算,获得了活性污泥处理CMC生产废水的异养菌的产率系数YH、异养菌的最大比生长速率μH、异养菌的衰减系数bH在环境盐度10000-80000mg/L之间的数据变化情况。
CMC, the initials of "Carboxymethyl Cellulose (Sodium)", is a cellulose derivative with carboxymethyl groups (-CH2-COOH) bound to some of the hydroxyl groups. CMC, which is applied as thickening agent, emulsifying agent and so forth in various civil and industrial products, has been the most abundantly produced and most widely applied cellulose products currently and globally.
     The main chemical constituents of CMC wastewater are:water, sodium glycolate and sodium chloride, and there is a little raw cellulose (and some impurities), sodium hydroxide, ethanol and CMC in it. CMC wastewater is typical high concentration and high salinity organic wastewater, whose COD and salinity can at highest be above80000mg/L and150000mg/L respectively, and at lowest be around20000mg/L and40000mg/L respectively, so it must be effectively treated before being discharged into sewerage.
     The study of the dissertation originates from a project of aerobic biological treatment of low concentration CMC wastewater, and fouceses on the three serious problems found in the project by analysing on the causes and experimenting on the solutions.
     Firstly, the dissertation discusses a full scale project:in a specialty chemical factory located in Taixing City, Jiangsu Province, low concentration CMC wastewater, whose COD and salinity was20000mg/L and40000mg/L respectively, was treated with aerobic membrane biological reactors (MBR), and the target COD of the treated effluent was below500mg/L. After three-month acclimatization period, the biological treatment system showed a relatively ideal performance in the subsequent four-month operation period. Namely, the treated effluent met the discharge standard most of the time. However, three great problems were found during the two periods. The first problem was that the permeate flux of the ultrafiltration system descended too fast, and even faster as the salinity ascended. During operation, the regular physical wash (air-water backwash) was unable to effectively restore the permeate flux, so the intervals between chemical washes had to be shortened. Heightening the frequency and intensity of physical washes had some mitigation effect, but the effect was quite limited. The second problem was that the biological treatment system showed obvious untoward reaction to salinity shocks. Especially during the acclimatization period, the yet unstable biological system was very sensitive to the ambient salinity change, so the principle of increasing influent salinity gradually must be strictly followed. During operation period, the biological system showed better tolerance to salinity shock. However, the CMC wastewater fluctuated in water quality fairly widely, and a wave of salinity shock over35000mg/L still caused considerable damage to the biological system. The third problem was that huge amounts of big tawny bubbles piled up layer upon layer, overflowed out of the aerobic reactor and drifted everywhere blown by the wind. Although the foaming problem had less negative effect on the treatment efficiency of the biological system, it was destructive to the factory environment.
     Secondly, the causes of these problems are analysed from the viewpoint of the wastewater constituents. Upon review of research literature, sodium glycolate, the main organic constituent in CMC wasterwater, is inferred to be one probable cause of these problems, and the abscence of micronutrients in CMC wasterwater is probably the principal cause of the problems. The improvements to these problems are discussed from the viewpoint of the wastewater treatment process. With better shock tolerance and less suspended sludge, Moving Bed Biofilm Reactor (MBBR) is supposed to make improvements.
     Thirdly, a comparison upon improvement effects on filterability, settleability and salinity shock tolerance is made between the AS reactors with micronutrients added and the MBBR without micronutrients added. The addition of micronutrients is realized through two ways:adding natural water into the wastewater and adding chemical agents into the wastewater. The experiment results show:adding natural water into the wastewater notably improves the filterability and salinity shock tolerance, but fails to make improvement in settleability; adding chemical agents into the wastewater makes no improvement, but negative effects; the MBBR makes the worst filterability, even far worse than any of the AS reactors; all the three trial solutions make no improvement in treatment efficiency; the minimum Food to Microorganism (F/M) that can maintain the current activated sludge concentration is0.3-0.5kg COD/kg MLSS. The following conclusions are made on the basis of the experiment results:the micronutrients in natural water can effectively improve the filterability and salinity shock tolerance of the activated sludge for treating CMC wastewater, and then for full scale projects, mixing CMC wastewater with municipal sewage is expected to be a more practicable option of acquiring micronutrients and improving the performance of the activated sludge.
     Fourthly, whether mixing CMC wastewater with municipal sewage can improve the filterability is studied through bench scale experiment and intermediate scale experiment. The bench scale experiment results show:mixing municipal sewage can effectively improve the filterability of the activated sludge, but slightly less effective than adding natural water. In the intermediate scale experiment held in a CMC factory, high concentration CMC wastewater and municipal sewage was mixed by ratio1:3, and treated with a plug flow aerobic MBR. The SCOD and salinity of the wastewater was18000mg/L and32000mg/L respectively; the design organic loading was0.4kgSCOD/kgMLSS. The intermediate scale experiment results show:the COD of the treated effluent was constantly below1000mg/L; the ultrafiltration flux descended slowly, and the interval between chemical washes was more than two months.
     Fifthly, the trace elements in the natural water utilised in the experiments are qualitatively analysed and quantitatively determined by a Perkin Elmer Optima8300Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES), and the results could be the reference for natural water synthesis.
     Sixthly, the formation mechanism of stable foam is defined upon review of research literature: stable foam is formed under the synergy of foaming agent (surfactant) and foaming stabiliser. The causes of foaming problem in the aerobic treatment of CMC wastewater are analysed by aerating unfiltered, filtered CMC wastewater, the mixed liquid of unfiltered, filtered CMC wastewater and activated sludge. The following conclusions are made on the basis of the experiment results:as a surfactant, CMC is the foaming agent; as the suspended solid in CMC wastewater, natural cellulose and its impurities is the foaming stabiliser, which has very excellent foam stabilising effect. For full scale projects, there can be two solutions to the foaming problem:the first is to pre-aerate the CMC wastewater for a period of time and then skim the scum before aerobic biological treatment; the second is to filter the CMC wastewater before aerobic biological treatment.
     Seventhly, the dissertation discusses the building of a mathematical model which can model the treatment of CMC wastewater with activated sludge process within the framework of the Activated Sludge Model No.1(ASM1) developed by the International Water Association (IWA). ASM1is on the theoretical basis of the death-regeneration hypothesis, modelling8dynamic processes, involving13state variables, utilising5stoichiometric parameters and14kinetic parameters. After studying ASM1detailedly and analysing the water quality of CMC wastewater deliberately, the "CMC wastewater-ASM1", which simplifies the original ASM1from8dynamic processes to3, from13state variables to8, from5stoichiometric parameters to4, from14kinetic parameters to5, has been built. Among the model parameters,1toichiometric parameter and2kinetic parameters need measuring and calculating. After measurement and calculation, the heterotrophic yields YH, the heterotrophic maximum specific growth rates μM and the heterotrophic decay rates6H for CMC wastewater treatment at different ambient salinity within range from10000mg/L to80000mg/L have been acquired.
引文
[1]毛绍春、姚文华、方华、李应、王家强,高浓度有机废水处理技术的研究进展,云南化工,2004年6月,第31卷,第3期,27-30页
    [2]王芳、王增长、侯安清,高浓度有机废水处理技术的应用研究,科技情报开发与经济,2005年,第15卷,第23期,139-141页
    [3]赵月龙、祁佩时、杨云龙,高浓度难降解有机废水处理技术综述,四川环境,2006年8月,第25卷,第4期,98-103页
    [4]陈旭东、李朝霞、孟令尧,高浓度有机废水处理技术研究进展,河北化工,2008年12月,第31卷,第12期,71-73页
    [5]中华人民共和国环境保护部,屠宰与肉类加工废水治理工程技术规范(HJ2004-2010),2011年,中国环境科学出版社,北京
    [6]中华人民共和国环境保护部,制浆造纸废水治理工程技术规范(HJ2011-2012),2012年,中国环境科学出版社,北京
    [7]中华人民共和国环境保护部,生活垃圾填埋场渗滤液处理工程技术规范(HJ564-2010),2010年,中国环境科学出版社,北京
    [8]中华人民共和国环境保护部,纺织染整工业废水治理工程技术规范(HJ471-2009),2009年,中国环境科学出版社,北京
    [9]中华人民共和国技术部,室外排水设计规范(GB 50014-2006),2006年,中国计划出版社,北京
    [10]中华人民共和国环境保护部,制糖废水治理工程技术规范(HJ 2018-2012),2012年,中国环境科学出版社,北京
    [11]中华人民共和国环境保护部,酿造工业废水治理工程技术规范(HJ575-2010),2010年,中国环境科学出版社,北京
    [12]国家技术监督局,污水综合排放标准(GB8978-1996),1996年,中国环境科学出版社,北京,第7页
    [13]吴志超、顾国维、何义亮、张明旭、马治亮、谢芬琴,高浓度有机废水厌氧膜生物工艺处理的中试研究,环境科学学报,2001年1月,第21卷第1期,34-38页
    [14]李薇、展侠、李继定、郑冬菊,纳滤处理高浓度丙烯晴工业废水的实验研究,化学工程,2011年11月,第39卷第11期,79-82页
    [15]蔡少卿、戴启洲、王佳裕、陈建孟,非均相催化臭氧处理高浓度制药废水的研究,环境科学学报,2011年7月,第31卷第7期,1440-1449页
    [16]雷云、解庆林、李艳红,高盐度废水处理研究进展,环境科学与管理,2007 年6月,第32卷第6期,94-98页
    [17]农少梅、李捍东、张树增、李霁,高盐废水处理技术研究新进展,江苏环境科技,2008年6月,第21卷第3期,72-76页
    [18]Sivaprakasam Senthilkumar, Mahadevan Surianarayanan, Gopalraman Swaminathan. Biocalorimetric and respirometric studies on biological treatment of tannery saline wastewater. Applied Microbiology and Biotechnology,2008,78: 249-255
    [19]N Shapir, RT Mandelbaum, H Gottlieb. Atrazine degradation in saline wastewater by Pseudomonas sp strain ADP. Journal of Industrial Microbiology & Biotechnology,1998,20:153-159
    [20]王基成、张秀霞、王建娜、潘咸峰,驯化污泥及生物滤池法处理高含盐石化废水,石油学报(石油加工),2011年12月,第27卷第6期,977-983页
    [21]王夏敏、周健、龙腾锐、刘俊,生物化学组合工艺处理高盐榨菜废水的除磷效能,中国给水排水,2008年4月,第24卷第7期,29-33页
    [22]徐锐、曾玮、温康文,高盐污水生物处理技术浅探,广化工,2008年,第35卷第11期,90-94页
    [23]安立超、严学亿、胡磊、余宗学,嗜盐菌的特性与高盐废水生物处理的进展,环境污染与防治,2002年10月,第24卷第5期,293-296页
    [24]Winson C.L. Lay, Yu Liu, Anthony G Fane. Impacts of salinity on the performance of high retention membrane bioreactors for water reclamation. Water Research,2010,44:21-40
    [25]张波、李捍东、郭笃发、刘秀华、李霁,复合嗜盐菌剂强化处理高盐有机废水的中试研究,中国给水排水,2008年9月,第24卷第17期,16-19页
    [26]李维国、马放、苏俊峰、魏利、徐仲、张大伟,一株中度嗜盐菌的分离鉴定及其强化高盐有机废水处理的研究,湖南大学学报(自然科学版),2008年2月,第35卷第2期,48-88页
    [27]F. Kargi, A.R. Dincer. Enhancement of biological treatment performance of saline wastewater by halophilic bacteria. Bioprocess Engineering,1996,15: 51-58
    [28]F. Kargi, A. Uygur. Biological treatment of saline wastewater in a rotating biodisc contactor by using halophilic organisms. Bioprocess Engineering,1997, 17:81-85
    [29]F. Kargi, A.R. Dincer. Effect of sludge recycle on performance of a rotating biodisc contactor treating saline wastewater. Bioprocess Engineering,1998,18: 235-239
    [30]Fikret Kargi. Enhanced biological treatment of saline wastewater by using halophilic bacteria. Biotechnology Letters,2002,24:1569-1572
    [31]叶文飞、周恭明,活性污泥法处理高盐废水的可行性研究,江苏环境科技,2008年6月,第21卷第3期,33-35页
    [32]宋晶、孙德栋、王一娜、薛文平、董晓丽、马春、张新欣,SBBR法处理高盐废水,大连工业大学学报,2010年7月,第29卷第4期,281-284页
    [33]齐婧,悬浮填料改善低温高盐废水处理效果的研究,硕士学位论文,青岛大学,2007年
    [34]I. Vyrides, D.C. Stuckey. Saline sewage treatment using a submerged anaerobic membrane reactor (SAMBR) Effects of activated carbon addition and biogas-sparging time. Water Research,2009,43:933-942
    [35]姜少红,AF-MBBR及专性耐盐菌对高盐量垃圾渗滤液的处理研究,硕士学位论文,天津大学,2006年
    [36]张华、陈俊、刘宇明、解庆林、游少鸿、张学洪,高盐高氯采油废水处理工程实践,2006年12月,第22卷第24期,71-73页
    [37]李如圆、李开伟、程梅粉、马前,两相厌氧工艺处理高盐纤维素醚废水的研究,中国给水排水,2012年5月,第28卷第9期,105-108页
    [38]陈垚、周健、甘春娟、李晓品,超高盐厌氧生物处理系统快速启动及其除污特性,水处理技术,2011年6月,第37卷第6期,90-94页
    [39]张选军、张亚雷、周雪飞、马秀娟、赵建夫,高盐高COD农药废水的处理工程与调试研究,工业水处理,2007年6月,第27卷第6期,22-24页
    [40]毛正中、马永红、彭祥维,全膜处理除盐法的技术经济分析,电力科学与技术学报,2007年6月,第22卷第2期,79-001页
    [41]牛快快、张皓东、刘志宽,减压膜蒸馏技术在污水处理中的研究应用进展,中国科技博览,2009年,第30期,312页
    [42]武春瑞、刘东、陈华艳、贾悦、王暄、吕晓龙,PVDF疏水中空纤维膜的膜蒸馏含盐废水处理性能研究,功能材料,2008年,第39卷第12期,2018-2021页
    [43]鲁春、顾爱兵、李霞、林强,二氧化氯催化氧化处理高浓度橡胶促进剂废水的研究,环境科技,2009年10月,第22卷第5期,35-36页
    [44]郭春梅、陈进富,分步沉淀法处理高含盐废水的实验研究,工业水处理,2008年3月,第28卷第3期,43-44,86页
    [45]章程宏、彭书传、陈金思,A2/O工艺处理化学制药工业高盐有机废水,工 业用水与废水,2012年6月,第43卷第3期,31-34,57页
    [46]雷雨电、方云,羧甲基纤维素生产工艺的进展,日用化学工艺,2000年8月,第4期,25-29页
    [47]刘关山,羧甲基纤维素的生产与应用,辽宁化工,2002年10月,第31卷第10期,445-447,451页
    [48]罗华飞,微电解—UASB—接触氧化处理高浓度CMC生产废水研究,硕士学位论文,同济大学,2008年
    [49]许劲、赵绪光、洪国强、董晓梦、李家祥,Fenton—水解酸化—厌氧接触—接触氧化工艺处理高盐生产废水,给水排水,2011年,第37卷第2期,54-56页
    [50]郑贤助、戴艳、谢敏,高浓度含盐化工废水蒸发脱盐回收处理的试验研究,污染防治技术,2009年8月,第22卷第4期,5-7,127页
    [51]国家环境保护局,水质化学需氧量的测定重铬酸盐法(GB11914-1989),1989年,中国标准出版社,北京
    [52]国家环境保护局,水质氯化物的测定硝酸银滴定法(GB11896-1989),1989年,中国标准出版社,北京
    [53]国家环境保护局,水质悬浮物的测定 重量法(GB11896-1989),1989年,中国标准出版社,北京
    [54]刘燕、王越兴、莫华娟、马鲁铭,有机底物对活性污泥胞外聚合物的影响,环境化学,2004年5月,第23卷,第3期,252-257页
    [55]倪丙杰、徐得潜、刘绍根,污泥性质的重要影响物质-胞外聚合物(EPS),环境科学与技术,2006年3月,第29卷,第3期,108-110页
    [56]朱哲、李涛、王东升、姚重华,基质种类对活性污泥絮体性状的影响,环境科学学报,2009年1月,第29卷,第1期,88-94页
    [57]Wood DK, Tchobanoglous G. Trace elements in biological waste treatment. Journal-Water Pollution Control Federation,1975,47:1933-1945
    [58]Metcalf and Eddy, Inc. Wastewater Engineering-Treatment, Disposal and Reuse, 4th edition, New York:McGraw-Hill,1991
    [59]Isabel le Bourven, Emmanuel Joussein, Gilles Guibaud. Characterisation of the mineral fraction in extracellular polymeric substances (EPS) from activated sludges extracted by eight different methods. Bioresource Technology,2011, Article in Press
    [60]Mahler HR, Cordes EH. Biological Chemistry, New York:Harper and Row,1966
    [61]Rasmussen H, Nielsen PH. Iron reduction in AS measured with different extraction techniques. Water Research,1996,30:551-8
    [62]Caccavo F, Frolund B, Kloeke FVO, Nielsen PH. Deflocculation of activated sludge by the dissimilatory Fe(Ⅲ) reducing bacterium Shewanella alba strain Br-Y. Applied and Environmental Microbiology,1996,62:1487-1490
    [63]Nicholas DJD. Inorganic nutrient nutrition of microorganisms. In:Stewart FC, editor. Plant Physiology Ⅲ. New York:Academic Press,1963:363-75
    [64]Gracia M-P, Salvado H, Ruis M, Amigo JM. Effects of copper on ciliate communities from activated sludge plants. Acta Protozoologica,1994,33: 219-26
    [65]Vandevivere P, Ficara E, Julies E, Verstraete W. Adding copper to detoxify wastewater. Proceedings of the Environmental Technology International Symposium. April 21-23, Ghent, Belgium,1997
    [66]Sathyanarayana Rao S, Srinath EG. Influence of cobalt on the synthesis of vitamin B12 in sewage during aerobic and anaerobic treatment. Journal of Scientific and Industrial Research,1961,20C:261-5
    [67]Hutchinson TC. Effects of Heavy Metal Pollution on Plants. London:Applied Sciences Publications,1973
    [68]Madoni P, Davoli D, Gorbi G, Vescovi L. Toxic effects of heavy metals on the activated sludge protozoan community. Water Research,1996,30:135-141
    [69]Speece RE, Parkin GF, Callagher D. Nickel stimulation of anaerobic digestion. Water Research,1983,17:677-683
    [70]Sujarittanonta S, Sherrard JH. Activated sludge nickel toxicity studies. Saurnal-Water Pollution Control Federation,1981,53:1314-1322
    [71]Geradi MH. Effects of heavy metals upon the biological wastewater treatment process. Public Works 1986,117:77-80
    [72]Beyenal NY, Ozbelge TA, Ozbelge HO. Combined effects of Cu2+ and Zn2+ on activated sludge process. Water Research,1997,31:699-704
    [73]Shuttleworth KL, Unz RF. Growth of filamentous bacteria in the presence of heavy metals. Wat Science and Technology,1988,20:485-487
    [74]Vashon RD, Jones WJ, Payne AG The effect of water hardness on nitriloacetate removal and microbial acclimation in activated sludge. Water Research 1982,16: 1429-32
    [75]Madoni P, Davoli D, Gorbi G, Vescovi L. Toxic effects of heavy metals on the activated sludge protozoan community. Water Research 1996,30:135-141
    [76]Chang SY, Huang JC, Liu YC. Effects of Cd(Ⅱ) and Cu(Ⅱ) on a biofilm system. J Envir Engng 1986,112:94-104
    [77]Amdur MO, Doull J, Klaassen CD. Casarett and Doull's Toxicology:The Basic Science of Poisons,4th edition Oxford:Pergamon Press,1991
    [78]Gokcay CF, Yetis U. Effect of nickel (Ⅱ) on the biomass yield of the activated sludge. Water Science and Technology,1996,34:163-72
    [79]Yetis U, Gokcay CF. Effect of nickel (Ⅱ) on activated sludge. Water Research 1989,23:1003-1007
    [80]Imai A, Gloyna EF. Effects of pH and oxidation state of chromium on the behaviour of chromium in the activated sludge process. Water Research 1990,24: 1143-1150
    [81]J. E. Burgess, J. Quarmby, T. Stephenson. Role of micronutrients in activated sludge-based biotreatment of industrial effluents. Biotechnology Advance,1999, 17:49-70
    [82]Lemmer H, Nitschke L. Vitamin content of four sludge fractions in the activated sludge waste water treatment process. Water Research,1994,28:737-739
    [83]Lemmer H. Biological additives for waste water treatment-Theory and practice. MUnchener BeitrMge zur Abwasser, Fischerei und FluBbiologie,1992,46: 254-282
    [84]Sarfert F, Eikelboom DH, Klein B, Kowalsky H, Lemmer H, Matsche N, Popp W, Reinnarth G, Wagner F. Biological additives in waste water treatment-bacteria-enzymes-vitamins-algal preparations. Korrespondez Abwasser,1990,7: 793-799
    [85]Singleton J. Microbial metabolism of xenobiotics:Fundamental and applied research. Journal of Chemical Technology and Biotechnology,1994,59:9-23
    [86]Gostick N. A study of the effect of substrate composition on the settlement of activated sludge. PhD Thesis, Cranfield University, U.K.1991
    [87]Lind G, Schade M, Metzner G, Lemmer H. Use of vitamins in biological waste water treatment. GWF-Wasser/Abwasser 1994,135:595-600
    [88]Schormuller J. Vitamins as growth material for bacteria. A comprehensive review. Z Lebensm Untersuchung und Forschung,1948,88:408-436
    [89]Tsuboi T, Sekijo C, Yoshimura Y, Shoji O. Studies in production of biotin by microorganisms. Part Ⅲ. Agricultural and Biological Chemistry,1967,31: 1135-1142.
    [90]Schwarz D. Determination of thiamine in sewage treatment plants. Vom Wasser, 1971,38:63-70
    [91]Prescott LP, Harley JP, Klein DA. Microbiology. Dubuque, IA:Wm. C. Brown, 1990
    [92]Jones GA, Franklin BC. The prevention of filamentous bulking of activated sludge by operation means at Halifax sewage treatment works. Water Pollution Control,1985,84:329-346
    [93]Gleisburg D, Hoechst AG Influence of precipitation on the behaviour of sludge in the case of dewatering. In Characterization, Treatment and Use of Sewage Sludge. Proceedings of 2nd European Symposium, Vienna,1980
    [94]Vaananen P. Control of the phosphorus level of effluent in the treatment of forest industry waste waters. Water Science and Technology,1988,20:81-86
    [95]Franta J, Wilderer PA, Miksch K, Sykora V. Effects of operation conditions on advanced COD removal in activated sludge systems. Water Science and Technology,1994,29(7):189-192
    [96]J. E. Burgess, J. Quarmby, T. Stephenson. Micronutrient Supplements to Enhance Biological Wastewater Treatment of Phosphorus-Limited Industrial Effluent. Trans IChemE, July 1999,77(B):199-204
    [97]J. E. Burgess, J. Quarmby, T. Stephenson. Micronutrient supplements for optimisation of the treatment of industrial wastewater using activated sludge. Water Research,1999,33(18):3707-3714
    [98]周金生,浅谈地下水水化学成分研究工作,水文地质工程地质,1983年,第6期,20-22页
    [99]叶希尧,水中部分微量元素分布规律的研究,西南民族学院学报·畜牧兽医版,1988年,第3期,65-73页
    [100]方如康,上海市天然矿水中微量元素含量的探讨,核技术,1993年2月,第16卷,第2期,69-72页
    [101]沈梅,马鞍德,五华汤湖矿泉中9种微量元素的测定,广东微量元素科学,2003年,第10卷,第7期,45-47页
    [102]李振声,贺兰山自然保护区东坡水微量元素环境背景值初探,宁夏大学学报,1985年,第2期,89-99页
    [103]徐雄平、李明喜、杨晓琴、丁玉兰,青海省西宁地区水、土、植物微量元素与环境问题,青海环境,1993年6月,第3卷第2期,87-91页
    [104]袁国映、张晓黎,喀纳斯自然保护区土壤元素背景值及水、植物中的微量元素含量,新疆环境保护,1989年,第1期,35-48页
    [105]傅平青,水环境中的溶解有机质及其与金属离子的相互作用——荧光光谱学研究,中国科学院地球化学研究所博士论文,2004年9月
    [106]岳兰秀,红枫湖、百花湖水中溶解有机物分子量分布特征及环境地球化学 意义,中国科学院地球化学研究所博士论文,2004年6月
    [107]李传珠,黑河流域天然水中微量元素的分析研究,中国沙漠,1989年,第9卷,第1期,142-149页
    [108]李善吉,对梅江河水中微量元素的区域性研究,广东微量元素科学,2004年,第11卷第1期,54-56页
    [109]李善吉,梅江河水中微量元素的时间性研究,广东微量元素科学,2004年,第11卷第7期,65-67页
    [110]毕桂英,天然降水和径流水中四种微量元素的测定,水土保持通报,1998年4月,第18卷第2期,31-35页
    [111]Bo Jin, Britt-Marie Wilen, Paul Lant. Impacts of morphological, physical and chemical properties of sludge flocs on dewaterability of activated sludge. Chemical Engineering Journal,2004,98:115-126
    [112]庞洪涛, Christoph Thiemig, Johannes Pinnekamp,施汉昌,膜生物反应器混合液过滤性能测试方法,清华大学学报(自然科学版),2010年,第50卷第3期,403-406页
    [113]Bjorn Rusten, Bjornar Eikebrokk, Yngve Ulgenes, Eivind Lygren. Design and operations of the Kaldnes moving bed biofilm reactors. Aquacultural Engineering,2006,34:322-331
    [114]Rong-Chang Wang, Xiang-Hua Wen, Yi Qian. Influence of carrier concentration on the performance and microbial characteristics of a suspended carrier biofilm reactor. Process Biochemistry,2005,40:2992-3001
    [115]M. Rodgers, X. M. Zhan, B. Gallagher. A pilot plant study using a vertically moving biofilm process to treat municipal wastewater. Bioresource Technology, 2003,89:139-143
    [116]X.J. Wang, S.Q. Xia, L. Chen, J.F. Zhao, N.J. Renault, J.M. Chovelon. Nutrients removal from municipal wastewater by chemical precipitation in a moving bed biofilm reactor. Process Biochemistry,2006,41:824-828
    [117]Sigrun J. Jahren, Jukka A. Rintalab, Hallvard Odegaard. Aerobic moving bed biofilm reactor treating thermomechanical pulping Whitewater under thermophilic conditions. Water Research,2002,36:1067-1075
    [118]S. Wang, N. Chandrasekhara Rao, R. Qiu, R. Moletta. Performance and kinetic evaluation of anaerobic moving bed biofilm reactor for treating milk permeate from dairy industry. Bioresource Technology,2009,100:5641-5647
    [119]S.H. Hosseini, S.M. Borghei. The treatment of phenolic wastewater using a moving bed bio-reactor. Process Biochemistry,2005,40:1027-1031
    [120]Sheng Chen, Dezhi Sun, Jong-Shik Chung. Simultaneous removal of COD and ammonium from landfill leachate using an anaerobic-aerobic moving-bed biofilm reactor system. Waste Management,2008,28:339-346
    [121]TorOve Leiknes, Hallvard Odegaard. The development of a biofilm membrane bioreactor. Desalination,2007,202:135-143
    [122]Igor Ivanovic, TorOve Leiknes, Hallvard Odegaard. Influence of loading rates on production and characteristics of retentate from a biofilm membrane bioreactor (BF-MBR). Desalination,2006,199:490-492
    [123]Woo-Nyoung Lee, In-Joong Kang, Chung-Hak Lee. Factors affecting filtration characteristics in membrane-coupled moving bed biofilm reactor. Water Research,2006,40:1827-1835
    [124]江惜卿,微波密封消解法快速测定COD技术应用研究,环境,2006年,第S2期,28-29页
    [125]黄敬嵩,COD测定中氯离子干扰的消除方法探讨,福建分析测试,2008年,第17卷第2期,39-41页
    [126]王方园,盛贻林,郑绍成,高浓度氯离子化工废水中COD测定方法比较,工业水处理,2006年,第26卷第5期,72-74页
    [127]卞红亮,孙植磊,宋安威,孙丽华,朱妍,罗永亮,污水厂高浓度氯离子出水中COD测定方法的研究,中国给水排水,2008年,第24卷第5期,66-68页
    [128]王志强,闫毓霞,密封消解法测定高氯化物废水的化学需氧量,化工环保,2003年,第23卷第3期,169-173页
    [129]师祥洪,王志强,密封消解法测定高盐废水COD时的最佳实验条件选择,环境工程,2003年,第21卷第5期,51-54页
    [130]Chih Chao Wu, Jerry J. Wu, Ruey Yi Huang. Effect of floe strength on sludge dewatering by vacuum filtration. Colloids and Surfaces A:Physicochem. Eng. Aspects,2003,221:141-147
    [131]赵培涛,葛仕福,黄瑛,陈振乾,李响,压滤式污泥过滤比阻测定方法,东南大学学报(自然科学版),2011年,第41卷第1期,155-159页
    [132]D. E. Smiles. Water flow in filter paper and capillary suction time. Chemical Engineering Science,1998,53(12):2211-2218
    [133]Pierre Le-Clech, Vicki Chen, Tony A.G. Fane. Fouling in membrane bioreactor used in wastewater treatment. Journal of Membrane Science,284,2006,17-53
    [134]C. Huyskens, E. Brauns, E. Van Hoof, H. DeWever. A new method for the evaluation of the reversible and irreversible fouling propensity of MBR mixed liquor. Journal of Membrane Science,323,2008,185-192
    [135]钱杏珍,毛雪瑛,李岫霞,章申,天然水样贮存过程中微量元素浓度变化的研究,环境化学,1984年,第3卷第1期,75-79页
    [136]吕明强,徐其高,中子活化法测定河水中的微量元素,干旱区研究,1992年,第9卷第3期,36-39页
    [137]许模,刘国,陈旭,黄继,张曦,钟金先,川西北高原壤塘县大骨节病区水环境微量元素分析,中国地质,2010年,第37卷第3期,600-606页
    [138]李灵,陈良壁,九曲溪水体中的微量元素Al分子荧光法测定,福建分析测试,2007年,第16卷第2期,39-42页
    [139]夏楠,光谱法分析环境水样的研究,长春理工大学硕士论文,2011年3月
    [140]詹光耀、罗兴寅、张运然、曾娅娣、常希俊,鸡蛋白富集—发射光谱法测定废水、河水中锑、碲、铍、铬微量元素,分析化学,1984年,第12卷第8期,714-718页
    [141]周长进、张义丰、董锁成、李岱,疏勒河流域天然水质研究及水环境保护,自然资源学报,2004年,第19卷第5期,604-609页
    [142]李顺江,杨林生,王五,胡霞,李永华,李海蓉,王丽珍,ICP-AES法测定西藏大骨节病区及非病区饮用水中的微量元素,光谱学与光谱分析,2007年,第27卷第3期,585-588页
    [143]欧阳婷萍,匡耀求,谭建军,郭国章,顾立松,珠江三角洲经济区河水中微量元素的空间分布,水文地质工程地质,2004年,第31卷第4期,66-69页
    [144]孟秀丽,赣南小流域水体中溶解态稀土元素地球化学及微量元素组成,首都师范大学硕士论文,2008年4月
    [145]辛仁轩,等离子发射光谱分析,2011年,化学工业出版社,北京
    [146]Katerina Schilling, Matthias Zessner. Foam in the aquatic environment. Water Research,45,2011,4355-4366
    [147]Krister Holmberg, Bo Jonsson, Bengt Kronberg, Bjorn Lindman. Foaming of Surfactant Solutions.2003, John Wiley & Sons, Ltd., Chichester
    [148]R. J. Pugh, Foaming, foam films, antifoaming and defoaming. Advances in Colloid and Interface Science,64,1996,67-142
    [149]Jacqueline Heard, Emma Harvey, Bruce B. Johnson, John D Wells, Michael J. Angove. The effect of filamentous bacteria on foam production and stability. Colloids and Surfaces B:Biointerfaces 63,2008,21-26
    [150]Linda L. Blackall, Kevin C. Marshall. The mechanism of stabilization of actinomycete foams and the prevention of foaming under laboratory conditions. Journal of Industrial Microbiology & Biotechnology,4,1989,181-187
    [151]Hilde Lemmer, George Lind, Elisabeth Muller, Margit Schade. Non-famous scum bacteria:biological characterization and troubleshooting. Acta Hydrochimica et Hydrobiologica 33,2005,197-202
    [152]Linda L. Blackall, Anne E. Harbers, P. F. Greenfield, A. C. Hayward. Activated sludge foams:Effects of environmental variables on organism growth and foam formation. Environmental Technology,12,1991,241-248
    [153]Steve Petrovski, Zoe A. Dyson, Eben S. Quill, Simon J. Mcllroy, Daniel Tillett, Robert J. Seviour. An examination of the mechanisms for stable foam formation in activated sludge systems. Water Research,45,2011,2146-2154
    [154]Hwang Y., Tanaka T. Control of Microthrix parvicella foaming in activated sludge. Water Research,32,1998,1678-1686
    [155]Tommy S. Horozov. Foams and foam films stabilised by solid particles. Current Opinion in Colloid & Interface Science,13,2008,134-140
    [156]陈兆波、陈志强、林海龙,污水处理系统数学模型,2009年,哈尔滨工业大学出版社,哈尔滨
    [157]M. L. Menten, L. Michaelis. Die Kinetik der Invertinwirkung. Biochemische Zeitschrift,1913,49:333-369
    [158]J. Monod. Recherches sur la croissance des Cultures Bacteriennes.1942, Hermann, Paris
    [159]M. Henze, C.P. L. Grady, W. Gujer, G. v.R. Marais, T. Matsuo. Activated Sludge Model No.1.1987, IAWPRC, London
    [160]M. Henze, W. Gujer, T. Mino, T. Matsuo, M. C. Wentzel, G v.R. Marais. Activated Sludge Model No.2.1995, IAWQ, London
    [161]W. Gujer, M. Henze, T. Mino, M. C. M. van Loosdrecht. Activated Sludge Model No.3. Water Science and Technology,39,1999:183-193
    [162]M. Henze, W. Gujer, T. Mino, T. Matsuo, M. C. Wentzel, G. v.R. Marais, M. C. M. van Loosdrecht. Activated Sludge Model No.2d. Water Science and Technology,39,1999:165-182
    [163]于广平、苑明哲、王宏,活性污泥法污水处理数学模型的发展和应用,信息与控制,2006年10月,第35卷第5期,614-618,623页
    [164]国际水协废水生物处理设计与运行数学模型课题组,活性污泥数学模型,2002年,同济大学出版社,上海
    [165]唐书娟、吴志超、周振、马菲菲,活性污泥系统中自养菌浓度及生长动力学参数测定,环境工程学报,2009年2月,第3卷第2期,271-274页
    [166]刘芳、陈季华、顾国维,简化活性污泥数学模型在城市污水厂中的应用,环境工程,2005年4月,第23卷第2期,33-36页
    [167]刘芳、陈季华、顾国维,ASM-CN模型中主要动力学参数的测定研究,东华大学学报(自然科学版),2005年6月,第31卷第3期,20-25页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700