用户名: 密码: 验证码:
青少年特发性脊柱侧凸经椎弓根—肋骨复合体固定临床解剖数字化测量、个性化手术设计及有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:青少年特发性脊柱侧凸畸形较为复杂,手术难度和风险较大,椎弓根后路固定技术可以从脊柱后路三维矫正畸形脊柱节段,其固定效果较为优良,对于该疾患的治疗起到重要的作用,但由于上、中胸段椎弓根狭窄,尤其是青少年脊椎,椎弓根尚处于发育阶段,临床手术较为困难,或者因为解剖学结构与成人差异,造成手术失误。为了解决这一问题,有学者试图在上、中胸段利用“椎弓根-肋骨复合体”进行置入,但其支持该术式的基础研究较少,手术操作过程中有许多困难。
     为了“椎弓根-肋骨复合体”螺钉的临床应用提供基础数据,本文做了以下研究:
     第一部分
     胸椎椎弓根-肋骨复合体的临床解剖及数字化测量
     目的:观察胸椎椎弓根-肋骨复合体的三维立体形态并对其临床解剖学参数进行测量。方法:选取内蒙古医科大学解剖教研室新鲜成人尸体标本6具,其中使胸椎、椎间盘、肋骨及周围软组织保留完整。对以下数据进行测量,椎弓根及椎弓根-肋骨复合体横径,椎弓根及椎弓根-肋骨复合体纵径,椎弓根螺钉固定及复合体固定螺钉走行最长距离及椎弓根及椎弓根-肋骨复合体外偏角等。测量中将尸体标本测量数据、CT影像(二维测量)与脊柱三维数字化立体重建后测量相对照比较。结果:椎弓根与肋骨的位置在胸椎的不同节段变化有一定的规律。横径为12.13-20.13mm,纵径为6.18-11.83mm,椎弓根-肋骨复合体轴线螺钉钉道最大值47.81-66.84mm,椎弓根-肋骨复合体轴线螺钉横断面外偏角为12.47-41.33°,椎弓根-肋骨复合体轴线螺钉与椎弓板的夹角为72.67-86.28°。结论:1.胸椎椎弓根-肋骨复合体的钉道长度、横径均较同节段的经椎弓根固定参数大,因此,胸椎椎弓根-肋骨复合体置钉可以使用直径更大、长度更长的螺钉,以此可以增大螺钉的把持力。2.胸椎椎弓根-肋骨复合体置钉较椎弓根螺钉要求有更大的内倾角,但其安全置钉角度范围也增大,减少手术置钉导致的螺钉穿破椎管等风险。3.经胸椎椎弓根-肋骨复合体固定螺钉直径、长度及置钉角度的选择在脊柱不同节段和个体之间差异较大,在行胸椎椎弓根-肋骨复合体置钉时要根据个体脊柱及椎骨解剖学特点制定个性化的手术方案。
     第二部分
     个性化三维数字化手术设计及临床验证
     目的:探讨青少年特发性脊柱侧凸数字化虚拟手术设计系统建立的方法及其在临床应用中的价值。方法:选取1例青少年特发性脊柱侧凸患者,行青少年特发性脊柱侧凸经16排螺旋CT扫描,采用Mimics10.01软件对脊柱侧凸模型进行三维重建,对三维重建模型进行数字化三维测量及置钉手术模拟,并测量固定内置物的方向、长度、直径的选择、模拟手术经过并在临床应用中使用术前模拟数据。结果:重建出青少年特发性脊柱侧凸的三维数字化虚拟可视模型,配准虚拟螺钉和椎弓根-肋骨复合体的位置,使虚拟螺钉不穿透椎弓根内侧皮质及椎体前缘,置定完整的手术方案。利用术前规划方案进行手术,手术置钉效果满意,无一例螺钉穿透椎体前缘皮质和椎管皮质。结论:验证了特发性脊柱侧凸手术术前三维数字化手术设计并制定手术方案,可以显著提高置钉手术成功率。
     第三部分
     脊柱侧凸三维有限元分析
     目的:建立青少年特发性脊柱侧凸的三维有限元模型,与其他模型进行验证和比较,为今后青少年特发性脊柱侧凸生物力学研究提供基础模型。方法:标本选自内蒙古医科大学第二附属医院脊柱外科就诊的青少年特发性脊柱侧凸患者一名,利用GE16排螺旋CT进行扫描,扫描层厚为1mm,利用Mimics10.01软件进行三维建模。将模型在Hypermesh进行网格划分和材料赋值。结果:1.本文建立的青少年特发性脊柱侧凸三维有限元模型共包括胸腰椎17个节段,16个椎间盘及其椎体间连接、椎弓间连接的韧带(前纵韧带、后纵韧带、黄韧带、棘间韧带及棘上韧带)。该模型采用4种单位类型,13种材料的性质,节点数为1351327,四面体单元数为1511549,壳单元数为1631320,线缆单元数为56个和42个杆单元。我们本次建立的模型外观光滑,网格划分精细,更接近真实结构。结论:1.我们研究所建模型精度较高,几何相似性好,可以在模型上进行相关生物力学研究。2.脊柱侧凸三维有限元模型可以方便地进行脊柱侧凸各种条件下的应力变化分析,为脊柱侧凸的相关生物力学理论和临床研究提供了可能。
The adolescent idiopathic scoliosis is difficult to treat,It is veryimportant to use the posterior pedicle screw fixation system,although theadolescent’pedicle are narrow and complex,so the operation of it is mostdifficult than others. The pedicle rib unit fixation was good methods tosolve this questions,But the basic study to support this method wasrareless.
     PART ONE
     Objeetive:To observe the structure and measurement the clinicanatomical paremter of pedilcle rib unit.Methods:we chosed6cadavericsof the department of anatomy,Inner Mongolia Medical University,weretained the thoracic verterbra,verterbra disc and rib,we measured thefollows paremters the width,the height,the pedicle screw length and thesagittal angles of the pedicle rib unit compared with pedicle,especially forthe pedicle-rib overlap height.Results:The measurement results of theabove-mentioned parameters were as follows:PRC-W:12.13-20.13mm, PRC-H:6.18-11.83mm,PRC-L:47.81-66.84mm,PRC-TA:12.47-41.33°,PRC-SA:72.67-86.28°.Conclusions:1The width,length of pedicle rib unitare larger than the parameter of pedicle,so the strength of pedicle ribunit is larger than pedicle fixation.2The greater inward angle is largerthan pedicle fixation,so the safe angle is larger than the other,it is decreasethe danger of the operation of fixation.3There is more difference betweenpeople on pedicle rib unit paramenter,so we should desigen differentoperation plan to different patient.
     PART TWO
     The personality3-D digital operatin design and itsappliation.Objective:To study the methods of3-D digital operatin designon adolescent idiopathic scoliosis and the application value of it.Mehtods:We chose one adolescent idiopathic scoliosis patient,and CT scaned with1mm height,and we used Mimics10.01to3D simulate model,andmeasured the parameter of the PSA,screw length and width of screw,andapplied with this parameter in operation.Results: We reconstrution the3-D model of adolescent idiopathic scoliosis,and situated the position ofscrew and pedicle rib unit,and prevent the screw to penetrate the pedicleand verterbra body,desigened the plan of operation and applied,none ofscrew was penetrate the pedicle and verterbra body.Conclusion:Thedigitalized visualization adolescent idiopathic scoliosis could increase theachievement ratio.
     PART THREE
     The finite element analysis of correction strategies for scoliosiscorrecfion.Objeetive:To reconstructed a3-D finite element model of AISand compare tthe validity of the model,which provides a basic model forcontinue study.Methods:we chosed a patient with AIS,and used CTscanning with thickness of1millimeter.We reconstruction the3-D modelsof AIS and FEA models of AIS.Results:The finite element model containseight vertebra, seven inter-vertebral discs and related subsidiarystructure.Using4mesh types and13kinds of material parameters,themodel consists of1351327nodes,1511549tetrahedron elements,1631320shell elements,56cable elements and42rod elements.
     This was far more than previous similar models.The model was moreaccurate not only on structure and material properties,but also on units ofconstruction,realistic appearance and geometric similarity.Conclusions:1.The model has high quality in precision and geometric similarity,andrelative biomechanical research Can be done on it.2.Relativebiomechanical and clinical analysis Can be easily conducted on the3-Dfinite element model of scoliosis.It is possible to analyze diversity of stresson different conditions.
引文
1.李明,麻文谦,倪春鸿.关于脊柱侧凸的Lenke分型[J].中国脊柱脊髓杂志.2006,16(3):238-240.
    2.Ringer AJ, Bhamidipaty SV.Percutaneous Access to the Vertebral Bodies: A Video andFluoroscopic Overview of Access Techniques for Trans-, Extra-, and InfrapedicularApproaches[J].World Neurosurg.2012,doi:pii: S1878-8750(12)01017.
    3. Lee CS, Park SA, Hwang CJ,et al.A novel method of screw placement for extremelysmall thoracic pedicles in scoliosis[J].Spine (Phila Pa1976).2011,36(16):E1112-1116.
    4. Kretzer RM, Chaput C, Sciubba DM, et al.A computed tomography-basedmorphometric study of thoracic pedicle anatomy in a random United States traumapopulation[J].Neurosurg Spine.2011,14(2):235-243.
    5. Kim JH, Choi GM, Chang IB, et al.Pedicular and extrapedicular morphometricanalysis in the korean population: computed tomographic assessment relevance topedicle and extrapedicle screw fixation in the thoracic spine[J].Korean NeurosurgSoc.2009,46(3):181-188.
    6. Lewiecki EM, Keaveny TM, Kopperdahl DL, et al.Once-monthly oral ibandronateimproves biomechanical determinants of bone strength in women withpostmenopausal osteoporosis[J].Clin Endocrinol Metab.2009,94(1):171-180.
    7. Jia YW, Cheng LM, Yu GR, et al.A finite element analysis of the pelvicreconstruction using fibular transplantation fixed with four different rod-screwsystems after type I resection[J].ChinMed J (Engl).2008,121(4):321-326.
    8.Ofiram E, Polly DW, Gilbert TJ Jr, Is it safer to place pedicle screws in the lowerthoracic spine than in the upper lumbar spine?[J]. Spine (Phila Pa1976).2007,32(1):49-54.
    9. Provatidis C, Vossou C, Koukoulis I, et al.A pilot finite element study of anosteoporotic L1-vertebra compared to one with normal T-score[J].Comput MethodsBiomech Biomed Engin.2010;13(2):185-195.
    10. Lewis G, Xu J.Biomechanical effects of autonomous augmentation on the adjacentunaugmented vertebral bodies: influence of the number of functional spinal units ina finite element model[J].Appl Biomater Biomech.2008,6(3):144-150.
    11. Pfandlsteiner T, Wallnoefer P, Wimmer C.Growth modulation in operative treatmentof juvenile scoliosis by USS paediatric[J].Oper Orthop Traumatol.2010,22(2):149-163.
    12Elliott MJ, Slakey CJ.Thoracic pedicle screw placement: analysis using anatomicallandmarks without image guidance[J]. Pediatr Orthop.2007,27(5):582-586.
    13.Graeff C, Marin F, Petto H, et al.High resolution quantitative computedtomography-based assessment of trabecular microstructure and strength estimatesby finite-element analysis of the spine, but not DXA, reflects vertebral fracturestatus in men with glucocorticoid-induced osteoporosis[J].Bone.2013,52(2):568-577.
    14. Xiao Z, Wang L, Gong H, et al.Biomechanical evaluation of three surgical scenariosof posterior lumbar interbody fusion by finite element analysis[J].Biomed EngOnline.2012,11(1):31-35.
    15. Rizzoli R, Chapurlat RD, Laroche JM, et al.Effects of strontium ranelate andalendronate on bone microstructure in women with osteoporosis. Results of a2-year study[J].Osteoporos Int.2012,23(1):305-315.
    1.Ayvaz M, Olgun ZD, Demirkiran HG,et al.Posterior all-pedicle screw instrumentationcombined with multiple chevron and concave rib osteotomies in the treatment ofadolescent congenital kyphoscoliosis[J].Spine.2012,doi:pii:S1529-9430(12)01292-2.
    2.Wei X, Hou SX, Li N,et al.[Measurement of diameter of T4pedicle-rib compomers][J].Zhongguo Gu Shang.2012,25(5):397-399.
    3. Lee CS, Park SA, Hwang CJ, et al. A novel method of screw placement for extremelysmall thoracic pedicles in scoliosis[J].Spine (Phila Pa1976).2011,36(16):E1112-1116.
    4. Wei X, He JJ, Hou SX, et al. The anatomic and radiographic morphometry ofthoracic pedicle rib unit][J].Zhonghua Wai Ke Za Zhi.2010,48(17):1313-1316.
    5. Tian NF, Xu HZ, Wang XY, et al. Morphometric comparisons between the pedicleand the pedicle rib unit in the immature Chinese thoracic spine: a computedtomographic assessment[J].Spine (Phila Pa1976).2010,35(16):1514-1519.
    6. Patel A, Schwab F, Lafage V, et al.Computed tomographic validation of the porcinemodel for thoracic scoliosis[J].Spine (Phila Pa1976).2010,35(1):18-25.
    7. Sagan LM, Madany L, Lickendorf M.Costotransversectomy and interbody fusion fortreatment of thoracic dyscopathy][J].Ann Acad Med Stetin.2007,53(1):23-26.
    8.Vougioukas VI, Weber J, Scheufler KM.Clinical and radiological results afterparapedicular screw fixation of the thoracic spine[J]. Neurosurg Spine.2005,3(4):283-287.
    9.Duteille F, Waast D, Perrot P, et al.[The serratus anterior free flap in limbreconstruction. About30cases][J].Ann Chir Plast Esthet.2005,50(1):71-75.
    10.Husted DS, Haims AH, Fairchild TA, et al.Morphometric comparison of the pediclerib unit to pedicles in the thoracic spine[J].Spine (Phila Pa1976).2004,29(2):139-146.
    11.Adankon MM, Chihab N, Dansereau J, et al.Scoliosis Follow-Up UsingNon-Invasive Trunk Surface Acquisition[J].IEEE Trans Biomed Eng.2013, PMID:23508244.
    12. Oh CH, Yoon SH, Park HC, et al. A Comparison of the SomatometricMeasurements of Adolescent Males with and Without Idiopathic Scoliosis[J].Spinal Disord Tech.2013, PMID:23511644.
    13. Husted DS, Yue JJ, Fairchild TA, et al.An extrapedicular approach to the placementof screws in the thoracic sp ine: an anatomic and radiographic assessment[J].Spine(Phila Pa1976).2003Oct15;28(20):2324-2330.
    14. Moal B, Schwab F, Demakakos J, et al.The impact of a corrective tether on ascoliosis porcine model: a detailed3D analysis with a20weeks follow-up[J].EurSpine.2013,PMID:23503934.
    15. Plaszewski M.Letter to the Editor concerning "Efficacy of exercise therapy for thetreatment of adolescent idiopathic scoliosis: a review of the literature" by MordecaiSC and Dabke HV (2012) Eur Spine J21:382-389[J].Eur Spine.2013,PMID:23503896.
    16. Smorgick Y, Mirovsky Y, Baker KC, et al.Predictors of back pain in adolescentidiopathic scoliosis surgical candidates[J]. Pediatr Orthop.2013,33(3):289-292.
    17.Lansford TJ, Burton DC, Asher MA,Radiographic and patient-based outcomeanalysis of different bone-grafting techniques in the surgical treatment ofidiopathic scoliosis with a minimum4-year follow-up: allograft versusautograft/allograft combination[J].Spine.2013,doi:pii: S1529-9430(13)00081-8.
    18. Joseph RN, Batty R, Raghavan A, et al. Management of isolated syringomyelia inthe paediatric population-a review of imaging and follow-up in a singlecentre[J].Br J Neurosurg.2013,PMID:23472665.
    19. Fendri K, Patten SA, Kaufman GN, et al.Microarray expression profiling identifiesgenes with altered expression in Adolescent Idiopathic Scoliosis[J].Eur Spine.2013,[Epub ahead of print]PMID:23467837.
    20.Yagi M, Takemitsu M, Machida M.Clavicle Chest Cage Angle Difference (CCAD):A Novel Predictor of Postoperative Shoulder Imbalance in Patient WithAdolescent Idiopathic Scoliosis[J].Spine (Phila Pa1976).2013, PMID:23459133.
    21.Hong JY, Suh SW, Modi HN, et al. Analysis of factors that affect shoulder balanceafter correction surgery in scoliosis: a global analysis of all the curvaturetypes[J].Eur Spine J.2013,PMID:23455950.
    22.Tsai TT, Lai PL, Liao JC, et al. Increased periostin gene expression in degenerativeintervertebral disc cells[J].Spine.2013,13(3):289-298.
    23. Burwell RG, Dangerfield PH, Moulton A, et al. Whither the etiopathogenesis (andscoliogeny) of adolescent idiopathic scoliosis? Incorporating presentations onscoliogeny at the2012IRSSD and SRS meetings[J].Scoliosis.2013,8(1):4-10.
    24. Ryzhkov II, Borzilov EE, Churnosov MI,et al.Transforming Growth Factor Beta isa Novel Susceptibility Gene for Adolescent Idiopathic Scoliosis[J].Spine (Phila Pa1976).2013,PMID:23446766.
    25. Hresko MT.Clinical practice. Idiopathic scoliosis in adolescents[J].N Engl J Med.2013,368(9):834-841.
    26. Oh CH, Shim YS, Yoon SH, et al.The psychopathological influence of adolescentidiopathic scoliosis in korean male: an analysis of multiphasic personal inventorytest results[J]. Korean Neurosurg Soc.2013,53(1):13-18.
    27. Akbar M, Dreher T, Schwab F, et al.Evaluation of the sagittal profile in patients with
    thoracic adolescent idiopathic scoliosis Lenke type1following posterior
    correction[J].Orthopade.2013,42(3):150-156.
    1.Crawford AH, Lykissas MG, Gao X,et al.All-Pedicle Screw Versus HybridInstrumentation in Adolescent Idiopathic Scoliosis Surgery: A ComparativeRadiographic Study With a Minimum2-Year Follow-up[J].Spine (Phila Pa1976).2013, PMID:23429683.
    2. Demura S, Yaszay B, Bastrom TP, et al.Is decompensation preoperatively a risk inLenke1C curves?[J].Spine (Phila Pa1976).2013,PMID:23429679.
    3. Yu B, Wang Y, Qiu G, et al.SThe Influence of Preoperative Brace Treatment on thePulmonary Function Test in Female Adolescent Idiopathic Scoliosis[J]. SpinalDisord Tech.2013,PMID:23429322.
    4. Vernacchio L, Trudell EK, Hresko MT, et al.A quality improvement program toreduce unnecessary referrals for adolescent scoliosis[J].Pediatrics.2013,131(3):912-920.
    5. Dabadie A, Fernandez C, Gorincour G, et al.A rare case of a calcified glomus tumourin the thigh of an adolescent[J].Pediatr Radiol.2013,PMID:23417232.
    6. Ghayem-Hasankhani E, Omidi-Kashani F.Generalized Ligamentous Laxity; aParameter Should not to be Forgotten in Preoperative Planning of AdolescentIdiopathic Scoliosis[J]. Iran Red Crescent Med.2012,14(11):702-704.
    7. Qiu XS, Wang ZW, Qiu Y, et al.Preoperative pelvic axial rotation: a possiblepredictor for postoperative coronal decompensation in thoracolumbar/lumbaradolescent idiopathic scoliosis[J].Eur Spine.2013,PMID:23392555.
    8. Zhang H, Hu X, Wang Y, et al. Use of finite element analysis of a Lenke type5adolescent idiopathic scoliosis case to assess possible surgical outcomes[J].ComputAided Surg.2013,PMID:23384156.
    9. Blanco JS, Perlman SL, Cha HS et al.,Multimodal pain management after spinalsurgery for adolescent idiopathic scoliosis[J].Orthopedics.2013,36(2):33-35.
    10. McLeod LM, Keren R, Gerber J, et al.Perioperative Antibiotic Use for SpinalSurgery Procedures in US Children's Hospitals[J].Spine (Phila Pa1976).2013,38(7):609-616.
    11. Lonner B, Yoo A, Terran JS, et al.Effect of Spinal Deformity on Adolescent Qualityof Life Comparison of Operative Scheuermann's Kyphosis, Adolescent IdiopathicScoliosis and Normal Controls[J].Spine (Phila Pa1976).2013,PMID:23370683.
    12. Moon ES, Kim HS, Sharma V, et al. Analysis of single nucleotide polymorphism inadolescent idiopathic scoliosis in Korea: for personalized treatment[J].Yonsei Med.2013,54(2):500-509.
    13. Watanabe K.Answer to the Letter to the Editor of A. Gardner concerning "Loss ofapical vertebral derotation in adolescent idiopathic scoliosis:2-year follow-upusing multi-planar reconstruction computed tomography"(by G. Cui, K. Watanabe,Y. Nishiwaki, N. Hosogane, T. Tsuji, K. Ishii, M. Nakamura, Y. Toyama, K. Chiba,M. Matsumoto[J]. Eur Spine.2012,21(6):1111-1120.
    14. Zaina F, Donzelli S, Lusini M, et al.Adolescent idiopathic scoliosis and eatingdisorders: Is there a relation? Results of a cross-sectional study[J].Res Dev Disabil.2013,34(4):1119-1124.
    15. Mao S, Xu L, Zhu Z, et al.Association between genetic determinants of peak heightvelocity during puberty and predisposition to adolescent idiopathicscoliosis[J].Spine (Phila Pa1976).2013,PMID:23354108.
    16. Carlson BB, Burton DC, Asher MA.Comparison of trunk and spine deformity inadolescent idiopathic scoliosis[J].Scoliosis.2013,8(1):2.PMID:23351196.
    17. Illés T, Somoske y S.Comparison of scoliosis measurements based onthree-dimensional vertebra vectors and conventional two-dimensionalmeasurements: advantages in evaluation of prognosis and surgical results[J].EurSpine, PMID:23341044.
    18. Hwang SW, Samdani AF, Lonner BS, et al.A multicenter analysis of factorsassociated with change in height after adolescent idiopathic scoliosis deformitysurgery in447patients[J]. Neurosurg Spine.2013,18(3):298-302.
    19. Diefenbach C, Lonner BS, Auerbach JD, et al.Is radiation-free diagnosticmonitoring of adolescent idiopathic scoliosis feasible using upright positionalmagnetic resonance imaging?[J].Spine (Phila Pa1976).2013,38(7):576-580.
    20. Gao W, Peng Y, Liang G, et al.Association between common variants near LBX1and adolescent idiopathic scoliosis replicated in the Chinese Hanpopulation[J].PLoS One.2013,8(1):e53234.
    21.Trobisch PD, Samdani AF, Betz R, et al. Sagittal balance and compensatorymechanism after segmental instrumentation for adolescent idiopathic scoliosis[J].ZOrthop Unfall.2012,150(6):583-587.
    22.Hasler CC.Back pain during growth[J].Swiss Med Wkly.2013,143(3):w13714.
    23. Gardner A.Loss of apical vertebral derotation in adolescent idiopathic scoliosis:2-year follow-up using multi-planar reconstruction computed tomography'[by G.Cui, K. Watanabe, Y. Nishiwaki, N. Hosogane, T. Tsuji, K. Ishii, M. Nakamura, Y.Toyama, K. Chiba, M. Matsumoto; Eur Spine J (2012) Jun;21(6):1111-20][J].EurSpine J.2013,PMID:23288454
    24Zhang M, Li F, He Y, et al.Registration of brainstem surfaces in adolescentidiopathic scoliosis using discrete Ricci flow[J].Med Image Comput ComputAssist Interv.2012,15(Pt2):146-154.
    25. Salmingo RA, Tadano S, Fujisaki K, et al.Relationship of forces acting on implantrods and degree of scoliosis correction[J].Clin Biomech (Bristol, Avon).2013,28(2):122-128.
    26. Pialasse JP, Laurendeau S, Descarreaux M, et al.Is abnormal vestibulomotorresponses related to idiopathic scoliosis onset or severity?[J].Med Hypotheses.2013,80(3):234-236.
    27. Nowak R, Szota J, Mazurek U.Vitamin D receptor gene (VDR) transcripts in bone,cartilage, muscles and blood and microarray analysis of vitamin D responsivegenes expression in paravertebral muscles of Juvenile and Adolescent IdiopathicScoliosis patients[J].BMC Musculoskelet Disord.2012,13(1):259-264.
    28. Hwang SW, Samdani AF, Marks M, et al.Five-year clinical and radiographicoutcomes using pedicle screw only constructs in the treatment of adolescentidiopathic scoliosis[J].Eur Spine.2012,PMID:23254863.
    29. Schülein S, Mendoza S, Malzkorn R, et al.Rasterstereographic Evaluation of Inter-and Intraobserver-Reliability in Postsurgical Adolescent Idiopathic ScoliosisPatients[J].Spinal Disord Tech.2012, PMID:23249884.
    30.Lam TP, Hung VW, Yeung HY, et al.Quantitative ultrasound for predicting curveprogression in adolescent idiopathic scoliosis: a prospective cohort study of294cases followed-up beyond skeletal maturity[J].Ultrasound Med Biol.2013,39(3):381-387.
    31.de Baat P, van Biezen FC, de Baat C.Scoliosis: review of types, aetiology,diagnostics, and treatment2[J].Ned Tijdschr Tandheelkd.2012,119(11):531-535.
    32.Bas T, Franco N, Bas P, et al.Pain and disability following fusion for idiopathicadolescent scoliosis: prevalence and associated factors[J].Evid Based Spine Care.2012,3(2):17-24.
    1.Berteau JP, Pithioux M, Mesure S,et al.Beyond the classic correction system: anumerical nonrigid approach to the scoliosis brace[J]. Spine.2011,11(5):424-431.
    2.Kimpara H, Nakahira Y, Iwamoto M, et al.Investigation of anteroposterior head-neckresponses during severe frontal impacts using a brain-spinal cord complex FEmodel[J]. Stapp Car Crash J.2006,50(3):509-544.
    3.Abolaeha OA, Weber J, Ross LT.Finite element simulation of a scoliotic spine withperiodic adjustments of an attached growing rod[J]. Conf Proc IEEE Eng Med BiolSoc.2012,2012(12):5781-5785.
    4.Graeff C, Marin F, Petto H, et al.High resolution quantitative computedtomography-based assessment of trabecular microstructure and strength estimatesby finite-element analysis of the spine, but not DXA, reflects vertebral fracturestatus in men with glucocorticoid-induced osteoporosis[J]. Bone.2013,52(2):568-577.
    5. Hojjat SP, Beek M, Akens MK, et al.Can micro-imaging based analysis methodsquantify structural integrity of rat vertebrae with and without metastaticinvolvement?[J]. Biomech.2012,45(14):2342-2348.
    6. Xiao Z, Wang L, Gong H, et al.Biomechanical evaluation of three surgical scenariosof posterior lumbar interbody fusion by finite element analysis[J]. Biomed EngOnline.2012,11(1):31-38.
    7Aslani FJ, Hukins DW, Shepherd DE..Effect of side holes in cervical fusion cages: afinite element analysis study[J]. Proc Inst Mech Eng H.2011,225(10):986-992.
    8. Rizzoli R, Chapurlat RD, Laroche JM, et al.Effects of strontium ranelate andalendronate on bone microstructure in women with osteoporosis. Results of a2-year study[J]. Osteoporos Int.2012,23(1):305-315.
    9. Li Y, Lewis G.Influence of loading cycle profile and frequency on a biomechanicalparameter of a model of a balloon kyphoplasty-augmented lumbar spine segment: afinite element analysis study[J]. Biomed Mater Eng.2010,20(6):349-359.
    10Tsafnat N, Wroe S.An experimentally validated micromechanical model of a ratvertebra under compressive loading[J]. Anat.2011,218(1):40-46.
    11Wei W, Bi DW, Zheng Q, et al.Application and progress of the finite elementanalysis model of cervical vertebrae[J]. Zhongguo Gu Shang.2010,23(5):400-402.
    12.Stein EM, Liu XS, Nickolas TL, et al. Abnormal microarchitecture and reducedstiffness at the radius and tibia in postmenopausal women with fractures[J]. BoneMiner Res.2010,25(12):2572-2581.
    13. Melton LJ3rd, Riggs BL, Keaveny TM, et al.Relation of vertebral deformities tobone density, structure, and strength [J]. Bone Miner Res.2010,25(9):1922-1930.
    14Shahnazari M, Yao W, Dai W, et al.Higher doses of bisphosphonates further improvebone mass, architecture, and strength but not the tissue material properties in agedrats[J]. Bone.2010,46(5):1267-1274.
    15. Adams JE.Quantitative computed tomography[J]. Eur J Radiol.2009,71(3):415-424.
    16. Provatidis C, Vossou C, Koukoulis I, et al.A pilot finite element study of anosteoporotic L1-vertebra compared to one with normal T-score[J]. ComputMethods Biomech Biomed Engin.2010,13(2):185-195.
    17.Lewiecki EM, Keaveny TM, Kopperdahl DL, et al.Once-monthly oral ibandronateimproves biomechanical determinants of bone strength in women withpostmenopausal osteoporosis [J]. Clin Endocrinol Metab.2009,94(1):171-180.
    18. Lewis G, Xu J.Biomechanical effects of autonomous augmentation on the adjacentunaugmented vertebral bodies: influence of the number of functional spinal units ina finite element model [J]. Appl Biomater Biomech.2008,6(3):144-150.
    19Jia YW, Cheng LM, Yu GR, et al.A finite element analysis of the pelvicreconstruction using fibular transplantation fixed with four different rod-screwsystems after type I resection[J]. Chin Med J (Engl).2008,121(4):321-326.
    20. Haghpanahi M, Mapar R.Development of a parametric finite element model oflower cervical spine in sagital plane[J]. Conf Proc IEEE Eng Med Biol Soc.2006,1(3):1739-1741.
    21Liu XS, Sajda P, Saha PK, et al.Complete volumetric decomposition of individualtrabecular plates and rods and its morphological correlations with anisotropicelastic moduli in human trabecular bone[J]. Bone Miner Res.2008,23(2):223-235.
    22.Whitlow CT, Yazdani SK, Reedy ML, et al.Investigating sacroplasty: technicalconsiderations and finite element analysis of polymethylmethacrylate infusion intocadaveric sacrum[J]. AJNR Am J Neuroradiol.2007,28(6):1036-1041.
    23.Liu XS, Sajda P, Saha PK, et al.Quantification of the roles of trabecularmicroarchitecture and trabecular type in determining the elastic modulus of humantrabecular bone [J]. Bone Miner Res.2006,21(10):1608-1017.
    24. Wang ZL, Teo JC, Chui CK, et al.Computational biomechanical modelling of thelumbar spine using marching-cubes surface smoothened finite element voxelmeshing[J]. Comput Methods Programs Biomed.2005,80(1):25-35.
    25Romanyk DL, Collins CR, Lagravere MO, et al. Role of the midpalatal suture in FEAsimulations of maxillary expansion treatment for adolescents: A review[J]. IntOrthod.2013, doi:pii: S1761-7227(13)00018-1.
    26Kluess D, Hurschler C, Voigt C, et al.Applications of numerical simulation inmusculoskeletal research and its impact on orthopedic surgery[J]. Orthopade.2013,PMID:23519524.
    27. Faje AT, Karim L, Taylor A, et al.Adolescent Girls With Anorexia Nervosa HaveImpaired Cortical and Trabecular Microarchitecture and Lower Estimated BoneStrength at the Distal Radius[J]. Clin Endocrinol Metab.2013,PMID:23509107.
    28. Evans KR, Carey JP.Feasibility of a braided composite for orthopedic bone cast[J].Open Biomed Eng J.2013,7(1):9-17.
    29. Abraham CL, Maas SA, Weiss JA, et al.A new discrete element analysis method forpredicting hip joint contact stresses[J]. Biomech.2013,46(6):1121-1127.
    30. Macintyre NJ, Lorbergs AL.Imaging-Based Methods for Non-invasive Assessmentof Bone Properties Influenced by Mechanical Loading[J]. Physiother Can.2012,64(2):202-215
    31Winter W, Klein D, Karl M.Effect of model parameters on finite element analysis ofmicromotions in implant dentistry[J]. Oral Implantol.2013,39(1):23-29.
    32Osman RB, Elkhadem AH, Ma S, et al. Finite element analysis of a novel implantdistribution to support maxillary overdentures[J]. Int J Oral Maxillofac Implants.2013,28(1):e1-10.
    33Basafa E, Armiger RS, Kutzer MD, et al.Patient-specific finite element modeling forfemoral bone augmentation[J]. Med Eng Phys.2013, doi:pii:S1350-4533(13)00013-1.
    34. Chowdhary R, Halldin A, Jimbo R, et al.Evaluation of stress pattern generatedthrough various thread designs of dental implants loaded in a condition ofimmediately after placement and on osseointegration--an FEA study[J]. ImplantDent.2013,22(1):91-96.
    1.戴力扬,张闻明,徐印坎,等.人类腰椎活动节段的力学模型[J].解剖学报.1990,4,337-339.
    2.王国强,等.使用工程数值模拟技术及其在Anasys上的实践[M].西北工业大学出版社.1999年8月第一版.
    3.Wiederhielm.C.A. et.al. Structural response of relaxed and constricted arterioes.[J].Biomechanics.1968,1:259-270.
    4.Kobayoshi,A.S. et.al.Analysis of the corneoscleral shell by the methods of directstiffness[J].Biomechanics.1971,4:322-330.
    5.Belytschko et.al. Finite element stress analysis of an intervertebral disc.[J].Biomechanics.1974,7:277-285.
    6.Liu,Y.k. et.al. The resistance of the lumbar spine to direct shear[J].Orthop. Clin.North. Am.1975,6:23-28.
    7.Hakim,N.S. and King,A.I. Static and dynamic response analysis of a vertbra withexperimental vertification[J].Biomechanics.1979,12:277-292.
    8.Shirazi,Adl.A. et.al. Stress analysis of the lumbar discbody unit in compression[J].Spine.1984,9,120-134.
    9.Yoganandan,N. and Myklebust,J,B. Mathematical and finite element analysis ofspine injuries[J].Crit. Rev. Biomed. Eng.1987,15(1),29-93.
    10. Duke K,Aubin CE,Dansereau J,et al. Computer simulation for theoptimization of patient positioning in spinal deformity instrumentation surgery[J].Med Biol Eng Comput.2008,46(1):33-41.
    11. RohlmannA,Zander T,Burra NK,et al. Flexible non-fusion scoliosiscorrection systems reduce intervertebral rotation less than rigid implants and allowgrowth of the spine:a finite element analysis of different features of orthobiom[J].Eur Spine.2008,17(2):217-223.
    12. Thomas G,Robert B.Pedicle anatomy in a patient with severe early-Onsetscoliosis: can pedicle serews be safely inserted?[J]. Spinal Disord.2005,18:360-363.
    13. Galbusera F,Bellini CM,Costa F,et al.Anterior cervical fusion:a biomechanicalcomparison of4techniques.Laboratory investigation[J] Neurosurg Spine.2008,9(5):444-449.
    14. RohlmannA,Richter M,Zander T,et al.Effect of different surgieal strategieson serew forces after correction of scoliosis with a VDS implant[J].EuropeanSpine Journal.2006,15:457-464.
    15. Dumas R,Steib J P,Mitton D,et a1.Three—dimensional quantitativesegmental analysis of scoliosis corrected by the in situ contouringtechnique[J].Spine.2003,28:1158-1162.
    16. Erkula G Sponseller P D,KiterAE.Rib deformity in scoliosis[J].EuropeanSpine ournal.2003,12:281-287.
    17. Parent S,Labelle H,Skalli Wj et a1.Morphometric analysis of anatomicscoliotic specimens[J].Spine.2002,27:2305-2311.
    18. Polly D W,PoRer B K。Kuklo Z et a1.Volumetric spinal canal intrusion—Acomparison between thoracic pedicle screws and thoracic hooks[J].Spine.2004,29:63-69.
    19. TempietonA,Liebschner M.Ahierarchical approach to finite elementmodeling of the human spine[J].Critical Reviews in Eukaryotic Gene Expression.2004,14:317.332.
    20. Aubin C E.Scoliosis study using finite element models[J].Studies in HealthTechnology and lnformatics.2002,91:309-313.
    21. Gardnermorse M,Stokes IAE Three—dimensional simulation of Harringtondistraction instrumentation for surgical correction of scoliosis[J].Spine.1993,18:2457-2464.
    22. Gardnermorse M,Stokes IAF.3一Dimensional simulations of the scoliosisderotation maneuver with Cotrel—Dubousset instrumentation[J].Journal ofBiomechanics.1994,27:177-181.
    23. Aubin C-E,Petit Y,Stokes IAF’et a1.Biomechanical modeling of posteriorinstrumentation of the scoliotic spine[J].Computer Methods in Biomechanics andBiomedical Engineering.2003,6:27-32.
    24. Poulin F,Aubin C E,Stokes IAF,et a1.Biomechanical modeling of scoliotiespine instrumentation using flexible mechanisms feasibility study[J].Annales DeChirurgie.1998,52:761-767.
    25. Lafage V,Dubousset J,Lavaste F,et a1.3D finite element simulation of Cotrel—Dubousset correction[J].ComputerAided Surgery.2004.9:17-25.
    26. RohlmannA,1Zander T,Bergmann G Comparison of the biomechanicaleffects of posterior and anterior spine-stabilizing implants[J].European SpineJournal.2005,14:445-453.
    27. RohlmannA,Richter M,Zander L et a1.Effect of different surgical strategieson screw forces after correction of scoliosis with a VDS implant[J].EuropeanSpine Journal.2006,15:457—464.
    28.黄宗贵,毋强华,戴海,等.经皮椎弓根-肋骨单元路径椎体成形术在上胸椎伤病中的应用[J].中国骨与关节损伤杂志.2010,2(2):132-133.
    29. Robitaille M,Aubin CE,Labelle H. Effects of alternative instrumentationstrategies inadolescent idiopathic scoliosis:a biomechanical analysis[J].OrthopRes.2009,27(1):104-113.
    30.崔新刚,张左伦,丁自海.胸腰椎横突形态学对比研究及其临床意义[J].中国临床解剖学杂志.2005,23(5):474-476.
    31. Morgenstern W,Ferguson SJ,Berey S,et al.Posterior thoracic extrapedicularfixation:a biomechanical study[J].Spine.2003,28(16):1829-1835.
    32.殷渠东,郑祖根,蔡建平.置入胸椎“椎弓根-肋骨”单元螺钉的应用解剖和力学测试[J].中国临床解剖学杂志.2005,23(5):538-539。
    33. Kim HJ, Chun HJ, Kang KT, et al.Avalidated finite element analysis of nerveroot stress in degenerative lumbar scoliosis[J]. Med Biol EngComput.2009,47(6):599-605.
    34. Lalonde NM,Aubin CE,Pannetier R, et al. Finite element modeling ofvertebral body stapling applied for the correction of idiopathic scoliosis:preliminary results[J].Stud Health Technol Inform.2008,140:111-115.
    35. Duke K,Aubin CE,Dansereau J,et al. Computer simulation for theoptimization of patient positioning in spinal deformity instrumentation surgery[J].Med Biol Eng Comput.2008,46(1):33-41.
    36. RohlmannA,Zander T,Burra NK,et al. Flexible non-fusion scoliosiscorrection systems reduce intervertebral rotation less than rigid implants and allowgrowth of the spine a finite element analysis of different features of orthobiom[J].Eur Spine.2008,17(2):217-223.
    37. Thomas G,Robert B.Pedicle anatomy in a patient with severe early-Onsetscoliosis: can pedicle serews be safely inserted?[J].Spinal Disord,2005,18:360-363.
    38. Galbusera F,Bellini CM,Costa F,et al.Anterior cervical fusion:a biomechanicalcomparison of4techniques.Laboratory investigation[J].Neurosurg Spine.2008,9(5):444-449.
    39. RohlmannA,Richter M,Zander T,et al.Effect of different surgieal strategieson serew forces after correction of scoliosis with a VDS implant[J].EuropeanSpine Journal.2006,15:457-464.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700