用户名: 密码: 验证码:
脊柱胸腰段骨折三椎体固定的生物力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】通过生物力学测试比较跨节段椎弓根钉固定与三椎体六枚椎弓根钉固定术固定胸腰段骨折的生物力学效果。
     【方法】采用8具人胸腰段尸体标本(T11-L3),剔除除椎间盘、韧带、小关节囊以外的所有软组织后。采用目标椎体钻孔结合Panjabi等提出的逐级撞击法在L1节段造成骨折模型,用牙托粉包埋T11和L3椎体。实验分正常对照(无骨折、无内固定)组、L1骨折无内固定组、跨节段椎弓根钉固定组、三椎体六枚椎弓根钉固定组。应用ND-500扭转实验机和微机控制电子万能实验机对标本进行前屈、后伸、侧弯及旋转6个方位的运动范围测试,所得数据进行统计学处理,比较各组间差异。
     【结果】跨节段椎弓根钉固定组与三椎体六枚椎弓根钉固定组之间的运动范围、刚度值差异均有显著性意义(p<0.01)。2种螺钉固定(6钉固定、4钉固定)方式,均能提高骨折失稳脊柱的各向稳定性;4钉固定方式在稳定性方面与正常对照组差异无统计学意义(p>0.05);而6钉固定(骨折椎固定)对失稳脊柱的各向稳定性的加强程度均高于4钉固定形式(P<0.01)。
     【结论】生物力学测试证明,三椎体六枚椎弓根螺钉固定方法在胸腰段骨折伤椎椎弓根内固定能明显加强脊柱的稳定性,并且三椎体六枚椎弓根螺钉植入复位固定在技术操作上是可行的、有效的。
Objective To compare the biomechanical properties between the two-level fixation by implantation of pedicle-screws into the adjacent upper and lower vertebrae of the fractured vertebra and the three-level fixation by implantation of pedicle screws into the fractured vertebra and its adjacent upper and lower vertebrae in the treatment of thoracolumbar fracture. Methods The thoracolumber spine specimens of eight cavaders were used in this study. The soft tissue and paraspinal muscles were removed without violating the ligaments or facet joint capsules. On the day of testing the specimens were throwed and the L1 fracture model was created with boring of the aimed vertebra combine with Panjabi method and embedding T11 and L3 in polyester resin. Each specimen was tested in four groups:control models(no fracture and no fixation), L1 fracture models(no fixation), two-level fixation models, and three-level fixation models. During the experiment, the flexion , extension , bilateral bending and axial rotation loading were applied to the specimens and the rang of motion was measured with the ND-500 test machine of rotation and the electronic test machine of computer control. Obtained data was analysis used statistical method , and to compare difference in the middle of each groups. Results there were significant differences in ROMs and stiffness between the two-level fixation and three-level fixation models (p<0.01) .All of the two kind ways for transpedical of fixation (fixed with 4 , 6 pedical screws ) can restore the stability of injured thoracolumbar vertebra in axial compression , bending , rotation . there were no significant statistical difference in stability between 4 pedicle screws fixation with control groups(no fracture and no fixation)(p>0.05); There were significant statistical difference of spine stability capacity of 6 pedicle screws fixation compare with 4 pedicle screws fixation (p<0.01) .
     Conclusion biomechanical test prove that the three-level vertebra fixation can obviously enhance the stability of spine in the fractured vertebra pedicle of thoracolumbar fracture . The procedure of three-vertebrae 6 pedicle-screws implantation is practical , effective .
引文
[1]Wilke HJ, Kettler A, Wenger KH,et al. Anatomy of the sheep spine and its comparison to the human spine[J]. Anat Rec 1997; 247:542.
    [2]Zdeblick TA, Warden KE, Zou D, et al.Anterior spinal fixators; a biomechanical in vitro study[J]. Spine 1993; 18:513.
    [3]Kinjma M, Dynamic analysis of the Harrington system using a spinal smulator[J]. Spine 1990; 15:1126.
    [4]Skalli W,Robin S,Lavasta F,et al.A biomechanical analysis of short segment spinal fixation using a three-dimensional geometric and mechanical model[J].Spine,1993,18:536-545.
    [5]Gignac D, Aubin CE, Dansereau J.Optimization method for 3D bracing correction of scoliosis using a finite element model [J].Eur Spine, 2000, 9; 185-190.
    [6]Grauer JN,Biyani A,Faizan A,et al. Biomechanics of two level Charite artificial disc placement in comparison to fusion plus single-level disc placement combination[J].Spine J,2006,6(6):659-666.
    [7]Akamaru T,kawahara N,Sakamoto J,et al. The transmission of stress to grafted bone inside a titanium mesh cage used in anterior column reconstruction after total spondylectomy: a finite-element analysis[J].Spine,2005,30(24):2783-2787.
    [8]Chen CS,Chen WJ,Cheng CK,et al. Failure analysis of broken pedicle screws on spinal instrumentation[J].Med Eng Phys,2005,27(6):487-496.
    [9]宋富立,靳安民,张美超,等.AF内固定器不同置钉角度的有限元分析[J].临床生物力学,2005,23(3):310-312.
    [10]汪宇,潘滔,李佛保,等.椎板钩对椎弓根螺钉系统应力影响的有限元分析[J].临床生物力学,2006,24(2):209-211.
    [11]WilkeHJ, WengerK, Claes L. Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants [J].JEur Spine,1998 , 7: 14
    [12]Lund T,Nydegger T,Rathonyi G, et al. Three-dimensional stabilization provided by the external spinal fixator compared to two internal fixation devices: a biomechanical in vitroflexibility study[J].J Eur Spine,2003,12(5):474-479.
    [13]Cordista A,Conrad B,Horodyski M,et al. Biomechanical evaluation of pedicle screws versus pedicle and laminar hooks in the thoracic spine[J].Spine J,2006,6(4):444-449.
    [14]李超,阮狄克,丁宇,等.椎弓根螺钉螺杆形状对其生物力学性能影响的研究[J].医用生物力学,2005,20(2):105-122.
    [15]翁习生,邱贵兴,赵卫东,等.椎弓根螺钉不同翻修方法的生物力学研究[J].中华骨科杂志,2003,23(10):622-626.
    [16]于滨生,刘少喻,ABUMI Kunigoshi,等.椎体间融合器的单节段植入对腰椎多节段椎弓根固定装置中螺钉应力的影响[J].中山大学学报(医学科学版),2006,27(1):59-62.
    [17]Panjabi MM, Hoffman H, Kato Y, et al. Superiority of incremental trauma approach in experimental burst fracture studies[J]. Clin Biomech, 2000, 15: 73- 78.
    [18]Atlas OK, Dodds SD, Panjabi MM. Single and incremental trauma models: a biomechanical assessment of spinal instability[J]. Eur SpineJ, 2003, 12: 205- 210.
    [19]Ghole SA, Ivancic PC, Tominaga Y, et al. Incremental and single trauma produce equivalent subfailure soft tissue injury of the cervical spine[J]. Clin Biomech, 2004, 19: 784- 789.
    [20]Dai L. Mechanism of thoracolumbar burst fractures: a biomechanical study[J]. Chin Med J (Engl), 2002, 115: 336- 338.
    [21]Langrana NA, Harten RD RD, Lin DC, et al. Acute thoracolumbar burst fractures: a new view of loading mechanisms[J]. Spine, 2002, 27:498- 508.
    [22]Wilcox RK, Allen DJ, Hall RM, et al. A dynamic investigation of the burst fracture process using a combined experimental and finite element approach[J]. Eur Spine J, 2004, 13: 481- 488.
    [23]Dai LY, Wang XY, Wang CG, et al. Bone mineral density of the thoracolumbar spine in relation to burst fractures: a quantitative computed tomography study[J]. EurSpine J, 2006,19;562-571.
    [24]Ochia RS, Ching RP. Internal pressure measurements during burst fracture formationin human lumbar vertebrae[J]. Spine, 2002, 27:1160- 1167.
    [25]Wang JL, Panjabi MM, Kato Y, et al. Radiography cannot examine disc injuries secondary to burst fracture: quantitative discomanometry validation[J]. Spine, 2002, 27: 235- 240.
    [26]Wilcox RK, Boerger TO, Allen DJ, et al. A dynamic study of thoracolumbar burst fractures[J]. J Bone Joint Surg (Am), 2003, 85: 2184-2189.
    [27]谢宝钢,吴梅英.冲击载荷造成椎管内压力变化与脊髓损伤程度的评估[J].中华骨科杂志, 2000, 20: 493- 495.
    [28]Isomi T, Panjabi MM, Kato Y, et al. Radiographic parameters for evaluating the neurological spaces in experimental thoracolumbar burst fractures[J]. J Spinal Disord, 2000, 13: 404- 411.
    [29]Turker M, Tezeren G, Tukenmez M, et al. Indirect spinal canal decompression of vertebral burst fracture in calf model[J]. Arch Orthop Trauma Surg, 2005, 125: 336- 341.
    [30]Panjabi MM, Oda T, Wang JL. The effects of pedicle screw adjustments on neural spaces in burst fracture surgery[J]. Spine, 2000, 25:1637- 1643.
    [31]Oda T, Panjabi MM, Kato Y. The effects of pedicle screw adjustments on the anatomical reduction of thoracolumbar burst fractures[J].Eur Spine J, 2001, 10: 505- 511.
    [32]Panjabi MM, Kato Y, Hoffman H, et al. Canal and intervertebral foramen encroachments of a burst fracture: effects from the center of rotation[J]. Spine, 2001, 26: (3)1231- 1217
    [33] Weinstein JN.Anatomic and technical considerations of pedicle screw fixation[J].Clin Ortyop 1992;284-304.
    [34]李超,阮狄克,丁宇,等.锥形与柱形椎弓根螺钉的生物力学研究[J].脊柱外科杂志,2004, 2(4):220-223
    [35]潘显明,谭映军,张波,等.椎弓根螺钉的螺纹形状与拔钉生物力学[J].第四军医大学学报,2002, 23:447-450
    [36]孙常太,黄公怡,Christense FB,等钦合金及不锈钢椎弓根螺钉的骨一螺钉界面力学及组织学分析[J].中华骨科杂志,1999, 19:679-682
    [37] Barber JW, Boder SD, Ganey T, et al. Biomechanical study of lumbar pediclescrews:does convergence affect axial pullout strength[J]. J Spinal Disord,1998,11(3): 215-220
    [38]杨惠林,唐天驯,朱囚良,等.椎弓根固定器对胸腰椎骨折的复位作用[[J ].中华骨科杂志,1992, 12:181-183
    [39]王正,沈国平,陈伟兵,等,椎弓根螺钉内固定稳定性的生物力学测试[J].医用生物力学,2002,17:8084
    [40]陈群,金正帅,曹晓健,等.不同外倾角的脊柱椎弓根螺钉内固定效果的生物力学评价[J].河北医学,2005,11:433435
    [41]Ronderos, Juan F,Rnald,et al. Comparative pullout strengh of tapped and untapped pilot hole for bicortical cervical screws[J].Spine,1997, 22(2):167.
    [42]Halvorson, Lee A. Kelley ,et al.Effects of bone mineral density on pedicle screw fixation[J].Spine . 1994, 19(21):241.
    [43]孙寒松,门德华,唐天驯,等.椎弓根内固定置钉方法改进的生物力学特征[J].中国临床康复,2005,9(2):60-62.
    [44]Dick JC,Jones MP.,Zdeblick TA, et al. A Biomechanical Comparison Evaluating the Use of Intermediate Screws and Cross-Linkage in Lumbar Pedicle Fixation[J].Journal of Spinal disorders,1994,7(5):402-407
    [45]丁宇,阮狄克,黄文华,等.横向连接装置在腰椎经椎弓根内固定系统中的作用[J].中国临床解剖学杂志,2002,20(6):466-468
    [46] Gurr KR, McArfee PC,Shih EM Biomechanical analysis of posterior instrumentation systems following decompressive laminectomy:An unstable calf model[J]. J Bone Joint Surg, 1998,70:680-691
    [47]魏美钢,王坤正,侯德门,等.椎弓根螺钉器械横杆作用的生物力学研究[J].西安医科大学学报,2002,23 (1):47-49
    [48] Lim,Jason C,Howards,et a1.Biomechanics of transfixation in Pedicle screw instrumentation[J].Spine, 1996,21(19):22-24'
    [49] Wittenberg RH,Shea M,Swartz DE, et al. importance of bone mineral density in instrument spine fusion[J].Spine, 1991,16(4):647-652.
    [50] Okuyama K,Sato K,Abe E,et a1.Stability of transpedicle screwing for the osteoporosis:An in vitro study of the mechanical stability[J].Spine, 1993,18:22-40 43
    [51] Kumano , Hirabayashi , Ogawa , et a1.Pedicle screws and bone mineral density[J] .Spine.1994,、(10):11-57
    [52]吕夫新,黄勇,张强,等.胸腰椎骨折伤椎椎弓根内固定生物力学研究与临床应用[J].脊柱外科杂志,2008,6(4):229-233
    [55]杨操,杨述华,王洪,等.USS复位内固定结合经椎弓根植骨治疗胸腰椎爆裂性骨折[J].中华创伤骨科杂志,2005,7:537一540.
    [56]Kuklo TR, Polly DW, Owcns BD, et al. Measurement of thoracic and lumbar fracture kyphosis: evaluation of intraobserver, intcrobserver, and technique variability[J]. Spine, 2001, 26: 61-66.
    [54]Shen WJ,Liu TJ,Shen YS. Nonoperative treatment versus posterior fixation for thoracolumbar junction brunt fractures without neurologic deficit[J]. Spine, 2001,26:1038-1045
    [53]李晶,吕国华,王冰,等.胸腰椎骨折脱位伤椎固定的可行性研究[J].中华骨科杂志, 2005,25: 293-296
    [57]Smith N. In vitro spinal biomechanics[J]. Spine,1991, 16(10): 12-24
    [58]Panjabi MM. Biomechanical evaluation of spinal fixation devices: A conceptual frame work [ J] Spine, 1988, 13: 11-29
    [59]Wilcox RK,Allen DJ,Hall RM,et al.A dynamic investigation of the burst fracture process using a combined experimental and finite element approach[J].Eur Spine J,2004,13:481-488.
    [60]W ilcox RK, Boerger TO, Allen DJ, et al. A dynamic study of thoracolumbar burst fractures [J].J Bone Joint Surg[Am],2003,85:2184-2189.
    [61]Panjabi MM,Hoffman H,Kato Y,et al.Superiority of incremental trauma approach in experimental burst fracture studies[J].Clin Biomech,2000,15:73-78.
    [62]沈文哲.脊柱爆裂性骨折处置.见:第六届全国脊柱脊髓损伤学术会议讲座[M].长沙: 2003.88
    [63]Orchowski J, Polly DW, Klemme WR, et a.l Spine, 2000, 25(13): 1644-1648·
    [64]Chow DHK, Luk KDK, Evans, et al .Effect of short anterior lumbar interbody fusion on biomechanics of neighboring unfused segments[ J].Spine, 1996, 21: 549.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700