用户名: 密码: 验证码:
有机—重金属复合污染根际微生物生态效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国部分农业土壤环境日趋恶化,土壤污染表现出由一般性单一污染向复杂性、复合型污染转变。进入土壤环境的污染物在植物根际会产生一定的根际微生物生态效应,根际微生物生态系统又影响着各种污染物质在土壤环境中的迁移、转化,某种程度上决定着污染物质在环境中的归趋。本文以根际土壤微生物活性和微生物群落结构作为主要研究内容,研究在有机—重金属复合污染(PCP—Cu、Pyrene—Cu)胁迫下不同植物(黑麦草、番薯、水稻等)的根际微生物生态效应。主要结论如下:
     (1)在PCP污染胁迫下,土壤的呼吸作用和微生物生物量都较对照无污染土壤有明显降低。随着PCP初始添加浓度的增大微生物生物量碳降低程度更大,但根际缓解了这种降低。同浓度的Pyrene污染,黑麦草和萝卜根际以及非根际对照土壤呼吸强度、微生物生物量碳都较没有污染时有所增强,而且在植物根际增加更大。PCP、Pyrene污染对黑麦草和萝卜及其他植物根际以及非根际土壤代谢熵的影响随不同污染和植物根际不同。
     (2)在Cu污染下,污染对非根际土壤呼吸强度表现出了一定的刺激作用。在Cu 150mg·kg~(-1)和300mg·kg~(-1)两个污染水平下,黑麦草和萝卜根际都减弱了污染对土壤呼吸强度的刺激。当Cu 300mg·kg~(-1)时,Cu污染抑制了微生物量碳。不同植物根际表现出一定的对Cu污染的根际作用,根际缓解了重金属对微生物的毒害作用,根际微生物生物量碳较非根际土壤的下降程度有明显的减缓。
     (3)PCP—Cu复合污染对黑麦草根际和萝卜根际及对照非根际土壤呼吸强度的影响有所不同,变化表现出一定的复杂性。随着复合污染的加重,根际和非根际微生物生物量都有明显的下降,但在根际中的下降程度较非根际小,根际作用缓解了复合污染对根际微生物活性的毒害。Pyrene—Cu复合污染下,根际及非根际对照土壤的呼吸强度都有所增强,而且呼吸强度随着复合污染(水平)浓度的增大而增大。随着复合污染的加重,根际和非根际微生物生物量都有降低,与PCP-Cu不同的是Pyrene—Cu复合污染下微生物生物量降低程度小,而且个别情况下还会出现根际微生物生物量的增大。PCP—Cu以及Pyrene—Cu进入土壤环境,由于有机、重金属及其复合时对土壤中微生物造成毒性,引起土壤代谢熵的变化。当PCP—Cu以及Pyrene—Cu以高浓度复合存在时,非根际及根际土壤代谢熵都较
Combined pollution caused by organic pollutant and heavy metal is one of the important soil pollution forms. The rhizosphere is a dominant site of microbial activity in soil and whereas it can be shown that soil pollution can influence the function of this comic zone. There is an established need to monitor effects of organic-heavy metal combined pollution on rhizosphere microbial ecology given the soil heavy metal contamination with the simultaneity of organic pollution is an emerging problem. In this paper, the effect of organic-heavy metal combined pollution (PCP —Cu, Pyrene— Cu) on rhizosphere microbial activity and bacterial community were studied using some sensitive microbial ecological indexes such as soil respiration rate, microbial biomass carbon and ecophysiological index. Here the main results of this study are presented:( 1 ) The soil respiration rate and microbial biomass carbon decreased obviously under the PCP pollution stress. Wth the increase of PCP concentration, the microbial biomass carbon decreased deeply and rhizosphere mitigate the detrimental effects of PCP on siol microbial biomass carbon. But at the same concentration Pyrene pollution level, the soil respiration rate and microbial biomass carbon of no-planted soil and rhizosphere of ryegrass and radish were increased. And the increase of rhizosphere is more obvious than no-planted soil. The effects of PCP, Pyrene on the metabolic quotient were different between different plant rhizoshere and no-planted soil.( 2 ) The pollution of copper stimulated the soil respiration rate of no-planted soil. The rhizosphere of ryegrass and radish weakened the stimulation of soil respiration rate under pollution (150mg·kg~(-1) Cu and 300mg·kg~(-1) Cu) condition. The microbial biomass carbon was restrained under 300mg·kg~(-1) Cu pollution stress. The plants had a rhzosphere effect, which lightened the toxicity of copper pollution on rhizosphere microbes.( 3 ) The effect of PCP-Cu combined pollution on respiration rate of no-planted soil and rhizosphere of ryegrass and radish was complex. With the deterioration of PCP-Cu combined pollution, the microbial biomass carbon decreased obviously. Because of rhisozphere effect, the decrease of rhizosphere was not obvious as no-plnted soil. But under the Pyrene—Cu combined pollution, with the aggravation of combined pollution stress,the soil respiration of no-planted and rhizosphere was
    enhanced. At the same time, the microbial biomass carbon of no-planted soil and rhizosphere decreased to some extent. PCP-Cu, Pyrene-Cu combined pollution caused the change of metabolic quotient, When Cu existed with organic pollutants together at higher concentration, the soil metabolic quotient of no-planted soil and rhizosphere increased more obvious than control soil.( 4 ) In heavy metals contaminated soil, the copper—toletrant bacterial colony of rhizosphere ryegrass had the largest ecophysiological index and stability. In only heavy metals contaminated soil, the PCP-tolerant bacteria also existed in no-planted soil and ryegrass rhizosphere. After introducing PCP into heavy meals contaminated soil, PCP—toletrant bacterial colony of no-planted soil displayed early and had a higher ecophysiological index than rhizosphere.( 5 ) The microbes that can used pyrene to growth were existed in rhizosphere of ryegrass and radish. After 15 day degradation experiment, the Pyrene of 80 mg·L~(-1) can be degraded completely. Because the joint toxicity of PCP-Cu combined pollution to microbes was complex, the growth and degrading ability of the PCP degrading microbes was different.
引文
[1] 蔡燕飞,廖宗文,章家恩等.生态有机肥对番茄青枯病及土壤微生物多样性的影响[J].应用生态学报,2003,14(3):349—353.
    [2] 蔡燕飞,廖宗文.土壤微生物生态学研究方法进展[J].土壤与环境,2002,11(2):167—171.
    [3] 陈浮,曹慧,濮励杰等.Zn2+对土壤微生物碳、呼吸强度的影响[J].无机化学学报,2002(4):404—408.
    [4] 陈怀满主编.环境土壤学[M].北京:科学出版社,2005.
    [5] 陈怀满,郑春荣.复合污染与交互作用研究——农业环境保护中研究的热点与难点[J].农业环境保护,2002,(4):192—198.
    [6] 陈能扬,童庆宣.根际环境在环境科学中的地位[J].生态学杂志,1994,13(3):45—52.
    [7] 龚平,李培军,孙铁珩.Cd、Zn、菲和多效唑复合污染土壤的微生物生态毒理效应[J].中国环境科学,1997,17(1):58—62.
    [8] 顾继东.国外环境生物技术的发展和展望[J].生物技术通报,1999,15(6).
    [9] 韩士杰.叶的边界层生态系统[M].东北林业大学出版社(哈尔滨),1996.
    [10] 何勇田,熊先哲.复合污染研究进展[J].环境科学,1994,15(6):79—83.
    [11] 李贵宝,李晓林,曹一平.玉米根际微区钾肥状况研究.土壤通报,1999,30(2):78—79.
    [12] 刘世亮,骆永明,曹志洪等.多环芳烃污染土壤的微生物与植物联合修复研究进展[J].土壤,2002(5):255—263.
    [13] 刘芷宇,施卫明.根际研究方法(M).江苏科技出版社(南京),1996:308—327.
    [14] 孟昭福,薛澄泽,张增强等.土壤中重金属复合污染的表征[J].农业环境保护,1999,2(2).
    [15] 任继凯,陈青朗等.土壤中镉、铅、锌及其相互作用对作物的影响[J].植物生态学与地植物学丛刊,1982,6(4):320—329.
    [16] 苏宝玲,韩士杰,王建国.根际微域研究中土样采集方法的研究进展[J].应用生态学报,2000,11(3):477—480.
    [17] 陶水龙,林启美.土壤微生物量研究方法进展[J].土壤肥料,1998,(5):15—18.
    [18] 王爱杰,任南琪等.环境中的分子生物学诊断技术[M].北京:化学工业出版社,2004.
    [19] 魏树和,周启星,张凯松等.根际圈在污染土壤修复中的作用与机理分析[J].应用生态学报,2003,14(1).
    [20] 张惠文,张倩茹,周启星等.乙草胺及铜离子复合施用对黑土农田生态系统土著微生物的急性毒性效应[J].农业环境科学学报,2003,22(2):129—133.
    [21] 钟鸣,周启星.微生物分子生态学技术及其在环境污染研究中的应用[J].应用生态学报.2002,13(2):247—251.
    [22] 周启星,孔繁翔,朱琳.生态毒理学[M].北京:科学出版社,2004.
    [23] 周启星,宋玉芳等.污染上壤修复原理与方法[M].北京:科学出版社,2004.
    [24] 周启星.复合污染生态学[M].北京:环境科学出版社,1995,12.
    [25] 宣家祥.根土界面研究Ⅰ:钾离子在水稻根中的迁移机理模型[J].土壤学报,1982,19(3):296—304.
    [26] 姚天爵,余利岩.微生物生态学研究方法的新进展[J].微生物学通报,2001,1:89—93.
    [27] 杨芳,徐秋芳.土壤微生物多样性研究进展[J].浙江林业科技.2002,23(6):39—41.
    [28] 郑振华,周培疆,吴振斌.复合污染研究的新进展[J].应用生态学报,2001,12(3):469—473.
    [29] 朱国鹏,沈宏.根系分泌物研究方法[J].亚热带植物科学,2002,31(增刊):15—21.
    [30] Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbial Revfew, 1995,59(1): 143-169.
    [31] Andrew A. Meharga, John W. G. Cairneyb, Ectomycorrhizas D extending the capabilities of rhizosphere remediation?[J]. Soil Biology & Biochemistrym, 2000(32): 1475—1484.
    [32] Anne CL and Hans P. Effects of freezing on rhizosphere and root nutrient content using two soil samping methods[J]. Plant and Soil, 1992; 139: 39—45.
    [33] Baath EDIAZ—RAVINA M, Frostegard et al. Effect of metal-rich sludge amendments on the soil microbial community[J]. Applied and Environmental Microbiology, 1998, 64: 238—245.
    [34] BECK T. Mikrobiologische und biochemische Charakterisierung landwirtschaftlich genutzter Boden: I. Mit. Die Ermittlung der Bodenmikrobiologischen Kennzahl[J]. Z Pflanzenernaehr Bodenkd, 1984, 147: 456-466.
    [35] Bloemberg G V, Wijfjes A H M, Lamers G E et al. Simultaneous imaging of Pseudomanas fluorescenes WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: new perspectives for studying microbial communities[J]. Molecular Plant-Mlicrobe interaction. 2000, 13: 1170—1176.
    [36] BRUCKNER A, KANDELER E, KAMPICHLER C. Plot-scale spatial patterns of soil water content, pH, substrate-induced respiration and N mineralization in a temperate coniferous forest[J]. Geoderma, 1999, 93: 207-223.
    [37] Daane L.L, HARJONO I, G.J. Zylstra, Haggbolm M M. Isolation and Characterization of Polycyclic Aromatic Hydrocarbon-Degrading Bacteria Associated with the Rhizosphere of Salt Marsh Plants[J]. Applied and Environmental Microbiology, June 2001, p:2683-2691.
    [38] Farr E et al. Measurement of ionic concentration gradients in soil near roots[J]. Soil Science, 1969, 107: 385—391.
    [39] Fliegbach A, Martens R, Rober H H. Soil microbial biomass and microbial activity in soils treatmen with heavy metal contaminated sewage sludge[J]. Soil Biology and Biochemistry. 1994, 26: 1201-1205.
    [40] GARLAND J L, MILLS A L. Classification and characterization of heterotrophic microbial communities of on the basis of-patterns of community—level sole—carbon—source utilization[J]. Applied Environmental Microbiology, 1991, 57: 2351—2359.
    [41] Gieslinski G, Van KC, Szmigielaka AM et al. Low molecular weight organic acids released from roots Durum wheat and flax into sterile nutrient solutioms[J]. Journal of Plant Nutrient, 1997, 20 (6): 753-764.
    [42] Hadjispyrou S, Kungolos A, Anagnostopoulos. Toxicity, Bioaccumulation and inter—active effects of organntin, Cadmium, and Chromium on Arremia franeiscana [J]. Ecotoxical Environ Safety, 2001, 49: 179—186.
    [43] Helal H M and Sauerbeck D. Kurzmitteilung Ein Verfahren zur Trennung von Bodenzonen unterschiedlicher Wurzelnahe. Z Pf lanzenernahrung und Bodenkunded, 1981, 144: 524—527.
    [44] Hendriks M and J ungk A. Erfassung der Mineral stoffverleilung in wnrzelnahe dutch getrennte Analyse von Rhizound Restboden. Z. Planzonernahung und Bodenkunded, 1981, 144: 276—282.
    [45] Ibekwe A.M., Grieve C.M.. Changes in developing plant microbial community structure as affected by contaminated soil[J]. FEMA Microbial Ecology, 2004, 48:239-248.
    [46] Irene Kuiper, Ellen L. Lagendijk, Guido V. gloemberg et al. Rhizoremediation: A Beneficial plant-Microbe Interaction[J]. Molocular Plant-Microbo Interactions, 2004,17(1):6-15.
    [47] Thompsona I. P., Bailey M. J., Ellis R. J. et al. MeharResponse of soil microbial communities to single and multiple doses of an organic pollutant[J]. Soil Biology and Biochemistry, 1999 (31): 95-105.
    [48] Kell J J, Tatb R L. Effects of heavy metal contamination and remediationon soil microbial in the vicinity of a zinc smelter[J]. Journal of environmental quality, 1998, 27 (27): 609—617.
    [49] Knight B. Biomass carbon measurements and substrates ultilization patterns of microbial populations from soils amends with cadrium, copper or zinc[J]. Applied and environmental microbiology. 1997, 63:39—43.
    [50] K S P et al. Effects of cadium, lead and zinc on size of microbial biomass in red soil[J]. Pedsphere, 1998, 8: 27—32.
    [51] Ken K.C. TSE, Shang-Lien L, Jerry W H. Wang. Pilot study of in-situ thermal treatment for the remediation of Pentachlorophenol-contaminated aquifers[J]. Environmental Science and Technology. 2001, 35:4910-4915.
    [52] Kuchenbuch R and J ungk A. A method for determining concentration profiles at the soil2root interface by thin slicing rhizosphere soi[J]1. Plant and Soil, 1982, 69: 391—394.
    [53] Kuperman Roman G, Carreiro, Margaret M. Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem[J]. Soil biology and biochemistry, 1997, 29(2):179-190.
    [54] Laurent Maritley et al. Bacterial diversity in the bulk soil and hizosphere fractions of Lolium perenne and trifolium repens as revealed by PCR retrication analysis of 16S rDNA[J]. Plant and soil, 1998, 198: 219—224.
    [55] Macnical R D and Beckett PHT. Critical tissue concentrations of potentially toxic elements[J]. Plant and Soil, 1985; 85: 107—129.
    [56] Maqueda Celia, Morillo Esmeralda, Undabeytia Tomas et al. Sorption of glyphosate and Cu(Ⅱ) on a natural fulvic acid complex: mutual influence[J]. Chemosphere, 1998, 37(6): 1063—1072.
    [57] Maria Tesar, Thomas G. Reichenauer, Angela Sessitsch. Bacterial rhizosphere populations of black poplar and herbal plants to be used for phytoremediation of diesel fuel[J]. Soil Biology & Biochemistry, 2002,34: 1883-1892.
    [58] Marschner P, Yang C. H, Lieberei R. Soil and plant specific effects on bacterial community composition in the rhizosphere[J] Soil Biology and Biochemistry 2001, 33: 1437-1445.
    [59] McGrath R, Singleton I. Pentachlorophenol transformation in soil: a toxicological assessment[J]. Soil Biology & biochemistry, 32(2000):1311-1314.
    [60] Namhyun Chung, Steven D. Aust. Degradation of pentachlorophenol in soil by Phanerochaete chrysosporium[J]. Journal of hazardous materials, 1995, 41:177-183.
    [61] Mummey, Daniel L. Stahl, Peter D. Buyer et al. Microbial biomarkers as an indicator of ecosystem recovery following surface mine reclamation. Applied Soil Ecology, 2001, 21 (3): 251-259.
    [62] Muyzer G, Waal de EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Applied Environmental Microbiolpgy. 1993, 59: 695-700.
    [63] Really, K. A. Banks M. K. et al. Disspation of PAHs in the rhizosphere[J]. Journal Environmental Quality, 1996, 25: 212-219.
    [64] Reilley, K. A. Banks M. K. et al. Disspation of PAHs in the rhizosphere[J]. Journal of Environmental Quality, 1996, 25: 212-219.
    [65] Ryan K. Miya, Mary K. Firestone. Phenanthrene-Degrader community dynamics in rhizosphere soil from common annual grass[J]. Journal Environmental Quality, 2000, 29: 584-592.
    [66] Riley D and Barber SA. Bicarbonate accumulation and pH changes at the soybean root—soil interface[J]. Soil Sci Soc Am Proc, 1969, 33: 905—908.
    [67] Riley D and Barber SA. Salt accumulation at the soybean root-soil interface[J]. Soil Sci Soc Am Proc, 1970, 34: 154—155.
    [68] Ryan K. Miya and Mary K. Firestone. Phenanthrene-Degrader community dynamics in rhizosphere soil from common annual grass[J]. Journal of Environmental Quality, 2000, 29: 584-592.
    [69] Steven D. Siciliano, James J. Germida, Kathy Banks, and Charles W. Greer. Changes in Microbial Community Composition and Function during a Polyaromatic Hydrocarbon Phytoremediation Field Trial[J]. Applied and Environmental Microbiology, 2003,1: 483-489.
    [70] Stefan Radajewski, Philip Ineson. Stable-isotope probing as a tool in microbial ecology[J]. Nature biotechnology, 2000, Vol 403 Febr: 646-649.
    [71] Su D.C, Wong J. W.C, Jagadeesan H. Implications of rhizospheric heavy metals and nutrients for the growth of alfalfa in sludge amended soil[J]. Chemosphere, 2004, 56(10):957-965.
    [72] Yao S, Xu F L, Wang X J et al. Organchlorine pesticides in agriculture soil and vegetables from Tianjin, China[J]. Environmental Science and Technology, 2005, 39: 2494—2499.
    [73] Teisseire H, Couderchet M, Vernet G. Phytotoxicity of diuron alone and in combination with copper or folpet on duckweed (Lemna minor) [J]. Environmental Pollution, 1999, 106(1): 39-45.
    [74] Teisseire H, Couderchet M, Vernet G. Toxic Responses and Catalase Activity of Lemna minorh. Exposed to Folpet, Copper, and Their Combination[J]. Ecotoxicology and Environmental Safety, 1998, 40: 194-200.
    [75] Todd R. Sandrin, Raina M. Maier. Impact of metals on the bioremediation of organic pollutants[J]. Environmental Health Perspectives, 2003, 111 (8): 1093—1101.
    [76] Tyler G and Strom L. 1995. Differing organic acid exudation pattern explains calcifuge and acidifuge behavirour of plants[J]. Annal Bot. 75: 75—78.
    [77] Vance E D, Brooks P C, Jenkinson D C. An extraction method for measuring soil microbial biomass C[J]. Soil Biology & Biochemistry, 1987,19:703-707.
    [78] WEST A W, GRANT W D, SPARLING G P. Use of ergosterol, diaminopimelic acid and glucosamine content of soils to monitor changes in microbial populations[J]. Soil Biol Biochem, 1987, 19: 607—612.
    [79] Youssef RA and Chino M. Studies on the behaviour of nutrient in the rhizosphere Ⅰ: Establishment of a new rhizobox system to study nutrient status in the rhizosphere[J]. Journal of Plant Nutrient, 1987, 10: 1185—1196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700