用户名: 密码: 验证码:
淋洗和生物作用改良盐渍化土壤的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
次生盐渍化是农业生产的主要限制因子。本文以干旱半干旱灌区——甘肃秦王川引大灌区盐渍化土壤为背景,以当地6种不同耐盐植物为研究对象,模拟大田试验条件下的灌溉淋洗作用,用盆栽根袋法对根际、非根际土壤和植物进行动态取样,以期探讨灌区不同耐盐植物在其生长过程中根际土壤的化学变化过程及灌区植物对盐渍化土壤的改良机制。研究结果表明:
     1,植物根际作用促进了土壤pH降低,在生长120天时新疆大叶苜蓿(Medicago Sativa var Xinjiangdaye)和中兰一号苜蓿(Medicago Sativa var Zhonglan No.1)根际土壤pH下降值略大于向日葵(Heilanthus annuus)、裸麦(Hordeum vulgare var nudum)、霸王(Zygophyllum xanthoxylum)、朝鲜碱茅(Puccinellia chinampoensis)4种植物;根际土壤的pH值与生长同期非根际土壤的相比因植物种的不同有所差异,新疆大叶苜蓿的根际酸化作用最强,在培养120天时,根际较非根际低0.13个单位。
     2,土壤EC值随培养时间的延长呈下降趋势,在培养120天时EC值最小,与对照组相比6种植物组对EC的降低幅度较大,并且在6种植物中,培养120天时向日葵根际土壤EC下降最大,降为种前的23.55%,且6种耐盐植物对盐渍化土壤的改良效果按照向日葵>新疆大叶苜蓿>中兰一号苜蓿>霸王≈朝鲜碱茅>裸麦>对照的顺序递减;根际土壤的EC值与生长同期非根际土壤中的相比因植物种的不同有所差异,对照组、裸麦和向日葵根际土壤的EC与同一培养时间非根际土壤的相比差异不显著;霸王和新疆大叶苜蓿在生长过程中根际土壤的EC始终大于非根际土壤,并且差异均达到了显著水平(P<0.05);中兰一号苜蓿和朝鲜碱茅在培养90天以后根际土壤的EC大于非根际土壤。而6种待测植物中霸王根际EC值在120天时与非根际间的差值达到了1.49个单位。
     3, 6种待测植物和对照组土壤中的6种主要的可溶性阴阳离子随培养时间的延长呈下降趋势,且培养过程中6种可溶性阴阳盐离子含量与种前相比差异显著(P<0.05);培养120天后对根际K+、Ca2+、Na+、Mg2+和C1-降低幅度最显著的植物种为向日葵,对S042-降低幅度最显著的植物种为朝鲜碱茅;对照组根际与非根际6种主要阴阳离子差异不显著,K+在6种待测植物的根际土壤中均出现了亏缺,并且K+在根际土壤中的含量与同一培养时间非根际土壤中的相比差异显著(P<0.05),根际土中K+含量与同一培养时期非根际土壤中的相比差异最显著的植物种是裸麦;对其他5种主要的可溶性阴阳离子含量根际土壤与非根际相比差值因离子不同、植物种的不同而有所差异,即使是同一品种同种离子在不同的生长时期其根际与非根际的相对离子含量也会发生很大的变化,根际土中Ca2+、Na+Mg2+和C1-4种可溶性阴阳离子含量与同一培养时期非根际土壤中的相比差异最显著的是霸王,而S042-离子含量与同一培养时期非根际土壤中的相比差异最显著的是裸麦。植物种不同、培养时间的不同其根际离子组成的变化也很大。
     4,植物体地上地下K+、Na、Ca2+和Mg2+这4种离子浓度的变化趋势因离子种类不同、植物种的不同或所取植物部位的不同有所差异,6种不同待测植物中除K+浓度外,其他3种离子的浓度均在霸王体内达到最高,向日葵体内K+浓度最高;而6种不同待测植物地上地下离子相对含量也因植物种不同、测定的离子指标不同或者所处植物的生长期不同而有所差异。
     5,淋洗与生物措施配合使用对Na+、Ca2+和Mg2+3种离子的移除效果较单独采用淋洗好,而K+例外,配合措施对K+的移除效果较单独采用淋洗的相对变化因植物种和培养时间长短有所差异。综合措施对盐渍化土壤改良效果的贡献比例大小随着培养时间的增加时刻处于动态变化中,但在一定的范围内相对稳定。6种植物各培养阶段植物体吸收带走的Na+、K+、Ca2+和Mg2+的平均质量分别占其对应培养阶段综合作用所带走的土壤中Na+、K+、Ca2+和Mg2+质量的0.46%(S.D=0.42%)、16.07%(S.D=10.89%)、0.63%(S.D=0.61%)和0.62%(S.D=0.40%)。各培养时期仅淋洗带走的Na+、K+、Ca2+和Mg2+的平均质量分别占其对应培养阶段综合作用所带走的土壤中Na+、K+、Ca2+和Mg2+质量的60.09%(S.D=7.23%),81.98%(S.D=15.61%)、51.60%(S.D=9.23%)和77.00%(S.D=11.06%)。6种植物各培养时期根系作用机制带走的土壤中Na+、K+、Ca2+和Mg2+的平均质量分别占其对应生长时期综合作用所带走的土壤中Na+、K+、Ca2+和Mg2+质量的39.45%(S.D=7.41%) 2.07%(S.D=22.44%)、47.78%(S.D=9.68%)和22.40%(S.D=11.24%)。盐渍化土壤所处地区的气候以及灌溉条件直接影响着生物脱盐效应较强的耐盐植物类型和品种作为生物修复材料的选择。
     6,土壤pH和盐分离子的变化可能与以下3个因素紧密相关:(1),在该土壤上生长的植物种的差异;(2),取样点距离植物根系的远近;(3),取样时间处于植物生长周期的生长阶段。如果没有把这3个因素结合起来考虑而讨论生物改良措施对根际土壤pH和盐分的影响,其结论可能缺乏严谨性。
Secondary salinization of soil is a major limiting factor for agricultural sustainability development in irrigated agriculture in arid and semi-arid regions. At present, the problem of soil salinity is further deteriorating in inland arid regions as the dry lands have become irrigated fields, which caused the substantial rise of groundwater table. The majority of comparative studies suggested that phytoremediation (plant-assisted approach) is more effective in the amelioration process in recent years. Rhizosphere is an important interface in substance exchange and energy transformation between plants and soil. Affected by physiological activities of plant roots, there is a marked difference in physichemistry properties between the rhizosphere soil and bulk soil. Based on a calcareous salt-affected soil in the irrigated region of Qingwangchuan, Gansu, a rhizobag experiment was conducted on six salt-tolerant plants to investigate dynamic changes of pH, EC (Electrical Conductivity) and salt ions in the rhizosphere, bulk soil and plant, and to compare the differences between them at the different plant growth stages. The results showed that:
     1, Soil pH in six tested plant groups decreased with the extension of incubation days. There was significantly (P<0.05) lower pH in rhizosphere soil in Xinjiangdaye (Medicago Saliva. L.cv.Xinjiangdaye) and Zhonglan No.1 (Medicago Sativa var Zhonglan No.l) than in than the other four tested plants, such as sunflower (Helianthus annuus), common beancaper (Zygophyllum xanthoxylum), Alkaligrass (Puccinellia chinampoensis) and barley (Hordeum vulgare var nudum). The value of soil pH in the rhizosphere and bulk soil exhibited a trend of dynamic changes in different incubation days.
     2, Soil EC in six tested plants decreased with the extension of incubation days. EC in the rhizosphere and bulk soil exhibited a trend of dynamic changes in different incubation days and different plants. EC was significantly higher in rhizosphere soil than in bulk soil for common beancaper and xinjiangdaye, but EC was no different between rhizosphere soil and bulk soil for sunflower, barley and control group. EC was significantly higher in rhizosphere soil than in bulk soil for zhonglan No.1 and Alkaligrass after a 90-day growth period.
     3, Concentrations of six major salt ions in six tested plants significantly decreased with the extension of incubation days. K+ concentrations reduced significantly in the rhizosphere of six tested plants, The distribution of the other major five salt ions such as Na+, Ca2+, Mg2+, Cl- and SO42- in the rhizosphere and bulk soil exhibited a trend of dynamic changes in different incubation days. Ca2+, Na+, Mg2+and Cl- concentrations increased mostly in the rhizosphere of common beancaper at the different growth stages. However, SO42- concentrations increased mostly in the rhizosphere of barley.
     4, Concentrations salt ions such as K+, Na+, Ca2+ and Mg2+ in shoot and root of different plants exhibited a trend of dynamic changes in different incubation days. K+ concentrations higher in sunflower than the other five tested plants, such as xinjiangdaye, zhonglan No.l, common beancaper, alkaligrass and barley at the different growth stages. However, Na+, Ca2+ and Mg2+ concentrations increased mostly in common beancaper than the other five tested plants, such as xinjiangdaye, zhonglan No.1, sunflower, alkaligrass and barley at the different growth stages. The distribution of salt ions in shoot and root of different plants exhibited a trend of dynamic changes in different incubation days.
     5,The measure (complex measure)that combined leaching with phytoremediation was more efficient than using leaching singly for removing Na+、Ca2+ and Mg2+,but except for K+. As for the amending effect of complex measure, The average removing quality of Na+, Ca2* and Mg2+that salt-tolerant plants absorbed in different incubation days was the smallest, amounting 0.46% (S.D= 0.42%),0.63%(S.D=0.61%) and 0.62%(S.D=0.40%) of the total quality respectively, The average removing quality of Na+, Ca2+ and Mg2+ that leaching measure singly in different incubation days was the largest, amounting 60.09%(S.D= 7.23%),51.60%(S.D=9.23%) and 77.00%(S.D=11.06%) of the total quality respectively, and the average removing quality of Na+, Ca2+ and Mg2+ that leavened by root of different plants in different incubation days was in the middle, amounting 39.45%(S.D=7.41%),47.78%(S.D=9.68%) and 22.40%(S.D=11.24%)of the total quality respectively.So The average quality of Na+, Ca2+ and Mg2+ that six salt-tolerant plants absorbed in different incubation days was inappreciable during growth periods.
     6, We should consider three key coupling factors:the distance between sampling site and plant rhizosphere, different plant species and different plant growth stages.when pH and salt contents in the saline soil were measured.
引文
[1]巴逢辰,赵羿.中国海涂土壤资源[J].土壤学报,1997.28(2):49-51.
    [2]鲍士旦.土壤农化分析.北京:中国农业出版社,2000,12-21.
    [3]陈有(?)监,黄艺,陶澍.玉米和大豆根际土壤性质的动态变化[J].植物生态学报,2002.26(3)283-287.
    [4]樊自立,马英杰,马映军.中国西部地区耕地土壤盐渍化评估及发展趋势预测[J].干旱区地理,2002,2(25):97-101.
    [5]冯锋,张福锁,杨新泉.植物营养研究进展与展望.北京:中国农业大学出版社.2000:139-140.
    [6]郭继勋,姜世成,孙刚.松嫩平原盐碱化草地治理方法的比较研究[J].应用生态学报,1998,(9):425-428.
    [7]韩方虎,沈禹颖,王希,等.苜蓿草地土壤氮矿化的研究[J].草业学报,2009,18(2):11-17.
    [8]黄绍文,金继运,王泽良,程明芳.北方主要土壤钾形态及其植物有效性研究[J].植物营养与肥料学报,1998.4(2):156-164.
    [9]郝秀珍,周东美.沸石在土壤改良中的应用研究进展[J].土壤,2003.(2):103-106.
    [10]李昂,吕正文,蔺海明,邱黛玉,赵有翼.秦王川灌区不同绿色覆盖方式预防土壤次生盐渍化效应研究[J].草业科学,2008.25(10):20-23.
    [11]吕彪,赵芸晨,秦嘉海.河西走廊盐土资源及生物改土效果[J].土壤通报,2001.32(4):31-32.
    [12]李春俭.高级植物营养学(Mineral Nutrition of Higher Plant)北京:中国农业大学出版社.2008.
    [13]李从娟,马健,李彦.五种沙生植物根际土壤的盐分状况[J].生态学报,2009,29(9):4649-4655.
    [14]陆景陵.植物营养学(上册)第2版.北京:中国农业大学出版社.2003.
    [15]蔺海明,贾恢先,张有福.毛苕子对次生盐碱地抑盐效应的研究[J].草业学报,2003.12(4):58-62.
    [16]李海英,彭红春,牛东玲等.生物措施对柴达木盆地弃耕盐碱地效应分析[J].草地学报,2002.10(1):63-68.
    [17]李加宏,俞仁培.土壤—作物根际系统中离子的迁移.土壤学报,1998,35(2):186-194.
    [18]李怒云,龙怀玉.植树造林与21世纪我国盐渍土开发利用的关系[J].北京林业大学学报,2000.22(3):99-100.
    [19]陆文龙,曹一平,张福锁.根分泌的有机酸对土壤磷和微量元素的活化作用[J].应用生态学报,1999.10(3):379-382.
    [20]罗文邃,姚政.促进根系健康的土壤微生态研究[J].中国生态农业学报,2002.10(3):44-46.
    [21]陆雅海,张福锁.根际微生物研究进展[J].土壤,2006.38(2):113-121.
    [22]卢耀千.大庆地区盐碱地植树造林的技术措施[J].国土绿化,1994.4:31.
    [23]李廷轩,马国瑞.籽粒苋不同富钾基因型根际钾营养与根系特性研究[J].水土保持学报,2004.18(3):90-93.
    [24]李志丹,于友伟,等.牧草改良盐渍化土壤理化性质研究进展[J].草业科学,2004.21(6):17-20.
    [25]刘沛松,贾志宽,李军,等.宁南旱区草粮轮作系统中紫花苜蓿适宜利用年限研究[J].草业学报,2008,17(3):31-39.
    [26]Marschner H著,李春俭等译.高级植物的矿质营养.北京:中国农业大学出版社.2001.
    [27]牟晓杰,孙志高,王玲玲,等.黄河口滨岸潮滩不同表现型翅碱蓬Mg含量与累积的季节变化[J].草业学报,2010,19(3):177-190.
    [28]彭镇华,王成.河流沿线土地利用对策的研究[J].应用生态学报,2002,13(4):6-8.
    [29]彭镇华,江泽慧.中国森林生态网络系统工程[J].应用生态学报,1999,10(1):6-10.
    [30]全国土壤普查办公室.中国土壤.北京:农业出版社,1998.
    [31]孙本华,高明霞,吕家珑等.苜蓿培肥对灰漠土养分及胡敏酸特性的影响[J].水土保持研究,2007.14(3):338-341.
    [32]孙国荣,阎秀峰,李晶.星星草对碱化土壤物理性质的影响[J].草地学报,2002.10(2):179-183.
    [33]石玉林主编.《中国1,100万土地资源图》土地资源数据集[M].北京:中国人民大学出版社,1991.
    [34]石玉林.西北地区土地荒漠化与水土资源利用研究[M].北京:科学出版社,2004.
    [35]孙振元,刘金,赵梁军,等.盐碱土绿化技术[M].北京:中国林业出版社,2004.
    [36]佟才,王志平,段丽杰.盐渍化土地恢复调控的研究进展[J].北方环境,2004.29(5):32-35.
    [37]巫东堂,王久志.土壤结构改良剂及其应用[J].土壤通报,1990,21(3):140-142.
    [38]王琚,刘茂松,盛晟,徐驰,刘小恺,王汉杰.干旱区植物群落土壤水盐及根系生物量的空间分布格局,生态学报,2008,28(9):4120-4127.
    [39]邢尚军,张建锋.黄河三角洲土地退化机制与植被恢复技术[M].北京:中国林业出版社,2006.
    [40]王少丽,高占义,郭庭天.灌区土壤盐渍化发展模拟预测与对策研究.灌溉排水学报,2006.25(1):71-76.
    [41]王瑛,孟亚利,陈兵林.麦棉套作棉花根际非根际土壤微生物和土壤养分[J].生态学报,2006.26(10):3485-3490.
    [42]王遵亲.中国盐渍土[M].北京:科学出版社,1993.
    [43]熊毅,李庆逵.中国土壤(第二版).北京:科学出版社,1987:233-234.
    [44]薛梓瑜,周志宇,詹媛媛,任伟.干旱荒漠区旱生灌木根际土壤磷变化特征[J].生态学报,2010.30(2):341-349.
    [45]弋良朋,马健,李彦.不同土壤条件下荒漠盐生植物根际盐分特征研究.土壤学报,2007,44(6):1139-1143.
    [46]弋良朋,马健,李彦.两种土壤条件下荒漠盐生植物根际系统养分[J].中国沙漠,2008.28(3):443-448.
    [47]弋良朋,马健,李彦.荒漠盐生植物根际系统盐分分布特征[J].生态学杂志,2009.28(5):827-832.
    [48]杨劲松.中国盐渍土研究的发展历程与展望.土壤学报,2008.45(5):837-845.
    [49]俞仁培.我国盐渍土资源及其开发利用[A].见:中国土壤学会主编.盐渍土资源综合开发利用与治理[c].北京:农业出版社,1997.17-19.
    [50]杨玉盛,何宗明,邹双,俞新妥.格氏栲天然林与人工林根际土壤微生物及其生化特性的研究.生态学报,1998.18(2):198-203.
    [51]杨玉海,蒋平安.不同种植年限苜蓿地土壤理化特性研究[J].水土保持学报,2005.19(2):110-113.
    [52]杨自辉,王继和,纪永福.河西走廊盐碱地治理模式研究[J].土壤通报,2005.36(4):479-482.
    [53]赵炳锌,徐宫安.结构改良剂及麦秆覆盖对麦地蒸散的影响[J].土壤,1992.24(3):120-124.
    [54]张福锁,申建波,冯固,等.根际生态学:过程与调控(Rhizosphere Ecology:Processes and Management) [M]北京:中国农业大学出版社,2008.
    [55]张福锁和申建波.从根际过程到根际调控-土壤科学的研究前沿.见:马溶之与中国土壤科学-纪念马溶之诞辰一百周年,南京:江苏科学技术出版社,2007.
    [56]张福锁,曹一平.根际动态过程和植物营养.土壤学报,1992.29(3):239-250.
    [57]张冈,周志宇,张彩萍.利用方式对盐渍化土壤中有机质和盐分的影响.草业学报,2007.16(4):15-20.
    [58]张国盛,黄高宝,张仁陟,等.种植苜蓿对黄绵土表土理化性质的影响[J].草业学报,2003.12(5):88-93.
    [59]张建锋.中国盐碱地造林绿化的理论与实践[A].刘小京,刘孟雨.盐生植物利用与区域农业可持续发展[M].北京:气象出版社,2002.221-225.
    [60]张建锋,等.植物耐盐机理与耐盐植物选育研究进展[J].世界林业研究,2003.(2):16-22.
    [61]张建锋,张旭东,周金星,刘国华.世界盐碱地资源及其改良利用的基本措施.水土保持研究,2005.12(6):28-30.
    [62]张建锋,邢尚军,孙启祥,淆金标,宋玉民.黄河三角洲重盐碱地白刺造林技术的研究[J].水土保持学报,2004.18(6):144-147.
    [63]赵可夫.作物抗盐生理[M].北京:农业出版社,1990.249-313.
    [64]赵可夫,李法曾.中国盐生植物[M].北京:科学出版社,1999.
    [65]赵兰坡,王宇,马晶,等.吉林省西部苏打盐碱土改良研究[J].土壤通报,2001.32(专辑):91-96.
    [66]张晓琴,胡明贵.紫花苜蓿对盐渍化土壤理化性质的影响[J].草业科学,2004.21(11):31-34.
    [67]张彦东,白尚斌.氮素形态对树木养分吸收和生长的影响.应用生态学报,2003,14(11):2044-2048.
    [68]张永宏.盐碱地种植耐盐植物的脱盐效果[J].甘肃农业科技,2005(3):48-49.
    [69]赵芸晨,秦嘉海.几种牧草对河西走廊盐渍化土壤改土培肥的效应研究.草业学报,2005.14(6):63-66.
    [70]Anne CL and Hans P. Effects of freezing on rhizosphere and root nutrient content using two soil samping methods.1992. Plant and Soil,139:39-45.
    [71]Acharya CL and Abrol IP. Exchangeable sodium and soil water behavior under field conditions. Soil Science,1978.125,310-319.
    [72]Akhter J, Murray R, Mahmood K, Malik K A and Ahmed S. Improvement of degraded physical properties of a saline-sodic soil by reclamation with kallar grass (Leptochloa fusca). Plant and Soil,2004,258:207-216.
    [73]Akhter J, Mahmood K, Malik KA, Ahmed S and Murray R. Amelioration of a saline sodic soil through cultivation of a salt tolerant grass Leptochloa fusca. Environ. Conserv,2003.30, 168-174.
    [74]Ahmad N, Qureshi RH and Qadir M. Amelioration of a calcareous saline_sodic soil by gypsum and forage plants.Land Degradation and Rehabilitation,1990.2:277-284.
    [75]Ahmad S, Ghafoor A, Qadir M and Aziz MA. Amelioration of a Calcareous Saline-Sodic Soil by Gypsum Application and Different Crop Rotations. Agriculture and Biology,2006. 8(2):142-146.
    [76]Baker AJM, McGrath SP, Sidoli CMD and Reeves RD.The Possibility of in situmetal decontamination of Polluted soils using crops of metalaecumulating plants—a feasibility study. Resourees Conservation and Reeyeling.1994,11:41-9.
    [77]Bailey C, Scholes M. Rhizosheath occurrence in South African grasses. S. Afr. J. Bot,1997. 63:484-490.
    [78]Benizri E, Schoeny A, Picard C, et al. External and internal root colonization of maize by two p seudomonas strains:enumeration by enzyme linked immune sorbent assay (EL ISA). Current Microbiology,1997,34:297-302.
    [79]Barrett-Lennard EG. Restoration of saline land through revegetation. Agricultural Water Management,2002.53,213-226.
    [80]Barrett-Lennard EG, Warren BE and Malcolm CV. Agriculture on saline soils-direction for the future. In:Revegetation of saline land, eds BA Myers and DW West, Institute for Irrigation and Salinity Research Tatura Victoria Australia,1990.37-45.
    [81]Batra L, Kumar A, Manna MC and Chhabra R. Microbiological and chemical amelioration of alkaline soil by growing Karnal grass and gypsum application. Experimental Agriculture, 1997.33,389-397.
    [82]Bosc M.. Enseignements fournis par des essais de longue duree sur la fumure potassique et phosphatee 3 Essais sur la fumure potassique. In Phosphore et Potassium dans les Relations. Sol-Plante (ed. L Gachon). Institut National de la Recherche Agronomique, Paris,1988. 403-466.
    [83]CABI, Wallingford UK, Pessarakli M. and Szabolics Ⅰ. Soil salinity and sodicity as particular plant/crop stress factors. In:Pessarakli, M. (Ed.), Handbook of Plant and Crop Stress, second ed. Marcel Dekker, New York, NY,1999:1-16.
    [84]Calba H, Jaillard B, Fallavier P, Arvieu J C. Agarose as a suitable substrate for use in the study of Al dynamics in the rhizosphere. Plant and Soil,1996,178,67-74.
    [85]Cheng H. Phosphatase activity and P fractions in soils of an 18-year-old Chinese fir (Cunnin--ghamia lanceolata) plantation. Forest Ecology Manage,2003,178:301-310.
    [86]Chaudhri Ⅱ, Shah BH, Naqvi N and Mallick IA. Investigations on the role of Suaeda frutico--sa Forsk in the reclamation of saline and alkaline soils in West Pakistan [J]. Plant and Soil, 1964.21:1-7.
    [87]Chhabra and Abrol. Reclaiming Effect of Rice Grown in Sodic Soils. Soil Science,1977.124: 49-55.
    [88]Darwish OH, Persaud N and Martens D C. Effect of longterm application of animal manure on physical properties of three soils,1995. Plant Soil 176,289-295.
    [89]Dieffenbach A, Matzner E. In situ soil solution chemistry in the rhizosphere of mature Norway spruce (Picea abies(L.) Karst.) trees. Plant and Soil,2000.222:149-161.
    [90]Dregne H, Kassas M and Rosanov B. A new assessment of the world status of desertification. Desertification Control Bull,1991.20,6-18.
    [91]Dahiya IS, Malik RS and Singh M. Field studies on leaching behaviour of a highly saline-
    [92]sodic soil under two modes of water application in the presence of crops. Journal of Agricultural Sciences (Cambridge),1981.97:383-389.
    [93]FAO.Global Network on Integrated Soil Management for Sustainable Use of Salt affected Soils. FAO Land and Plant Nutrition Management Service, Rome, Italy,2005.
    [94]Flowers TJ, Yeo AR. Breeding for salinity resistance in crop plants:where next? Australian Journal of Plant Physiology,1995.22,875-884.
    [95]Glenn EP and O'Leary JW. Productivity and irrigation requirements of halophytes grown with sea water in the Sonora Desert [J]. Arid Environ,1985.9:81-91.
    [96]Ghafoor AM. Qadir M and Quresahi RH. Using brackish water on normal and salt-affected soils in Pakistan. A review. Pakistan J. Agric. Sci,1991.28:273-288.
    [97]Ghaly F M. Role of natural vegetation in improving salt affected soil in northern Egypt. Soil and Tillage Research,2002.64:173-178.
    [98]Ghassemi F, Jakeman AJ and Nix HA. Salinisation of Land and Water Resources:Human Causes, Extent, Management and Case Studies. CABI Publishing:Wallingford, United Kingdom.1995:526-544.
    [99]Glauser R, Doner HE and Paul EA.Soil aggregate stability as a function of particle size in sludge treated soils. Soil Science,1988.146,37-43.
    [100]Gritsenko GV and Gritsenko AV. Quality of irrigation water and outlook for Phytomelioration of soil [J].Eurasian Soil Science.1999,32:236-242.
    [101]Gupta RK and Abrol IP. Salt-affected soils:their reclamation and management for crop production. Adv. Soil Science,1990.11:233-288.
    [102]Gupta RK, Singh RR, Abrol IP. Influence of simultaneous changes in sodicity and pH on the hydraulic conductivity of an alkali soil under rice culture.soil Sciences.1989.147:28-33.
    [103]Haynes RJ and Francis GS. Changes in microbial biomass C, soil carbohydrate composition and aggregate stability induced by growth of selected crop and forage species under field conditions. Soil Science,1993.44,665-675.
    [104]Hinsinger P. Bioavailability of soil in organic P in the rhizosphere as affected by root induced chemical changes:a review. Plant and Soil,2001.237:173-195.
    [105]Hinsinger P. How do plant roots acquire mineral nutrients? Chemical Processes Involved in the rhizosphere. Advances in Agronomy,1998.64:225-265.
    [106]Hinsinger P, Jaillard B and Dufey JE. Rapid weathering of a trioctahedral mica by the roots of ryegrass. Soil Science Society of America Journal,1992.56,977-982.
    [107]Hinsinger P and Jaillard B. Root-induced release of interlayer potassium and vermiculite-zation of phlogopite as related to potassium depletion in the rhizosphere of ryegrass [J]. Soil Sci,1993a.44:525-534.
    [108]Hinsinger P, Elsass F, Jaillard B and Robert M. Root-induced irreversible transformation of a trioctahedral micain the rhizosphere of rape[J]. Soil Sci,1993b.44:535-545.
    [109]Hinsinger P, Plassard C, Tang C, Jaillard, B. Origins of rootmediated pH changes in the rhizosphere and their responses to environmental constraints:a review. Plant and Soil,2003, 248,43-59.
    [110]Horie T and Schroeder JI, Sodium transporters in plants. Diverse genes and physiological functions. Plant Physiology,2004.136:2457-2462.
    [111]International Atomic Energy Agency. Management strategies to utilize salt-affected soils. 1995, IAEA-TECDOC-814, Vienna.
    [112]llyas M, Qureshi RH and Qadir M. Chemical changes in a salinesodic soil after gypsum application and cropping. Soil Technol,1997.10:247-260.
    [113]Ilyas M, Miller RW and Qureshi RH. Hydraulic conductivity of saline-sodic soil after gypsum application and cropping. Soil Science Society of America Journal,1993.57, 1580-1585.
    [114]Katerji N, van Hoorn JW, Hamdy A, Mastrorilli M. Salt tolerance classification of crops according to soil salinity and to water stress day index. Agricultural Water Management, 2000.43:99-109.
    [115]Kumar A and Abrol IP.Studies on the reclaiming effect of Karnalgrass and para-grass grown in a highly sodic soil. Indian Journal of Agricultural Sciences,1984.54,189-193.
    [116]Keiffer CH and Ungar IA. Germiantion and establishment of halophytes on brine-affected soils. Journal of Applied Ecology,2002.39(3):402-415.
    [117]Kosmas C and Moustakas N. Hydraulic conductivity and leaching of an organic saline-sodic soil. Geoderma,1990.46:363-370.
    [118]Kovda VA. Loss of productive land due to salinazation [J].Ambio,1983,12(2):91-93.
    [119]Kuzyakov Y. Separating microbial respiration of exudates from root respiration in non-steri-le soils:a comparison of four methods. Soil Biology and Biochemistry,2002.34: 1621-1631.
    [120]Kuzyakov Y and Domanski G. Model for rhizodeposition and CO2 efflux from planted soil and its validation by 14C pulse labelling of ryegrass. Plant Soil,2002.239:87-102.
    [121]Mahmood K, Malik KA, Sheikh KH and Lodhi MAK. Allelopathy in saline agricultural land:Vegetation successional changes and patch dynamics. J. Chemical Ecology,1989.15, 565-579.
    [122]Mahmood K, Malik KA, Lodhi MAK and Sheikh KH. Soilplant relationships in saline wastelands:Vegetation, soils and successional changes during biological amelioration. Environ.Conserv,1994.21,236-241.
    [123]Marcum KB. Salinity Tolerance Mechanisms of Grasses in the Subfamily Chloridoideae. Crop Science,1999.39:1153-1160.
    [124]McCully. How do real root work? Plant Physiol,1995.109:1-6.
    [125]Malcolm E and Sumner R N. Sodic soils-distribution, properties, management, and environme-nttal consequences [M]. New York:Oxford University Press,1998.
    [126]Martin JK. Factors influencing the loss of organic carbon from wheat root, soil Biol Biochem,1997.9:17.
    [127]McGrath S P, Shen Z G, Zhao F J. Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant and Soil,1997,188:153-159.
    [128]Miyamoto S and Enriquez C. Comparative effects of chemical amendments on salt and NA leaching. Irrigation Science,1990.11(2):83-89.
    [129]Morel JL, Habib L, Plantureux S, et al. Influence of maize root mucilage on soil aggreg-ate stability. Plant Soil,1991.136:111-119.
    [130]McGlathery KJ, Risgaard PN and Christensen PB. Temporal and spatial variation in nitrogen fixation activity in the eelgrass Zostera marina rhizosphere. Marine Ecology-Progress Series,1998.168:245-258.
    [131]Marschner P, Crowley D and Yang C. Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant and Soil,2004.261: 199-208.
    [132]McGrath SP, Zhao FJ and Lombi E. Phytoremediation of metals, metalloids and radion-uelides. Advances in Agronomy,2002.75:1-56.
    [133]Nye PH. Changes of pH across the rhizosphere induced by roots. Plant and Soil, 1981.61:7-26.
    [134]Oster JD, Shainberg I and Abrol IP. Reclamation of salt affected soils. In:Agricultural drainage, eds RW Skaggs and J van Schilfgaarde, ASA-CSSASSSA Madison,1999.659-691.
    [135]Oster JD, Shainberg I and Abrol IP. Reclamation of salt affected soils. In Soil Erosion. Conservation and Rehabilitation, Agassi M (ed.). Marcel Dekker, New York,1996.315-352.
    [136]Owens S. Salt of the earth. European Molecular Biology Organization (EMBO) Reports 2,2001.877-879.
    [137]Quemener J. Important factors in potassium balance sheets. In:Nutrient Balance and the Need for Potassium. Proceedings of the 13th International Potash Institute Congress, France, 1986.41-72.
    [138]Qadir M, Noble AD, Schubert S, Thomas RJ and Arslan A. Sodicity induced land degradation and its sustainable management:Problems and prospects[J]. Land Degradation and Development,2006.14:301-307.
    [139]Qadir M and Oster JD. Vegetative bioremediation of calcareous sodic soils:history, mechanisms and evaluation. Irrigation Science,2002,21:91-101.
    [140]Qadir M, Qureshi RH, Ahmad N and Ilyas M. Salt-tolerant forage cultivation on a saline
    [141]-sodic field for biomass production and soil reclamation. Land Degradation & Development,1996a.7:11-18.
    [142]Qadir M, Qureshi RH, Ahmad N. Nutrient availability in a calcareous saline-sodic soil during vegetative bioremediation. Arid Soil Research and Rehabilitation,1997.11:343-352.
    [143]Qadir M, Qureshi RH and Ahmad N. Reclamation of a saline-sodic soil by gypsum and Leptochloa fusca [J]. Geoderma,1996b,74:207-217.
    [144]Qadir M, Schubert S, Ghafoor A and Murtaza G. Amelioration strategies for sodic soils: a review. Land Degradation and Development,2001,12:357-386.
    [145]Qadir M, Ghafoor A and Murtaza G. Amelioration strategies for saline soils:a review. Land Degradation and Development,2000,11:501-521.
    [146]Qadir M, Steffens D, Yan F, et al. Proton release by N2-fixing plant roots:A possible contribution to phytoremediation of calcareous sodic soils [J]. Plant Nutrition and Soil Science, 2003a.166:14-22.
    [147]Qadir M, Steffens D, Yan F, Schubert S. Sodium removal from a calcareous saline-sodic soil through leaching and plant uptake during phytoremediation[J]. Land Degradation and Development,2003b.14:301-307.
    [148]Qadir M, Tubeileh A, Akhtar J, Larbi A, Minhas P S and Khan M A. Productivity enhan-cement of salt-affected environments through crop diversification. Land Degradation and Development,2008.19:429-453.
    [149]Ried JB and Goss MJ. Effect of living roots of different plant species on the aggregate stability of two arable soils. Soil Science,1981.32,521-541.
    [150]Riley D and Barber SA. Salt accumulation at the soybean (Glycine L. Merr) root-soil interface. Soil Science society of America Journal,1970.34:154-155.
    [151]Rhoades JD, Lesch SM, LeMert RD and Alves WJ. Assessing irrigation/drainage/
    [152]salinity management using spatially referenced salinity measurements. Agricultural Water Management,1997.35:147-165.
    [153]Revsbech NP, Pedersen O, Reichardt W and Briones A. Microsensor analysis of oxygen and pH in the rice rhizosphere under field and laboratory conditions. Biology and Fertility of Soils,1999.29:379-385.
    [154]Robbins CW. Carbon Dioxide Partial Pressure in Lysimeter Soils. Agronomy Journal, 1986a.78(1):151-158.
    [155]Robbins CW. Sodic Calcareous Soil Reclamation as Affected by Different Amendments and Crops. Agronomy Journal,1986b.78(5):916-920.
    [156]Romheld V, Muller C, Marschner H. Localization and capacity of proton pumps in roots of intact sunflower plant. Plant Physiology,1984,76:603-606.
    [157]Semenov AM, Van-Bruggen AHC and Zelenev VV. Moving waves of bacterial popu-lations and total organic carbon along roots of wheat. Microbial Ecology,1999.37:116-128.
    [158]Salt D E, Smith R D and Raskin I. Phytoremediation. Annual Reviews of plant Physiolo-gy and Plant Moleeular Biology,1998.49:643-668.
    [159]Singh G. Salinity-related desertification and management strategies Indian experience. Land Degradation and Development,2009.20:367-385.
    [160]Sinha B K, Singh N T. Salt distribution around roots of wheat under different transpiration rates. Plant and Soil,1976,44,141-147.
    [161]Sparks DL. Potassium release from sandy soil. In:Nutrient balances and the need for potassium. Proceedings of the 13th International Potash Institute Congress, France,1986: 93-105.
    [162]Szabolcs I. Agronomical and ecological impact on soil and water salinity. In Advances in Soil Science Volume 4. Ed. B A Stewart,1986:188-218.
    [163]Steer J and Harris JA. Shifts in the microbial community in rhizosphere and non-rhizosphere soils during the growth of Agrostis stolonifera[J]. Soil Biology and Biochemistry, 2000.32:869-878.
    [164]Simunek J and Suarez DL. Sodic soil reclamation using multi-component transport mod-eling. Journal of Irrigation and Drainage,1997.123(5):367-376.
    [165]Singh MV and Singh KN. Reclamation techniques for improvement of sodic soils and crop yields. Indian Journal of Agricultural Sciences,1989.59:495-500.
    [166]Sadiq M. Amelioration of saline-sodic with tillage implements and sulfuric acid application [J]. Pedosphere,2007.17(2):182-190.
    [167]Schubert S, Schubert E and Mengel K. Effectof low pH of the root medium on proton release, growth, and nutrient uptake of field beans (Vicia faba) [J]. Plant Soil,1990. (124): 239-244.
    [168]Song S K and Huang PM. Dynamics of potassium release from potassium-bearing minerals as influenced by oxalic and citric acids. Soil Science Society of American Journal, 1988.52:383-390.
    [169]Schubert S, Yan F. Nitrate and ammonium nutrition of plants:effects on acid/base balance and adaptation of root cell plasmalemma Ht ATPase[J]. Plant Nutrition and Soil Science,1997.160:275-281.
    [170]Tedeschi A, Beltran A, Aragues R. Irrigation management and hydrosalinity balance in a semiarid area of the middle Ebro river basin (Spain).Agricultural water management,2001,49, 31-50.
    [171]Toal ME, Yeomans CV, Killham KS, et al. A review of rhizosphere carbon flow model-ing [J]. Plant Soil,2000,222:263-281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700