用户名: 密码: 验证码:
A~2/O工艺处理系统脱氮除磷优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太湖,我国五大淡水湖之一,上海和苏锡常、杭嘉湖地区最重要的水源。太湖水污染严重,有七成的水体已经达到富营养水平,近年来蓝藻也时有爆发,已出现太湖周围部分城市长时间停水的事件发生。氮、磷等植物营养性物质是引起湖泊富营养化的最主要原因。而随着经济的发展、城市化进程的加剧,水消耗量越来越多,而污水处理却严重滞后,很多水厂运行了也难以达标排放。所以提高太湖地区污水厂的处理能力以及达标排放,是关系到人民生活安全的大事,具有重大的意义。
     太湖地区无锡市芦村污水处理厂坐落在无锡市西南郊京杭大运河畔,是无锡市污水处理量最大的污水处理厂之一。日处理量为30万吨,分四期建设,每个系列运行中存在不同程度的问题,有待优化改进。本研究在对芦村污水处理厂原水水质、工艺参数、运行状况进行调查的基础上,建立试验室小试模型,模拟芦村污水处理厂的工艺条件,优化水厂A2/O工艺的运行参数,利用小试的试验结果,对实际水厂的运行提出可行性建议。
     通过对回流比的调节,发现内、外回流比的变化对A2/O工艺COD的去除影响不大;相同条件下,当内回流比由100%增大到180%的过程中,脱氮效果提高近9%,除磷效果略有下降;外回流比由100%降低到60%的过程中,污泥浓度平均下降300mg/L左右,除磷率提高近5%,脱氮效果略有下降。所以内回流为180%,外回流为60%时脱氮除磷效果最好。在低温条件(8~12℃)时,通过在好氧中段投加填料(体积比为30%),可提高氨氮去除率15%,总氮去除率14%。
     溶解氧浓度是A2/O工艺运行控制的最重要参数之一,也是水厂节能的关键。通过对小试装置好氧段分格控氧,综合考查脱氮除磷效果及污泥活性、释磷速率、反硝化速率,提出最优运行方式:保持好氧第1,2,3格溶解氧分别为0~1mg/L、2~3(3.5)mg/L、2~3(3.5)mg/L。
     结合小试试验研究成果,调试芦村污水处理厂工艺优化运行,并建立协同生物与化学除磷的全流程多参数综合控制系统。
Tai Lake is one of the five largest freshwater lakes in China, is the most important water source of Shanghai, Suzhou, Wuxi, Changzhou and hangjiahu area. Tai Lake exist serious water pollution, 70% of water in Tai Lake has reached eutrophication. Recently cyanobacteria has outbreaked at times. Water supply failure has emerged in some cities around Tai Lake. Nitrogen and phosphorus are plant nutrition element that cause lake eutrophication. With economic development, increased urbanization and increased water consumption, wastewater treatment has lagged far behind. Sewage treatment plant run hard to meet the discharge standard. Therefore, whether the wastewater treatment plant could operate stable and meet the discharge standard would affect the safety of peoples daily life.
     LuCun sewage treatment plant in Tai Lake region is located in the southwest suburb of Wuxi, at the riverside of Beijing-Hangzhou Grand Canal. It is one of the largest sewage treatment plant in Wuxi City with a daily treatment capacity of 300,000 m3. It was constructed from four process. There are different problems in the operation and the processes need to be optimized in urgent. In this study, a lab scale model that simulated the operation condition of LuCun wastewater treatment plant was established and the operation parameters were optimized.
     The results indicated that the change of the sludge recycling ratio and the inner recycling ratio has little effect on COD removal. Under the same condition, when inner recycling ratio increased from 100% to 180%, the average removal rate of total nitrogen increased by 9%, the average removal rate of total phosphorus slightly declined. When sludge recycling ratio decreased from 100% to 60%, sludge concentration showed a mean decrease of 300mg/L, the average removal rate of total phosphorus increased by 5%, the average removal rate of total nitrogen slightly declined. Therefore, when inner recycling ratio was 180% and the sludge recycing ratio was 60%, the maximal nitrogen and phosphorus removal achieved. Under low temperature (8~12℃) condition, the average removal rate of ammonia nitrogen increased by 15% and the average removal rate of total nitrogen increased by 14% through adding medium in the second aerobic stage with adding volume ratio of 30%.
     Dissolved oxygen concentration is one of the most important operation parameters and the key of energy saving. The study was designed to control different dissolved oxygen concentration at different aerobic stage to optimize the performance of the process. The required DO concentration at first, second, third aerobic stage were recommended as 0 to 1 mg/L, 2 to 3mg/L and 2 to 3 mg/L, respectively.
     The field optimization was carried on in LuCun wastewater. A multi-parameter integrated control system combined biological phosphorus removal and chemical phosphorus removal was established on site..
引文
1郑敏,张代均.废水化学法脱氮和化学法除磷的研究[J].科技情报开发与经济. 2006, 16(1):154~155
    2牛建宇.水中氨氮脱除方法研究进展[J].科技情报开发与经济. 2008, 18(25):105~106
    3何岩,赵由才,周恭明.高浓度氨氮废水脱氮技术研究进展[J].工业水处理. 2008, 28(1):1~4
    4吴剑,齐鄂荣,程晓如等.废水生物脱氮技术的研究发展[J].武汉大学学报(工学版). 2002, 35(1):76~79
    5 J. Oh. Oxygen effects on activated sludge denitrification in sequencing batch reactors[J]. Thesis for the doctor degree, the University of Colorado, U·S·A, 1998
    6 D.W. Gao, Y.Z. Peng, B.K. Li, et al. Shortcut nitrification– denitrification by real-time control strategies[J]. Bioresource Technology. 2009, 100(7):2298 ~2300
    7温小鹏,施昌平,谢雄文.基于厌氧氨氧化和中温亚硝化的可持续生物脱氮工艺[J].环境科学. 2009, 22(1):67~70
    8 S.Y. Hyung. Nitrogen removal from synthetic wastewater by simultaneous nitrification and densification(SND)via nitrite in an intermittently awrated reactor[J]. Water Research. 1999, 33(1):145~154
    9 H. Christine, K. Sabine. Simultaneous nitrification/densification in an aerobic biofilm system[J]. Water Science and Technology. 1998, 37(45): 183~187
    10 P.A.M. Arts, L.A. Robertson, J.G. Kuenen. Nitrification and denitrification by Thiosphaera pantotropha in aerobic chemostat cultures[J]. FEMS Microbiology Ecology. 1995, 18(4):305~315
    11 R.E. Buchanan, N.E. Gibbons. Bergey’s Manual of Determinative Bacter -iology (8th Ed.)[M]. Baltimore: The Williams and Wilkins Company. 1974
    12 T. Mino, M.C.M. Van Loosdrecht, J.J. Heijnen. Microbiology and bioche -mistry of the enhanced biological phosphate removal process[J]. Water Research. 1998, 32(11):3207~3193
    13华光辉,张波.城市污水生物除磷脱氮工艺中的矛盾关系及对策[J].给水排水. 2000, 26(12):1~4
    14刘秀峰,杨云龙,张晓波. A2O工艺的优化[J].山西建筑. 2010, 36(8):193~194
    15 Z.H. Abu-Ghararah, C.W. Randall. The effect of organic compounds on biological phosphorus removal[J]. Water Science and Technology. 1991, 23(4):585~594.
    16 A. Oehmen, A.M. Saunders, M.T. Vives Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources[J]. Journal of Biotechnology. 2006, 123(1):22~32
    17郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998.
    18高廷耀等.城市污水生物脱氮除磷机理研究进展[J].上海环境科学, 1999,18(1):16~18
    19郝王娟,薛涛,黄霞.进水磷碳比对聚磷菌与聚糖菌竞争生长的影响[J].中国给水排水. 2007,23(17):95~98
    20 C.D.M. Filipe, G.T. Daigger, Jr C.P.L. Grady. pH as a key factor in the comp- etition between glycogen-accumulating organisms and phosphorus -accumulating organisms[J]. Water Environment Research. 2001,73(2):223~232.
    21 T. Zhang, Y. Liu, H.P. Fang. Effect of pH change on the performance and microbial community of enhanced biological phosphate removal process[J]. Biotechnology and Bioengineering. 2005,92(2):173~182.
    22 T. Panswad, A. Doungchai, J. Anotai. Temperature effect on microbial community of enhanced biological phosphorus removal system[J]. Water Research. 2003, 37(2): 409~415
    23 C.M. Lopez-Vazquez, Song Young-II, C.M. Hooijmans, et al. Short-term temperature effects on the anaerobic metabolism of glycogen accumulating organisms[J]. Biotechnology and Bioengineering. 2007,97(3): 483~495
    24 D. Brdjanovic, M.C.M. Van Loosdrecht, V. Paul, et al. Modeling COD, N and P removal in a full-scale wwtp Haarlem Waarderpolder[J]. Water Research. 2000,34(3):846~858
    25邓荣森,郎建,王涛等.城市污水生物除磷脱氮机理研究探讨[J].重庆建筑大学学报. 2002, 24(3):106~111
    26 T. Zhang, Y. Liu, H.P. Fang. Effect of pH change on the performance andmicrobial community of enhanced biological phosphate removal process[J]. Biotechnology and Bioengineering, 2005,92(2):173~182
    27周雹,周丹. A2/O脱氮除磷工艺设计计算(上)[J].给水排水. 2003,29(3): 26~29
    28曹国民,赵庆祥,高广达.生物除磷脱氮工艺技术研究[J].中国环境科学. 1996,16(1):68~72
    29熊建新,王佳伟,周军等.内外回流比对A2/O工艺生物脱氮的影响[J].给水排水. 2008,34(12):38~41
    30 O. Adrian, C.L. Paulo, C. Gilda, et al. Advances in enhanced biological phosphorus removal:From micro to macro scale[J]. Water research. 2007, 41(11):2271~2300
    31 S.H. Chuang, C.F. Ouyang, Y.B. Wang. Kinetic competition between phosphorus release and denitrification on sludge under anoxic condition[J]. Water Research. 1996,30(12),2961~2968.
    32曹国民,赵庆祥,高广达.城市污水AAO法除磷脱氮技术研究[J].江苏石油化工学院学报. 1995,7(2):9~16
    33任洁,顾国维,杨海真.改良型A2/O工艺处理城市污水的中试研究[J].给水排水. 2000,26(6):7~10.
    34 S.H. Isaacs, M. Henze, H. Soeberg, et al. External carbon source addition as a means to control an activated sludge nutrient removal process[J]. Water Research. 1994, 28(3):511~520.
    35 T. Kuba, van M.C.M. Loosdrecht, E. Murnleitner, et al. Kinetics and stoichiometry in the biological phosphorus removal process with short cycle times[J]. Water Research. 1996,31(4):918~928.
    36 A. Jobbágy, J. Simon, B. Plósz. The impact of oxygen penetration on the estimation of denitrification rates in anoxic processes[J]. Water Research. 2000, 34(9):2606~2609
    37许泽美,唐建国,周彤等.废水处理与再利用[M].北京:中国建筑工业出版社. 2002
    38周浩晖,桑军强,王占生.低温条件下陶粒滤池生物膜特性研究[J].环境工程. 2003,21(1):10~12
    39刘建广,张晓健,王占生.温度对生物炭滤池处理高氨氮原水硝化的影响[J].中国环境科学. 2004,24(2):233~236.
    40叶亚萍. SBR工艺设计与运行若干问题探讨[J].中国给水排水. 1998,14(4):21~23
    41 Kh.N. Shammas. Interactions of temperature, pH, and biomass on the nitrification process[J]. Journal of the Water Pollution Control Federation. 1986, 58(1):52~59
    42郝红元,郝红英,王伟. A2/O工艺影响因素的研究[J].给水排水. 2003, 29(4):12~14
    43 C.M. Henze, P. Harremoes. Nitrification and Densification in wasterwater treatment[J]. Water Pollution Microbiology. 1978,2(13):391~414
    44 J.S. Ha, E. Choi. Long term effects of temperature and substrate level on BNR with an external nitrification reactor[J]. Water Science and Technology. 2003,48(8):35~41
    45 B. Yoram, R. Jaap van. Biological phosphate removal in a prototype recirculating aquaculture treatment system[J]. Aquacultural Engineering. 2000, 22(1):121~136
    46 S. Marklund, S. Morling. Biological phosphorus removal at temperatures from 3 to 10℃-a full-scale study of a sequencing batch reactor unit[J]. Canadian journal of civil engineering. 1994,21(1):81~88
    47 J. Karin, J. Per, C. Magnus, et al. Operational factors affecting enhanced biological phosphorus removal at the waste water treatment plant in Helsingborg, Sweden[J]. Water and Environmental Engineering. 1999, 34(1):67~74
    48许世伟,张建新,付强.城市污水处理厂脱氮除磷调控参数的研究[J].给水排水. 2008,34(3):7~11
    49苑宏英.基于酸碱调节的剩余污泥水解酸化及其机理研究[D].同济大学博士论文. 2006
    50李军,赵琦,聂梅生等.淹没式生物膜法除磷生物膜特性研究[J].给水排水. 2002, 28(4): 23~26
    51白璐,王淑莹,彭永臻等.低溶解氧条件下活性污泥沉降性的研究[J].工业水处理. 2006, 26(5):54~56
    52张学洪,李金城,刘荃. A2O工艺生物除磷的运行实践[J].给水排水. 2000, 26(4): 14~17
    53王佳伟,周军.溶解氧对A2O工艺脱氮除磷效果的影响及解决方法[J].给水排水. 2009,35(1):35~37
    54 D.C. Peng, N. Bernet, J.P. Delgene, et al. Simultaneous organic carbon andnitrogen removal in an SBR controlled at low dissolved oxygen concentration[J]. Journal of Chemical Technology and Biotechnology. 2001,76(6):553~558
    55郑赞永,胡龙兴.低溶解氧下生物膜反应器的亚硝化研究[J].环境科学与技术. 2006,29(9):29~31
    56杨麒,李小明,曾光明等.同步硝化反硝化的形成机理及影响因素[J].环境科学与技术. 2004,27(3):102~104
    57黄梅,周少奇,丁进军.同步脱氮除磷工艺中好氧池最适氧浓度研究[J].环境科学与技术. 2007,30(6):75~77
    58 G.A. Ekama, I.P. Siebritz, G.R. Marais. Considerations in the process design of nutrient removal activated sludge processes[J]. Water Science and Technology. 1983,15(3-4): 283~318
    59 J. Oh. Oxygen inhibition of activated sludge denitification[J]. Water Research. 1999,33(8):1925~1937
    60 G.y. Plósz Benedek, A. Jobbágy, Jr. C.P. Grady. Leslie. Factors influencing deterioration of denitrification by oxygen entering an anoxic reactor through the surface[J]. Water Research. 2003, 37(4): 853~863
    61 S. Marlies, G.R. Jochen, S. Georg. Polyphosphate accumulating bacteria from sewage plants with different proceses for biological phosphorus removal[J]. FEMS Microbiology Letters. 1990, 73(2):113~124
    62丛广治. A/O法除磷工艺中污水停留时间的控制[J].中国给排水. 1998, 14(3):27~30
    63 S. Bhavender, R.C. Ahlert. Nitrification and Nitrogen Removal[J]. Water Research. 1977,11(10):897~925.
    64 C. Collivignarelli, G. Bertanza Simultaneous nitrification-denitrification processes in activated sludge plants: Performance and applicability[J]. Water Science and Technology. 1999,40(4-5):187~194.
    65 P. Klangduen, K. Jürg. Study of factors affecting simultaneous nitrification and denitrification[J]. Water Science and Technology. 1999,39(6): 61~68.
    66邹联沛,张立秋,王宝贞等. MBR中DO对同步硝化反硝化的影响[J]中国给水排水,2001,17(6):10~14.
    67 Z.R. Hu, M.C. Wentzel, G.A. Ekama. Anoxic growth of phosphate–accum- ulating organisms(PAOs) in biological nutrient removal activated sludge systems[J]. Water Research, 2002,36(19):4927~4937.
    68 P. Buffile. Modeling and experiments on the influence of biofilm size and mass transfer in fluidized bed reactor for anaerobio digestion[J].Water Rerserch. 1998,32(3):657~668
    69刘焱,杨平,方治华.生物流化床中生物膜特性与反应器效率的关系[J].环境科学. 1999,7(5):113~122.
    70涂保华,张洁,张雁秋.影响短程硝化反硝化的因素[J].工业安全与环保. 2004, 30(1): 12~13
    71 B. Wang, G. Li, Q. Yang, et al. Nitrogen removal by a submerged biofilm process with fibrous carrier[J]. Water Science and Technology, 1992, 26(9-11):2039~2042
    72 B. Wang, Q. Yang, R. Liu, et al. A study of simultaneous organics and nitrogen removal by extended aeration submerged biofilm process[J]. Water Science and Technology. 1991,24(5):197~213
    73恩海,朱文亭.我国污水处理的发展趋势[J].城市环境与城市生态. 2000,13(4):39~41
    74王爱一.无机高分子絮凝剂聚合铝铁絮凝作用过程初探[J].山西化工. 2008, 28(4):16~18
    75邱维,张智.城市污水化学除磷的探讨[J].重庆环境科学. 2002,24(2): 81~84
    76成官文,吴志超,章非娟等.化学除磷对沸石强化A/O工艺运行的影响[J].中国给水排水. 2003,19(13):17~20.
    77 Y. Ma, Y.Z. Peng, S.Y. Wang, et al. Nitrogen removal influence factors in A/O process and decision trees for nitrification /denitrification system[J]. Journal of Environmental Science. 2004,16 (6):901~907 .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700