用户名: 密码: 验证码:
两种鞘翅目昆虫抗菌肽的分离纯化与活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗菌肽是由基因编码的一类小分子多肽,在昆虫先天性免疫系统中占有重要地位,通常由10-50个氨基酸组成,多数为碱性、阳离子肽,带2-7个正电荷,具有水溶性好、热稳定性高、活性广泛、细菌不易产生耐药性等优点,极有可能成为新一代抗生素的替代药物,因而成为生命科学、药学和免疫学研究的热点之一。昆虫是自然界种类最多、数量最大的生物类群,同时也是抗菌肽未被充分挖掘的宝库。从丰富的昆虫资源中分离、提取和鉴定具有生物活性的抗菌肽或先导化合物是昆虫抗菌肽药物研究和开发的重要步骤。
     本论文以鞘翅目昆虫黄粉虫(Tenebrio molitor Linnaeus)幼虫、喙尾琵甲(Blapsrhynchoptera Fairmaire)幼虫为研究材料,通过金黄色葡萄球菌(Staphylococcus aureus)和大肠杆菌(Escherichia coli)混合液针刺诱导使其产生抗菌肽,采用不同溶液对其体内的抗菌肽进行提取,经多次凝胶色谱、反相色谱、高效液相色谱,成功地从黄粉虫幼虫、喙尾琵甲幼虫粗提物中获得了具有明显抑制革兰氏阳性菌的小分子肽类,主要研究结果如下:
     (1)抗菌肽最佳提取溶液的筛选:通过实验比较了10%乙酸溶液、0.1%三氟乙酸溶液、Tris-HCl(pH8.0)、Tris-HCl(pH6.5)等4种不同的溶液对黄粉虫幼虫抗菌肽的提取效果,结果发现10%乙酸粗提物和10%乙酸空白对照都有抑菌作用,导致对抑菌活性的归属产生严重干扰,因而不宜做提取溶液;其余3种提取液只有0.1%三氟乙酸提取物经后续凝胶柱预纯化后,能够检测到明显的抑菌活性,所以确定0.1%三氟乙酸作为2种昆虫抗菌肽的最佳提取溶液。
     (2)抗菌肽的预纯化及Tricine-SDS-PAGE:黄粉虫幼虫0.1%三氟乙酸粗提物经SephadexG50凝胶层析后,非诱导组和诱导组均得到2个峰,其中第二个峰TFADZP2、TFAYDP2对金黄色葡萄球菌、枯草芽孢杆菌表现出明显的抑制作用,对大肠杆菌、绿脓杆菌无活性;喙尾琵甲幼虫0.1%三氟乙酸粗提物经Superose12凝胶柱预纯化后,非诱导组和诱导组均得到3个峰,其中第一个峰HWDZP1、HWYDP1对金黄色葡萄球菌、枯草芽孢杆菌表现出抑制作用,对大肠杆菌无活性,此外诱导组HWYDP1还对绿脓杆菌表现出抑制作用;Tricine-SDS-PAGE结果表明,黄粉虫幼虫抗菌肽TFADZP2、TFAYDP2主要由分子量40kD以下的小肽组成,喙尾琵甲抗菌肽HWDZP1、HWYDP1主要由分子量20kD以下的小肽组成。
     (3)抗菌肽诱导组与非诱导组活性的比较:2种昆虫诱导组和非诱导组粗提物经纯化后都能检测到抑菌活性,而且诱导组在较低浓度时对革兰氏阳性菌的抑菌圈直径明显大于非诱导组,抑菌活性较强,表明实验得到的2种昆虫抗菌肽在体内都有基础表达,经菌液诱导后活性有所增强。对喙尾琵甲来说,诱导组还增加了对绿脓杆菌的抑制活性,说明诱导可能导致抑菌谱扩大。
     (4)黄粉虫抗菌肽的纯化及鉴定:经两步Superdex Peptide凝胶色谱、一步反相色谱和一步高效液相色谱,从黄粉虫幼虫诱导组纯化出一个具革兰氏阳性菌抑制活性的组分,命名为TFAYDP2-2-1-1-2,液相色谱检测纯度为单一组分,质谱显示其分子量为2552.5Da,属于小分子抗菌肽,该组分对金黄色葡萄球菌、枯草芽孢杆菌的最小抑制浓度分别为10μg/mL和20μg/mL,对革兰氏阴性菌大肠杆菌、绿脓杆菌无活性。目前鞘翅目昆虫还未见如此低分子量的抗菌肽报道。
     (5)喙尾琵甲抗菌肽的纯化:喙尾琵甲幼虫诱导组预纯化组分经一步反相色谱纯化,得到组分HWYDP1-1,对金黄色葡萄球菌具有明显的抑制作用。
     综上所述,采用0.1%三氟乙酸作为黄粉虫幼虫抗菌肽的提取溶液,通过两步凝胶柱层析、一步反相色谱和一步高效液相色谱从黄粉虫幼虫抗菌肽粗提物中获得了一个纯化组分,具有较强的抑制金黄色葡萄球菌和枯草芽胞杆菌活性,对这两种革兰氏阳性菌的最小抑制浓度分别是10μg/mL和20μg/mL。但是该组分对革兰氏阴性菌大肠杆菌、绿脓杆菌无活性;质谱测定其分子量为2552.5Da,属于小分子量抗菌肽,目前鞘翅目昆虫体内未发现如此低分子量的抗菌肽。采用0.1%三氟乙酸溶液对喙尾琵甲幼虫抗菌肽进行了提取,通过两步凝胶柱层析、一步反相色谱从喙尾琵甲幼虫抗菌肽粗提物中获得一具有抑制金黄色葡萄球菌的组分。
Antimicrobial peptides (AMPs) defined as small peptides of10to50amino acid residues,have played a particularly important role in innate immune system of insects. Generallyspeaking, most of AMPs are encoded by single genes that comprise highly homologous genefamilies. They are usually basic and cationic, with a net positive charge of+2to+7owing to anexcess of basic amino acids (artinine, lysine and histidine) over acidic amino acids. Besidestheir high antimicrobial activities against Gram-negative and/or Gram-positive bacteria, thesepeptides also have a diverse range of targets, including fungi, viruses, parasites such astrypanosomes and plasmodia, and even cancer cell. As the difference on the mechanisms ofaction against bacteria from conventional antibiotics, which targeted mainly cellular membrane,AMPs can be expected to develop as promising candidates against antibiotic-resistantpathogens that are often not sensitive to classical antibiotic treatment. Therefore the researchon AMPs is becoming one of the hottest fields in the world. Insects are not only the biggestgroup within the animal kingdom, but also a treasure of various antimicrobial peptides whichhas not been fully excavated. For decades, one major area of interest for the discovery andstudy of new antibiotics was the investigation of AMPs derived from abundant insectresources.
     In this disserdation, extraction, purification and identification of AMPs from the larvae oftwo Coleopteran insects, Tenebrio molitor Linnaeus (T. molitor) and Blaps rhynchopteraFairmaire (B. rhynchoptera), were systematically studied. Firstly we challenged the larvae withthe combined suspension of living Escherichia coli (E. coli) and Staphylococcus aureus (S.aureus) by pricking their abdomens with a stainless needle. Then extraction was carried outexactly24hours after the induction Four kinds of solutions were used to extract AMPs from T.molitor larvae. After repeated gel chromatography, reversed phase chromatography, higeperformance liquid chromatography (HPLC), a partly characterized small peptide was obtained from crude extracts of T. molitor, with strong anti-Gram-positive bacteria activities. Maincontents and results are listed as follows:
     (1) Screening of the optimum extraction solution of AMPs from T. molitor
     Four solutions,10%acetic acid,0.1%trifluoroacetic acid, Tris-HCl (pH8.0), andTris-HCl (pH6.5), were employed in extraction process of AMPs from T. molitor in order toselect the suitable extraction solution. The results indicated that10%acetic acid itself showedantimicrobial activity, leading to difficulty in judging inhibitory effect, and should not beselected as the extraction solution. Only0.1%trifluoroacetic acid extract among the rest threesolutions was found to display detectable inhibitory activity against bacteria afterpre-purification. Therefore,0.1%trifluoroacetic acid was the optimum extraction solution for T.molitor AMPs.
     Considering that both T. molitor and B. rhynchoptera belong to same order,0.1%trifluoroacetic acid was directly applied as extracted solution for B. rhynchoptera AMPs.
     (2) Pre-purification of two crude AMPs extracts by gel chromatography andTricine-SDS-PAGE analysis
     Crude extracts of T. molitor AMPs, coming from both induced and non-induced groupswere separated into two fractions after SephadexG50gel chromatography, and the second peak,marked as TFADZP2and TFAYDP2, respectively, showed obviously inhibitory activitiesagainst S. aureus and B. subtilis, but no anti-E. coli and anti-P. aeruginosa activities.Similarly, crude extracts of B. rhynchoptera AMPs from induced group and non-induced groupwere separated into three fractions after Superose12gel chromatography. The first peak,marked as HWDZP1and HWYDP1, respectively, had strong anti-S. aureus and anti-B. subtilisactivities, but no inhibitory effect against E. coli. In addition, HWYDP1from the inducedgroup displayed anti-P. aeruginosa activity. Tricine-SDS-PAGE analysis suggested thatTFADZP2and TFAYDP2mainly composed of small peptides with molecular mass below40kD, HWDZP1HWYDP1mainly consisted of small peptides with molecular mass less than20kD.
     (3) Comparison of antibacterial activity between induced group and non-induced group
     The antibacterial activities were detectable in induced group as well as the non-inducedfor these two kinds of insects. More interestingly, the fraction from the induced group hadbigger zone of inhibition against bacteria than the one from non-induced group at a lowerconcentration. The result implied that the AMPs encoded by gene in T. molitor and B.rhynchoptera were constitutively expressed and their activities could be enhanced greatly afterinduction with microbes. Additionally, the fraction from induced group of B. rhynchopteraexhibited anti-P. aeruginosa except anti-Gram-positive bacteria, suggesting a broader spectrumprobably occurred after challenge with miroorganisms.
     (4) Purification and Characterization of T. molitor AMPs
     By two-step of Superdex Peptide, one-step of reversed-phase chromatography and highperformance liquid chromatography, a purified fraction with strong anti-Gram-positive bacteriaactivity was obtained from the induced group of T. molitor, named TFAYDP2-2-1-1-2. Thisfraction was partially characterized. The analysis of matrix-assisted laser desorption ionizationtime-of-flight mass spectrometry (MALDI-TOF MS) indicated that its molecular mass was2552.5Da, a small molecule antimicrobial peptides. The fraction had no inhibitory effect onGram-negative bacteria E. coli and P. aeruginosa, but had apparent activity against S. aureusand B. subtilis and the minimal inhibitory concentrations were10μg/mL and20μg/mL,respectively. To the best of our knowledge, no antimicrobial peptide with ultra-low molecularmass has reported so far in the whole Coleopteran insects.
     (5) Purification of B. rhynchoptera AMPs
     By one-step of reversed-phase chromatography, a component, named HWYDP1-1, wasgained from the induced group of B. rhynchoptera and displayed significantly inhibitoryactivity against S. aureus.
     In short, a homogeneous AMP from T. molitor larvae was achieved after the followingprocedures: extracted with acidic solution (0.1%trifluoroacetic acid), pre-purified by two stepsof gel chromatography, purified by one step of reversed-phase chromatography and one step ofhigh performance liquid chromatography. This AMP was proved to have strong inhibitory effects on S. aureus and B. subtilis, and the minimal inhibitory concentrations were10μg/mLand20μg/mL, respectively, but had no activity against E.coli and P aeruginosa. Its molecularmass was determined as2552.5Da by MALDI-TOF MS. It is probably a novel AMP fromColeoptera. Similar extraction and purification programs was carried out on AMPs of B.rhynchoptera. A fraction was gained with inhibitory activity against S. aureus.
引文
[1] A. Fleming. On a Remarkable Bacteriolytic Element Found in Tissues and Secretions. Proceedings ofthe Royal Society of London Series B,1922,93(653):306-317.
    [2] A. Fleming. On the Antibacterial Action of Cultures of a Penicillium, with Special Reference to theirUse in the Isolation of B. Influenzae. British Journal of Experimental Pathology,1929,10(31):226-236.
    [3] D.M. Livermore. Introduction: The Challenge of Multiresistance. International Journal of AntimicrobialAgents,2007,29(suppl.3):S1-S7.
    [4] D.M. Livermore. Has the Era of Untreatable Infections Arrived?. Journal of AntimicrobialChemotherapy,2009,64(suppl.1):i29-i36.
    [5]李艳萍,李卓荣.多肽类抗菌剂研究进展.国外医药:抗生素分册,2009,30(4):148-153.
    [6] R. Nagarajan. Antibacterial Activities and Modes of Action of Vancomycin and Related Glycopeptides.Antimicrobial Agents and Chemotherapy,1991,35(4):605-609.
    [7]夏振强,古勇,官家发.糖肽类抗生素替考拉宁研究进展.天然产物研究与开发,2005,17(2):247-252.
    [8] A. Malabarba, B.P. Goldstein. Origin, Structure, and Activity in vitro and in vivo of Dalbavancin. TheJournal of Antimicrobial Chemotherapy,2005,55(Suppl.2):i15-i20.
    [9] A.Y. Chen, M.J. Zervos, J.A. Vazquez. Dalbavancin: A Novel Antimicrobial. International Journal ofClinical Practice,2007,61(5):853-863.
    [10] H.G. Boman. Innate Immunity and the Normal Microflora. Immunological Reviews,2000,173:5-16.
    [11] K. Meylaers, A. Cerstiaens, E. Vierstraete, et al. Antimicrobial Compounds of Low Molecular Mass areConstitutively Present in Insects: Characterisation of Beta-alanyl-tyrosine. Current PharmaceuticalDesign,2003,9(2):159-174.
    [12] R. Bals, J.M. Wilson. Cathelicidins-a Family of Multifunctional Antimicrobial Peptides. Cellular andMolecular Life Sciences,2003,60(4):711-720.
    [13] T. Ganz. Immunology. Versatile Defensins. Science,2002,298(5595):977-979.
    [14] T. Ganz. Defensins: Antimicrobial Peptides of Innate Immunity. Nature Reviews Immunology,2003,3(9):710-720.
    [15] T. Ganz. Defensins: Antimicrobial Peptides of Vertebrates. Comptes Rendus Biologies,2004,327(6):539-549.
    [16] R.I. Lehrer, T. Ganz. Antimicrobial Peptides in Mammalian and Insect Host Defence. Current Opinionin Immunology,1999,11(1):23-27.
    [17] M.E. Selsted, A.J. Ouellette. Mammalian Defensins in the Antimicrobial Immune Response. NatureImmunology,2005,6(6):551-557.
    [18] O. Toke. Antimicrobial Peptides: New Candidates in the Fight against Bacterial Infections.Biopolymers,2005,80(6):717-735.
    [19] W.L. Maloy, U.P. Kari. Structure–Activity Studies on Magainins and Other Host Defense Peptides.Biopolymers,1995,37(2):105-122.
    [20] M. Michel, L. Gutmann. Methicillin-Resistant Staphylococus Aureus and Vancomycin-resistantEnterococci: Therapeutic Realities and Possibilities. Lancet,1997,349(9069):1901-1906.
    [21] A. Tossi, L. Sandri, A. Giangaspero. Amphipathic, α-helical Antimicrobial Peptides. Biopolymers,2000,55(1):4-30.
    [22] A. Giangaspero, L. Sandri, A. Tossi. Amphipathic Alpha Helical Antimicrobial Peptides. EuropeanJournal of Biochemistry,2001,268(21):5589-5600.
    [23] P. Bulet, R. Stocklin. Insect Antimicrobial Peptides: Structures, Properties and Gene Regulation.Protein and Peptide Letters,2005,12(1):3-11.
    [24] J. Vizioli, M. Salzet. Antimicrobial Peptides from Animals: Focus on Invertebrates. Trends inPharmacological Sciences,2002,23(11):494-496.
    [25] L.T. Nguyen, E.F. Haney, H.J. Vogel. The Expanding Scope of Antimicrobial Peptide Structures andtheir Modes of Action. Trends in Biotechnology,2011,29(9):464-472.
    [26] M. Zasloff. Antimicrobial Peptides of Multicellular Organisms. Nature,2002,415(6870):389-395.
    [27]林镇湖.抗菌肽及其在医学中的应用.国际检验医学杂志,2009(10):986-987.
    [28] D. Hultmark, H. Steiner, T. Rasmuson, et al. Insect Immunity. Purification and Properties of ThreeInducible Bactericidal Proteins from Hemolymph of Immunized Pupae of Hyalophora Cecropia.European Journal of Biochemistry,1980,106(1):7-16.
    [29] H. Steiner, D. Hultmark,. Engstr m, et al. Sequence and Specificity of Two Antibacterial ProteinsInvolved in Insect Immunity. Nature,1981,292(5820):246-248.
    [30] O. Osmanagaoglu. Detection and Characterization of Leucocin Oz, a New Anti-listerial BacteriocinProduced by Leuconostoc Carnosum with a Broad Spectrum of Activity. Food Control,2007,18(2):118-123.
    [31] J.C. Oscáriz, I. Lasa, A.G. Pisabarro. Detection and Characterization of Cerein7, a New BacteriocinProduced by Bacillus Cereus with a Broad Spectrum of Activity. FEMS Microbiology Letters,1999,178(2):337-341.
    [32] X. Yang, W.H. Lee, Y. Zhang. Extremely Abundant Antimicrobial Peptides Existed in the Skins ofNine Kinds of Chinese Odorous Frogs. Joural of Proteome Research,2012,11(1):306-319.
    [33] R. Liu, H. Liu, Y. Ma, et al. There are Abundant Antimicrobial Peptides in Brains of Two Kinds ofBombina Toads. Joural of Proteome Research,2011,10(4):1806-1815.
    [34] M. Wang, Y. Wang, A. Wang, et al. Five Novel Antimicrobial Peptides from Skin Secretions of theFrog, Amolops Loloensis. Comparative Biochemistry and Physiology Part B: Biochemistry andMolecular Biology,2010,155(1):72-76.
    [35] J.A. Hoffmann. Innate Immunity of Insects. Current Opinion in Immunology,1995,7(1):4-10.
    [36] R.E. Hancock, R. Lehrer. Cationic Peptides: A New Source of Antibiotics. Trends in Biotechnology,1998,16(2):82-88.
    [37] H.G. Boman, D. Hultmark. Cell-free Immunity in Insect. Annual Review of Microbiology,1987,41:103-126.
    [38] P.E. Dunn. Humoral Immunity in Insects. Bioscience,1990,40(10):738-744.
    [39] J.A. Hoffmann, C. Hetru. Insect Defensins: Inducible Antibacterial Peptides. Immunology Today,1992,13(10):411-415.
    [40] L.J. Otvos. Antibacterial Peptides Isolated From Insects. Journal of Peptide Science,2000,6(10):497-511.
    [41] J.A. Hoffmann. The Immune Response of Drosophila. Nature,2003,426(6962):33-38.
    [42] W.F. Broekaert, B.P.A. Cammue, M.F.C. De Bolle, et al. Antimicrobial Peptides from Plants. CriticalReviews in Plant Sciences,1997,16(3):297-323.
    [43] M.M. Mahoney, A.Y. Lee, D.J. Brezinski-Caliguri, et al. Molecular Analysis of the Sheep CathelinFamily Reveals a Novel Antimicrobial Peptide. FEBS Letters,1995,377(3):519-522.
    [44] G. Diamond, N. Beckloff, A. Weinberg, et al. The Roles of Antimicrobial Peptides in Innate HostDefense. Current Pharmaceutical Design,2009,15(21):2377-2392.
    [45]姜睿.三种调节昆虫免疫应答的新型serpin的分离纯化及生物学功能研究.沈阳药科大学博士学位论文,2010,19-24.
    [46]刘建涛,苏志坚,王方海等.昆虫抗菌肽的研究进展.昆虫天敌,2006(1):36-43.
    [47] M. Cytrynska, P. Mak, A. Zdybicka-Barabas, et al. Purification and Characterization of Eight Peptidesfrom Galleria Mellonella Immune Hemolymph. Peptides,2007,28(3):533-546.
    [48] J.A. Hoffmann, J.M. Reichhart. Drosophila Immunity. Trends in Cell Biology,1997,7(8):309-316.
    [49] P. Tzou, S. Ohresser, D. Ferrandon, et al. Tissue-specific Inducible Expression of AntimicrobialPeptide Genes in Drosophila Surface Epithelia. Immunity,2000,13(5):737-748.
    [50] E.R. Haine, Y. Moret, M.T. Siva-Jothy, et al. Antimicrobial Defense and Persistent Infection in Insects.Science,2008,322(5905):1257-1259.
    [51] R.E.W. Hancock, G. Diamond. The Role of Cationic Antimicrobial Peptides in Innate Host Defences.Trends in Microbiology,2000,8(9):402-410.
    [52] S. Iwanaga, B.L. Lee. Recent Advances in the Innate Immunity of Invertebrate Animals. Journal ofBiochemistry and Molecular Biology,2005,38(2):128-150.
    [53] L. Hazlett, M. Wu. Defensins in Innate Immunity. Cell and Tissue Research,2011,343(1):175-188.
    [54] P. Bulet, C. Hetru, J. Dimarcq, et al. Antimicrobial Peptides in Insects; Structure and Function.Developmental and Comparative Immunology,1999,23(4–5):329-344.
    [55]吴甜甜,杨洁.天然抗菌肽的研究进展及应用前景.生物技术通报,2009(1):27-30.
    [56] K.K. Kumarasamy, M.A. Toleman, T.R. Walsh, et al. Emergence of a New Antibiotic ResistanceMechanism in India, Pakistan, and the UK: A Molecular, Biological, and Epidemiological Study. TheLancet Infectious Diseases,2010,10(9):597-602.
    [57] R.E.W. Hancock. Peptide Antibiotics. The Lancet,1997,349(9049):418-422.
    [58]慎小晶.蝶蛹金小蜂cDNA文库抗菌肽基因筛选及表达研究.浙江大学博士学位论文,2010,1-23.
    [59]党向利.桔小实蝇抗菌肽Bactrocerin的分离纯化与鉴定研究.华南农业大学博士学位论文,2006,1-150.
    [60]徐灵龙,王云峰,石星明等.抗菌肽及其功能研究.中国生物工程杂志,2007,27(1):115-118.
    [61] A. Volkoff, J. Rocher, E. D'Alen On, et al. Characterization and Transcriptional Profiles of ThreeSpodoptera Frugiperda Genes Encoding Cysteine-rich Peptides. A New Class of Defensin-like Genesfrom Lepidopteran Insects?. Gene,2003,319:43-53.
    [62] K. Matsuyama, S. Natori. Purification of Three Antibacterial Proteins from the Culture Medium ofNIH-Sape-4, an Embryonic Cell Line of Sarcophaga Peregrina. Journal of Biological Chemistry,1988,263(32):17112-17116.
    [63] J. Lambert, E. Keppi, J.L. Dimarcq, et al. Insect Immunity: Isolation from Immune Blood of theDipteran Phormia Terranovae of Two Insect Antibacterial Peptides with Sequence Homology to RabbitLung Macrophage Bactericidal Peptides. Proceedings of the National Academy of Sciences of theUnited States of America,1989,86(1):262-266.
    [64] B. Cornet, J. Bonmatin, C. Hetru, et al. Refined Three-dimensional Solution Structure of InsectDefensin A. Structure,1995,3(5):435-448.
    [65] M. Lamberty, S. Ades, S. Uttenweiler-Joseph, et al. Insect Immunity: Isolation from the LepidopteranHeliothis Virescens of a Novel Insect Defensin with Potent Antifungal Activity. Journal of BiologicalChemistry,1999,274(14):9320-9326.
    [66] M. Lamberty, D. Zachary, R. Lanot, et al. Insect Immunity. Constitutive Expression of a Cysteine-richAntifungal and a Linear Antibacterial Peptide in a Termite Insect. Journal of Biological Chemistry,2001,276(6):4085-4092.
    [67] M. Lamberty, A. Caille, C. Landon, et al. Solution Structures of the Antifungal Heliomicin and aSelected Variant with Both Antibacterial and Antifungal Activities. Biochemistry,2001,40(40):11995-12003.
    [68] K. Thevissen, D.C. Warnecke, I.E.J.A. Fran ois, et al. Defensins from Insects and Plants Interact withFungal Glucosylceramides. Journal of Biological Chemistry,2004,279(6):3900-3905.
    [69] E. Andres, J.L. Dimarcq. Cationic Antimicrobial Peptides: from Innate Immunity Study to DrugDevelopment. Médecine et Maladies Infectieuses,2007,37(4):194-199.
    [70] P. Casteels, C. Ampe, F. Jacobs, et al. Functional and Chemical Characterization of Hymenoptaecin, anAntibacterial Polypeptide that is Infection-Inducible in the Honeybee (Apis Mellifera). Journal ofBiological Chemistry,1993,268(10):7044-7054.
    [71] R. Gennaro, M. Zanetti, M. Benincasa, et al. Pro-rich Antimicrobial Peptides from Animals: Structure,Biological Functions and Mechanism of Action. Current Pharmaceutical Design,2002,8(9):763-778.
    [72] M. Scocchi, A. Tossi, R. Gennaro. Proline-rich Antimicrobial Peptides: Converging to a Non-lyticMechanism of Action. Cellular and Molecular Life Sciences,2011,68(13):2317-2330.
    [73] S. Hara, M. Yamakawa. A Novel Antibacterial Peptide Family Isolated From the Silkworm, BombyxMori. Biochemical Journal,1995,310(Pt2):651-656.
    [74] S. Chernysh, S. Cociancich, J.P. Briand, et al. The Inducible Antibacterial Peptides of the HemipteranInsect Palomena Prasina: Identification of a Unique Family of Prolinerich Peptides and of a NovelInsect Defensin. Journal of Insect Physiology,1996,42(1):81-89.
    [75]党向利.家蝇蛹天然抗菌肽的制备及其分离纯化研究.中山大学博士后学位论文,2008,1-13.
    [76] J. Lu, Z.W. Chen. Isolation, Characterization and Anti-cancer Activity of Sk84, a Novel Glycine-richAntimicrobial Peptide From Drosophila Virilis. Peptides,2010,31(1):44-50.
    [77]徐鹏.社会性昆虫抗菌肽基因的分子进化研究.浙江大学博士学位论文,2009,1-10.
    [78]陈留存.家蝇抗菌肽的分离纯化及性质研究.山东大学硕士学位论文,1999,1-20.
    [79] C.E. Dempsey. The Actions of Melittin on Membranes. Biochimica et Biophysica Acta,1990,1031(2):143-161.
    [80] D. Marchini, P.C. Giordano, R. Amons, et al. Purification and Primary Structure of Ceratotoxin A andB, Two Antibacterial Peptides from the Female Reproductive Accessory Glands of the Medfly CeratitisCapitata (Insecta: Diptera). Insect Biochemistry and Molecular Biology,1993,23(5):591-598.
    [81] S. Hara, M. Yamakawa. Moricin, a Novel Type of Antibacterial Peptide Isolated from the Silkworm,Bombyx Mori. Journal of Biological Chemistry,1995,270(50):29923-29927.
    [82] H. Hemmi, J. Ishibashi, S. Hara, et al. Solution Structure of Moricin, an Antibacterial Peptide, Isolatedfrom the Silkworm Bombyx Mori. FEBS Letters,2002,518(1-3):33-38.
    [83] S. Ekengren, D. Hultmark. Drosophila Cecropin as an Antifungal Agent. Insect Biochemistry andMolecular Biology,1999,29(11):965-972.
    [84] M.N. Melo, R. Ferre, M.A.R.B. Castanho. Antimicribial Peptides:Linking Partition,Activity and HighMembrane-Bound Concentration. Nature reviews Microbiology,2009,7(3):245-250.
    [85] H.W. Huang. Action of Antimicrobial Peptides: Two-state Model. Biochemistry,2000,39(29):8347-8352.
    [86] P. Juvvadi, S. Vunnam, E.L. Merrifield, et al. Hydrophobic Effects on Antibacterial and Channel‐forming Properties of Cecropin A–Melittin Hybrids. Journal of Peptide Science,1996,2(4):223-232.
    [87] B. Christensen, J. Fink, R.B. Merrifield, et al. Channel-forming Properties of Cecropins and RelatedModel Compounds Incorporated Into Planar Lipid Membranes. Proceedings of the National Academyof Sciences of the United States of America,1988,85(14):5072-5076.
    [88] M.J. Clague, R.J. Cherry. A Comparative Study of Band3Aggregation in Erythrocyte Membranes byMelittin and Other Cationic Agents. Biochimica et Biophysica Acta,1989,980(1):93-99.
    [89] Y. Shai. Mechanism of the Binding, Insertion and Destabilization of Phospholipid Bilayer Membranesby α-helical Antimicrobial and Cell Non-Selective Membrane-Lytic Peptides. Biochimica et BiophysicaActa,2000,1462(1-2):55-70.
    [90] Y. Shai. Mode of Action of Membrane Active Antimicrobial Peptides. Peptide Science,2002,66(4):236-248.
    [91] Z. Oren, Y. Shai. Mode of Action of Linear Amphipathic α‐helical Antimicrobial Peptides. PeptideScience,1998,47(6):451-463.
    [92] K. Matsuzaki. Why and how are Peptide-Lipid Interactions Utilized for Self-defense? Magainins andTachyplesins as Archetypes. Biochimica et Biophysica Acta,1999,1462(1-2):1-10.
    [93] K. Matsuzaki, O. Murase, N. Fujii, et al. An Antimicrobial Peptide, Magainin2, Induced RapidFlip-flop of Phospholipids Coupled with Pore Formation and Peptide Translocation. Biochemistry,1996,35(35):11361-11368.
    [94] L. Yang, T.M. Weiss, R.I. Lehrer, et al. Crystallization of Antimicrobial Pores in Membranes:Magainin and Protegrin. Biophysical Journal,2000,79(4):2002-2009.
    [95] L. Yang, T.A. Harroun, T.M. Weiss, et al. Barrel-Stave Model Or Toroidal Model? A Case Study onMelittin Pores. Biophysical Journal,2001,81(3):1475-1485.
    [96] P. Fehlbaum, P. Bulet, S. Chernysh, et al. Structure-Activity Analysis of Thanatin, a21-residueInducible Insect Defense Peptide with Sequence Homology to Frog Skin Antimicrobial Peptides.Proceedings of the National Academy of Sciences of the United States of America,1996,93(3):1221-1225.
    [97] K. Ando, S. Natori. Inhibitory Effect of Sarcotoxin IIA, an Antibacterial Protein of SarcophagaPeregrina, on Growth of Escherichia Coli. Journal of Biochemistry,1988,103(4):735-739.
    [98] G. Kragol, S. Lovas, G. Varadi, et al. The Antibacterial Peptide Pyrrhocoricin Inhibits the AtpaseActions of DNAk and Prevents Chaperone-Assisted Protein Folding. Biochemistry,2001,40(10):3016-3026.
    [99] A. Carlsson, P. Engstrom, E.T. Palva, et al. Attacin, an Antibacterial Protein from HyalophoraCecropia, Inhibits Synthesis of Outer Membrane Proteins in Escherichia Coli by Interfering with OmpGene Transcription. Infection and Immunity,1991,59(9):3040-3045.
    [100] M. Wachinger, A. Kleinschmidt, D. Winder, et al. Antimicrobial Peptides Melittin and CecropinInhibit Replication of Human Immunodeficiency Virus1by Suppressing Viral Gene Expression.Journal of General Virology,1998,79(4):731-740.
    [101]赵瑞君,刘成芳,董建臻等.家蝇抗菌肽对弓形虫的抑制作用研究.中国媒介生物学及控制杂志,2005,16(3):189-190.
    [102] P. Diaz-Achirica, J. Ubach, A. Guinea, et al. The Plasma Membrane of Leishmania DonovaniPromastigotes is the Main Target for Ca (1-8) M (1-18), a Synthetic Cecropin A-Melittin HybridPeptide. Biochemical Journal,1998,330(Pt1):453-460.
    [103] J. Vizioli, M. Salzet. Antimicrobial Peptides versus Parasitic Infections? Trends in Parasitology,2002,18(11):475-476.
    [104]刘颜岗,程璟侠,赵瑞君等.黄粉虫幼虫抗肿瘤细胞K562抗菌肽的分离纯化.中国媒介生物学及控制杂志,2009,20(6):565-568.
    [105]张双全,贾红武.抗菌肽CM4抗K562癌细胞的超微结构研究.生物化学与生物物理进展,1997,24(002):159-163.
    [106] J.S. Ye, X.J. Zheng, K.W. Leung, et al. Induction of Transient Ion Channel-like Pores in a Cancer Cellby Antibiotic Peptide. Journal of Biochemistry,2004,136(2):255-259.
    [107] J.S. Mader, D.W. Hoskin. Cationic Antimicrobial Peptides as Novel Cytotoxic Agents for CancerTreatment.2006,15(8):933-946.
    [108] D.W. Hoskin, A. Ramamoorthy. Studies on Anticancer Activities of Antimicrobial Peptides.Biochimica et Biophysica Acta,2008,1778(2):357-375.
    [109]吴珏婧,王欢,叶恭银.昆虫抗真菌肽.昆虫知识,2009(2):317-323.
    [110] P. Fehlbaum, P. Bulet, L. Michaut, et al. Insect Immunity. Septic Injury of Drosophila Induces theSynthesis of a Potent Antifungal Peptide with Sequence Homology to Plant Antifungal Peptides.Journal of Biological Chemistry,1994,269(52):33159-33163.
    [111] H. Wang, T.B. Ng. Isolation of Cicadin, a Novel and Potent Antifungal Peptide from Dried JuvenileCicadas. Peptides,2002,23(1):7-11.
    [112]黄大年,朱冰,杨炜.抗菌肽B基因导入水稻及转基因植株的鉴定.中国科学: C辑,1997,27(1):55-62.
    [113] M. Osusky, G. Zhou, L. Osuska, et al. Transgenic Plants Expressing Cationic Peptide ChimerasExhibit Broad-spectrum Resistance to Phytopathogens. Nature Biotechnology,2000,18(11):1162-1166.
    [114]李丹青,徐飞,黄自然等.人工合成柞蚕抗菌肽D基因转入根癌农杆菌.蚕业科学,1990,16(2):110-112.
    [115]刘倚帆,徐良,朱海燕等.抗菌肽与抗生素对革兰氏阴性菌和革兰氏阳性菌的体外协同抗菌效果研究.动物营养学报,2010(5):1457-1463.
    [116]黄自然,廖富蘋,郑青等.昆虫抗菌肽在医药上的应用.天然产物研究与开发,2001(2):79-83.
    [117]邱晓燕,刘艳,陈小麟等.舍蝇抗菌肽的提取及其对肿瘤细胞生长的抑制作用.中华卫生杀虫药械,2003(1):13-16.
    [118]温刘发,何丹林,张常明等.抗菌肽酵母制剂的生产及其作饲料添加剂应用价值的探讨.广东蚕业,2001,35(2):34-36.
    [119]徐启军,黎锡流,李晓玺等.天然多肽抗菌活性物质Nisin及其在食品抗菌保鲜中的应用.食品研究与开发,2008,29(4):177-182.
    [120]韩俊友.牛蛙皮肤抗菌肽分离纯化、基因克隆表达及生物学特性的研究.吉林大学博士学位论文,2007,1-56.
    [121]黎观红,洪智敏,贾永杰等.抗菌肽的抗菌作用及其机制.动物营养学报,2011,23(4):546-555.
    [122]邓超,王联结.阳离子抗菌肽的研究进展.中国生物工程杂志,2008(6):100-107.
    [123]顾琳娜,顾昊.抗菌肽的研究进展.中草药,2009(6):1004-1007.
    [124]李曼,曹晓梅,陈薇.昆虫抗菌肽的生物学特点及药物研发进展.生物技术通讯,2007,18(4):706-710.
    [125]李建华,宋丰贵,王华.肽类抗生素选择性作用机制研究进展与评价.中国新药与临床杂志,2008(1):41-46.
    [126] T. Schuerholz, K. Brandenburg, G. Marx. Antimicrobial Peptides and their Potential Application inInflammation and Sepsis. Critical Care,2012,16(2):207.
    [127]陈根富,刘团举.黄粉虫的生物学特性及养殖技术的研究.福建师范大学学报:自然科学版,1992,8(1):66-74.
    [128]白福祥,李玲,金志民等.黄粉虫Tenebrio molitor Linnaeus的生物学特性.牡丹江师范学院学报:自然科学版,2004(2):13-14.
    [129]杨兆芬,林跃鑫,张东驰等.黄粉虫复合氨基酸的提取及氨基酸虫酒的制作.昆虫知识,1998,35(5):290-292.
    [130]王文亮,孙爱东.黄粉虫食品研究开发现状及发展前景.中国食物与营养,2005(6):18-20.
    [131]杨兆芬,刘怀如,张素华等.黄粉虫防卫物质苯醌的测定及其去除.昆虫知识,2004,41(3):248-251.
    [132]强承魁,杨兆芬,张绍雨.黄粉虫防御性分泌物化学成分的GC/MS分析.昆虫知识,2006,43(3):385-389.
    [133]杨兆芬,林跃鑫,陈寅山等.黄粉虫幼虫营养成分分析和保健功能的实验研究.昆虫知识,1999,36(2):97-100.
    [134]谢保令.黄粉虫营养成分的分析研究.昆虫知识,1994,31(3):175-176.
    [135]白耀宇,程家安.我国黄粉虫的营养价值和饲养方法.昆虫知识,2003,40(4):317-322.
    [136]耿俊丽.黄粉虫体内脂类抗菌活性物质及凝集素的研究.福建师范大学硕士学位论文,2009,1-80.
    [137]陶淑霞,韩静菲,李玉.诱导源及其诱导剂量对黄粉虫幼虫血淋巴抗菌活性的影响.吉林农业大学学报,2010,32(2):145-148.
    [138]黄文,王芙蓉,刘彬等.黄粉甲幼虫抗菌物质的诱导及其抗菌活性.昆虫学报,2005,48(1):7-12.
    [139]王立新,王姗姗,戴四发等.黄粉虫不同生长阶段诱导抗菌肽的效果分析.中国农学通报,2009,25(5):10-13.
    [140]刘汉灵,潘扬昌,王孝英等.黄粉虫蛋白抗菌肽酶解工艺研究.食品科学,2009,30(15):156-159.
    [141]董杰超.黄粉虫幼虫抗菌肽诱导方法及其抗菌活性的研究.四川农业大学硕士学位论文,2010,1-59.
    [142]陶淑霞,韩静菲,李玉.黄粉虫抗菌肽的生物学性质及初步分离纯化.安徽农业科学,2009,37(29):14167-14170.
    [143]王立新,张伯卫,戴四发等.黄粉虫幼虫抗菌肽的诱导特性及电泳组分研究初报.安徽农学通报,2008,14(21):43-46.
    [144] H.J. Moon, S.Y. Lee, S. Kurata, et al. Purification and Molecular of cDNA Cloning for an InducibleAntimicrobial Protein from Larvae of Coleopteran,Tenebrio Molitor. Journal of Biochemistry,1994,116(1):53-58.
    [145] H.S. Ahn, W. Cho, S.H. Kang, et al. Design and Synthesis of Novel Antimicrobial Peptides on theBasis of Alpha Helical Domain of Tenecin1, an Insect Defensin Protein, and Structure-activityRelationship Study. Peptides,2006,27(4):640-648.
    [146] K.H. Lee, S.Y. Hong, J.E. Oh. Synthesis and Structure-function Study about Tenecin1, anAntibacterial Protein from Larvae of Tenebrio Molitor. FEBS Letters,1998,439(1):41-45.
    [147] Y. Lee, D. Kim, J. Suh, et al. Structual Characteristics of Tenecin3,an Insect Antifungal Protein.Biochemistry and Molecular Biology International,1999,47(3):369-376.
    [148] Y.H. Jung, D.K. Lee, Y.H. Lee, et al. Biochemical and Molecular Characterization of an AntifungalProtein from Tenebrio Molitor Larvae. Molecules and Cells,1995,5(3):287-292.
    [149]张兰胜,夏从龙,杨永寿等.彝药喙尾琵琶甲的研究进展.时珍国医国药,2009,20(12):3113-3114.
    [150]赵敏,陈晓鸣,孙龙等.云南省喙尾琵琶甲分布及生态环境调查.林业科学研究,2007,20(3):356-362.
    [151]赵敏,冯颖,陈晓鸣等.喙尾琵甲(鞘翅目:拟步甲科)形态记述及生物学特性观察.环境昆虫学报,2009,31(4):348-355.
    [152]冀焕红,冯颖,赵敏等.环境因子对喙尾琵甲卵孵化的影响.林业科学研究,2010,23(1):38-43.
    [153]施贵荣,肖培云,洪小凤等.喙尾琵琶甲提取物体外抗菌作用初步研究.时珍国医国药,2011,22(3):622-623.
    [154]施贵荣,庄孝龙,孙会仙等.喙尾琵琶甲抗菌活性的研究.大理学院学报:综合版,2010,9(12):18-19.
    [155]李蕾,罗氘芸,等.云南琵琶甲抗菌活性成分研究.中草药,2001,32(3):197-199.
    [156]罗氚芸,刘勇.云南琵琶甲脂溶性抗菌活性成分的研究.中草药,1999,30(8):566-567.
    [157]刘勇,罗氚芸,李蕾等.云南琵琶甲防御性分泌物抗菌活性及GC-MS分析.云南大学学报(自然科学版),2000,22(3):217-219.
    [158]罗氚芸,刘勇.云南民间药用琵琶甲无机元素及氨基酸分析.氨基酸和生物资源,1999,21(3):38-40.
    [159]肖培云,杨永寿,施贵荣等. HPLC法测定喙尾琵琶甲药材中氨基酸的含量.安徽农业科学,2011(23).
    [160]郭宝华,何钊,冯颖等.三种昆虫甲壳索提取与分析.林业科学研究,2008,21(4):561-565.
    [161]李维莉,林南英,李文鹏等.从云南琵琶甲中提取甲壳素的研究.云南大学学报(自然科学版),1999,21(2):139-140.
    [162]罗建蓉,何江波,张桢等.药用昆虫喙尾琵琶甲化学成分研究.中成药,2010(11):2013-2014.
    [163]赓迪,王春梅,徐晓琳等.云南琵琶甲提取物体内外抗肿瘤活性的实验研究.中药材,2011,34(1):95-98.
    [164] G.B. Fields. Peptide Characterization and Application Protocols. Totowa, New Jersy.: Humana,2007,342.
    [165] D.R. Marshak, J.T. Kadonaga, R.R. Burgess, et al. Strategies for Protein Purification andCharacterization:a Laboratory Course Manual.朱厚础,译.北京:科学出版社,1999,1-279.
    [166]中华人民共和国卫生部医政司.全国临床检验操作规程.第3版.南京:东南大学出版社,2006,890-912.
    [167]张建社,褚武英,陈韬.蛋白质分离与纯化技术.北京:军事医学科学出版社,2009,1-178.
    [168]蓝江林,吴珍泉.美洲大蠊抗菌物质的诱导与提取.福建农业大学学报,2004(1):30-33.
    [169] P. Korner, P. Schmid-Hempel. In vivo Dynamics of an Immune Response in the Bumble Bee BombusTerrestris. Journal of Invertebrate Pathology,2004,87(1):59-66.
    [170] P. Bulet, S. Cociancich, M. Reuland, et al. A Novel Insect Defensin Mediates the InducibleAntibacterial Activity in Larvae of the Dragonfly Aeschna Cyanea (Paleoptera, Odonata). EuropeanJournal of Biochemistry,1992,209(3):977-984.
    [171]许兵红,李超英,陈萍等.家蝇抗菌物质诱导及在不同pH下的抑菌活性.中国病原生物学杂志,2009,4(3):209-210.
    [172]许兵红,董卫华,陈萍等.家蝇抗菌物质诱导及高温处理后的抑菌活性.中国媒介生物学及控制杂志,2009,20(3):201-205.
    [173]陈玉清,李保存,吴希等.家蚕抗菌蛋白Cecropin D和Lysozyme的分离纯化及性质鉴定.南京师大学报(自然科学版),2006(3):103-107.
    [174] W.M. Shafer. Antibacterial Peptide Protocols. New Jersey: Humana Press,1997,35-49.
    [175] X. Xu, J. Li, Y. Han, et al. Two Antimicrobial Peptides from Skin Secretions of Rana Grahami.Toxicon,2006,47(4):459-464.
    [176]周义文.家蝇抗菌肽分离纯化抗菌活性及分子结构研究.重庆医科大学博士学位论文,2004,25-67.
    [177] R.J. Simpson. Purifying Proteins for Proteomics.茹炳根,译.北京:化学工业出版社,2009,1-734.
    [178] H. Sch gger. Tricine-Sds-Page. Nature Protocols,2006,1(1):16-22.
    [179] P. Casteels, C. Ampe, F. Jacobs, et al. Apidaecins: Antibacterial Peptides from Honeybees. EMBOJournal,1989,8(8):2387-2391.
    [180]陈曼,文阳安,周义文等.家蝇幼虫抗菌肽的超声诱导及分离纯化和活性研究.生物技术通报,2008(3):107-109.
    [181] M. Okada, S. Natori. Purification and Characterization of an Antibacterial Protein from Haemolymphof Sarcophaga Peregrina (Flesh-fly) Larvae. Biochemical Journal,1983,211(3):727-734.
    [182] W.Y. Yang, T.C. Cheng, M.Q. Ye, et al. Functional Divergence Among Silkworm AntimicrobialPeptide Paralogs by the Activities of Recombinant Proteins and the Induced Expression Profiles. PLoSOne,2011,6(3):e18109.
    [183] C. Hetru, L. Troxler, J.A. Hoffmann. Drosophila Melanogaster Antimicrobial Defense. Journal ofInfectious Diseases,2003,187(Suppl.2):S327-S334.
    [184] X.L. Dang, Y.S. Wang, Y.D. Huang, et al. Purification and Characterization of an AntimicrobialPeptide, Insect Defensin, from Immunized House Fly (Diptera: Muscidae). Journal of MedicalEntomology,2010,47(6):1141-1145.
    [185] W.L. Cho, Y.C. Fu, C.C. Chen, et al. Cloning and Characterization of cDNAs Encoding theAntibacterial Peptide, Defensin A, from the Mosquito, Aedes Aegypti. Insect Biochemistry andMolecular Biology,1996,26(4):395-402.
    [186]侯利霞,翟培,施用晖等.不同细菌对家蝇幼虫抗菌蛋白/肽的诱导效应.昆虫知识,2006,43(6):827-831.
    [187]吕宪禹.蛋白质纯化实验方案与应用.北京:化学工业出版社,2010,66-72.
    [188] C.S. Choi, I.H. Lee, E. Kim, et al. Antibacterial Properties and Partial cDNA Sequences ofCecropin-like Antibacterial Peptides from the Common Cutworm, Spodoptera Litura. Comparativebiochemistry and physiology. Toxicology&pharmacology: CBP,2000,125(3):287.
    [189] A. Sagisaka, A. Miyanoshita, J. Ishibashi, et al. Purification, Characterization and Gene Expression ofa Glycine and Proline-rich Antibacterial Protein Family from Larvae of a Beetle, AllomyrinaDichotoma. Insect Molecular Biology,2001,10(4):293-302.
    [190] B. Lemaitre, J.M. Reichhart, J.A. Hoffmann. Drosophila Host Defense: Differential Induction ofAntimicrobial Peptide Genes After Infection by Various Classes of Microorganisms. Proceedings of theNational Academy of Sciences of the United States of America,1997,94(26):14614-14619.
    [191] J.H. Wong, L.X. Xia, T.B. Ng. A Review of Defensins of Diverse Origins. Current Protein PeptideScience.,2007,8(5):446-459.
    [192]吕鸿声.昆虫免疫学原理.上海科学技术出版社,2008,20-22.
    [193] T.C. Cheng, P. Zhao, C. Liu, et al. Structures, Regulatory Regions, and Inductive Expression Patternsof Antimicrobial Peptide Genes in the Silkworm Bombyx Mori. Genomics,2006,87(3):356-365.
    [194]张双全,屈贤铭,戚正武.昆虫免疫应答及抗菌肽应用前景.生物化学杂志,1987,3(1):11-18.
    [195] T. Michel, J.M. Reichhart, J.A. Hoffmann, et al. Drosophila Toll is Activated by Gram-positiveBacteria through a Circulating Peptidoglycan Recognition Protein. Nature,2001,414(6865):756-759.
    [196] M. Gottar, V. Gobert, T. Michel, et al. The Drosophila Immune Response against Gram-negativeBacteria is Mediated by a Peptidoglycan Recognition Protein. Nature,2002,416(6881):640-644.
    [197]姜珊.两种水产动物抗菌肽的重组表达工艺优化与药理药效研究.中国科学院研究生院(海洋研究所)博士学位论文,2011,17-24.
    [198]郭尧君.蛋白质电泳实验技术.科学出版社,1999.
    [199]郭尧君. SDS实验考虑及最新研究进展.生物化学与生物物理进展,1991,18(1):32-37.
    [200]王旭,何冰芳,李霜等. Tricine-SDS-PAGE电泳分析小分子多肽.南京工业大学学报(自然科学版),2003,25(2):79-81.
    [201]米宏杰,王瑞华,徐冰.蛋白质质谱分析研究进展一药学.中华临床医学研究杂志,2006,12(15):2104-2105.
    [202]盛泉虎,解涛,丁达夫.串联质谱数据的从头解析与蛋白质的数据库搜索鉴定.生物化学与生物物理学报,2000,32(6):595-600.
    [203]解建勋,蒲小平,李玉珍等.蛋白质组分析技术进展.生物物理学报,2001,17(1):19-26.
    [204]姜楠,霍海如,姜廷良.蛋白质组检测技术进展.国外医学卫生学分册,2004,31(1):55-58.
    [205] H.S. Yoon, C.S. Lee, S.Y. Lee, et al. Purification and cDNA Cloning of Inducible AntibacterialPeptides from Protaetia Brevitarsis (Coleoptera). Archives of Insect Biochemistry and Physiology,2003,52(2):92-103.
    [206] K. Ueda, A. Saito, M. Imamura, et al. Purification and cDNA Cloning of Luxuriosin, a NovelAntibacterial Peptide with Kunitz Domain from the Longicorn Beetle, Acalolepta Luxuriosa.Biochimica et Biophysica Acta,2005,1722(1):36-42.
    [207]彩万志,庞雄飞,花保祯等.普通昆虫学.北京:中国农业大学出版社,2001,330-343.
    [208] A. Saito, K. Ueda, M. Imamura, et al. Purification and cDNA Cloning of a Cecropin from theLongicorn Beetle, Acalolepta Luxuriosa. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2005,142(3):317-323.
    [209] H. Yamauchi. Two Novel Insect Defensins from Larvae of the Cupreous Chafer, Anomala Cuprea:Purification, Amino Acid Sequences and Antibacterial Activity. Insect Biochemistry and MolecularBiology,2001,32(1):75-84.
    [210] T. Tomie, J. Ishibashi, S. Furukawa, et al. Scarabaecin, a Novel Cysteine-containing AntifungalPeptide from the Rhinoceros Beetle, Oryctes Rhinoceros. Biochemical and Biophysical ResearchCommunications,2003,307(2):261-266.
    [211] R.E. Hancock, H.G. Sahl. Antimicrobial and Host-defense Peptides as New Anti-infective TherapeuticStrategies. Nature Biotechnology,2006,24(12):1551-1557.
    [212] J.S. Hwang, J. Lee, Y.J. Kim, et al. Isolation and Characterization of a Defensin-like Peptide (Coprisin)from the Dung Beetle, Copris Tripartitus. International Journal of Peptides,2009,2009:136284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700