用户名: 密码: 验证码:
大断面WC_p/Fe-C复合材料性能及梯度结构形成机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属基复合材料由于综合发挥了基体材料和添加材料的特性,使其表现出优异的综合性能,从而引起航空航天和汽车应用领域的高度重视。铝基和镁基复合材料已在这些领域得到广泛的研究和应用,而Fe-C合金基复合材料由于其熔点高,比重大,制造工艺极其复杂而研究甚少。高速线、棒材热轧生产线的预精轧段和精轧段用轧辊的工作条件十分恶劣。它不仅要求在高温高速旋转下具有足够的强度,而且要求其表面在高温、高载荷、高速滑动磨擦下具有极高的耐磨性能。再加上,在高速线、棒材热轧线上更换轧辊的昂贵的成本,探索一种低成本、在高温、高载荷、高速滑动磨擦下具有高寿命、优异综合性能的轧辊环材料替代目前生产线上使用的WC钴镍烧结硬质合金和高速钢轧辊成为人们追求的目标。
     本文利用比重差,采用离心铸造技术,在自制的卧式离心铸造机上,制备了由WC_p增强的铁基梯度复合材料外部工作层和Fe-C合金芯部基体组成的复合结构辊环,并对其进行了系统全面的分析研究,取得了规律性的认识和生产线上有实用价值的成果。
     论文在分析了离心力场下外加增强粒子在金属熔体中的迁移和分布规律的基础上,以碳化钨颗粒(WC_p)为增强粒子,以Fe-C合金为基体,建立了离心力场条件下,外加WC粒子在Fe-C合金熔体内运动和分布的理论模型。从理论上考察研究了外加WC_p颗粒在Fe-C合金熔体内的运动和分布。并利用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、X-ray衍射仪等多种现代化微观分析手段和万能电子拉伸试验机、高速滑动磨损试验机等先进性能试验设备,研究了梯度复合材料的组织、性能、界面结构、断裂和磨损行为及其机制。
     采用离心铸造法成功地在转速600rpm~1200rpm下制备了外径164mm~292mm,内径78mm~140mm,高67mm~100mm的由WC_p/Fe-C梯度复合材料外层和Fe-C合金芯部基体组成的复合结构厚壁环试样,厚壁环试样的WC_p/Fe-C梯度复合材料外层厚度达到了20~30mm。对试样的分析研究表明,在该试验条件下,建立的外加WC_p在Fe-C合金熔体内运动和分布的理论模型与试验结果基
Metal matrix composites exhibit excellent comprehensive properties because of bringing the comprehensive character of matrix material and reinforcement particle into play. It is, therefore, of interest to research the excellent comprehensive properties and application of metal matrix composites for aerospace and automotive. Composites with aluminum and magnesium matrices have been investigated and applied extensively in these fields, while less work has been carried out on iron matrix composites because of their high melting point, large density, small specific strength and very complex processing. Working condition of roller rings used in finishing roll sector or pre-finishing roll sector of high speed line or rod rolling mill production line is extremely vile. The roller rings require not only high strength, but high wear resistance for working layer of the roller rings under high temperature, high load and high speed sliding friction besides the expensive cost of changing the roller rings. Therefore, probing a low-cost roller ring with high life and excellent comprehensive properties under high temperature, high load and high speed sliding friction to replace WC Co-Ni sintered hard alloy and/or WC steel sintered hard alloy and high speed steel roller rings used in high speed line and rod rolling mill production line at present, have become a target of people seeking all along.
    Utilizing the different centrifugal force resulted from difference of density between Fe-C alloy melt and WC_P, a composite structure roller ring, consisting of WCp/Fe-C gradient composites outer working layer and Fe-C alloy core, was fabricated from a mixture of Fe-C alloy melt and WC_P with centrifugal casting technology in this paper, and a regularity knowledge and the valued achievement were acquired by overall systematic analysis and investigation on the composite structure roller rings.
    On the basis of analyzing the law of movement and distribution of foreign adding particle in metal melt, the theoretic model of movement and distribution of foreign adding WC_P in Fe-C alloy melt were established under centrifugal field. The movement and distribution of foreign adding WC_P in Fe-C alloy melt are investigated on theory. Therewithal, the microstructure, properties, interface structure, fracture and wear behavior of the gradient composites were investigated by optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer, AG-1 250kN universal tensile test machine and MMS-1G high velocity wear testing machine.
    A composite structure thick-walled rings, consisting of a WC_P/Fe-C gradient composites outer layer of 20-30 mm heavy-section and Fe-C matrix alloy core, was successfully obtained by centrifugal casting method at 600-1400rpm, dimensioned by outer diameter 164-292mm, inner 78-140mm, highness 74-100mm. Analysis and investigations on the thick-walled ring specimen showed that the results of computer simulation, in term of the movement and distribution model of WC_P in Fe-C alloy
引文
1 M.B. Bever and P.E. Duwez. Gradients in composite materials[J]. Mater. Sci. & Eng. 1972,10 (1): 1-8.
    2 Cherradi, D. Delfosse, B. Ilschner and A. Kawasaki. La Revue de Metallurgic CIT. [J]. February 1996: 185-196.
    3 新野正之,平井敏雄,渡边龙三.倾斜机能材料[J].日本复合材料学会俧,1987,13:257-261.
    4 M. Niino and S. Maeda. Mathematical Research in Materials Science [J]. Iron and Steel Inst. of Japan Int., 1990, 30: 699-703.
    5 M. Koizumi. Graded Materials for Resistance to Contact Deformation and Damage [J]. Ceram. Eng. Sci. Proc., 1992, 13: 333-346.
    6 M. Koizumi. Recent progress in FGMs research in Japan [J]. Int. J. of SHS, 1997,6 (3): 295-300.
    7 K. Fritscher and W. Bunk. Proc. of the First Int. Symp. on Functionally Gradient Materials [C]. Sendai, Japan. 1990. M. Yamanouchi, M. Koizumi, T. Hirai and I. Shiota. eds, Functionally Gradient Materials Forum: 91- 96.
    8 H.D. Steffens, M. Dvorak, and M. Wewel. Proc. of the First Int. Symp. on Functionally Gradient Materials [C]. Sendai. Japan. 1990. M. Yamanonchi. M. Koizumi. T. Hirai and I. Shiota. eds, Functionally Gradient Materials Forum: 139-143.
    9. G.A. Schneider and G. Petzow: Proc. of the Fist Int. Symp. on Functionally Gradient Materials[C]. Sendai, Japan. 1990. M. Yamanonchi. M. Koizumi. T. Hirai and I. Shiota. eds, Functionally Gradient Materials Forum: 327-332.
    10 J. Rdel and A. Neubrand. Proc. Conf. Functionally Gradient Materials [C]. 1996. Tsukuba. Japan, 1996. I. Shiota and Y. Miyamoto. eds, Elsevier, Amsterdam: 9-14.
    11 B. Ilschner and D. Delfosse. Synthesis of multiphase powder systems with a composition gradient [J]. Solid State Phenomena, 1989. vols 8 & 9: 61-70.
    12 B. Ilschner: Proc. of the First Int. Symp. on Functionally Gradient Materials [C]. Sebdai, Japan. 1990, M. Yamanouchi, M. Koizumi, T. Hirai and I. Shiota, Eds. Functionally Gradient Materials Forum: 101-106.
    13 B. Ilschner. Proc. Conf. Functionally Gradient Materials [C]. 1996, Tsukuba. Japan, 1996. I. Shiota and Y. Miyamoto. eds, Elsevier, Amsterdam: 15-20
    14 N. Cherradi, A. Kawasaki. and M. Gasik. Worldwide Trends in functionally Gradient materials Research and Development [J]. Composites Eng., 1994,4: 883-894.
    15 J. Cheng , R. Yuan , X. Dong, Y. Zhang, L. Chen and Z. Yang, in Proc. of the First Int. Symp. on Functionally Gradient Materials [C]. Sendai, Japan. 1990. M. Yamanonchi. M. Koizumi. T. Hirai and I. Shiota. eds, Functionally Gradient Materials Forum: 121-123.
    16 H.D. Wu. S.T. Chou. H.Y. Chou. K.L. Wang. C.I. Chen and S.E. Hsu. Proc. of the First Int. Symp. on Functionally Gradient Materials [C]. Sendai, Japan. 1990. M. Yamanonchi. M. Koizumi. T. Hirai and I. Shiota. eds, Functionally Gradient Materials Forum: 185-189.
    17 Z.Z. Jin. G Liu and T. Wang. Proc. of the First Int. Symp. on Functionally Gradient Materials[C]. Sendai, Japan. 1990. M. Yamanonchi. M. Koizumi. T. Hirai and I. Shiota. eds, Functionally Gradient Materials Forum: 243-246.
    18 F. Erdogan: Proc. of the First Int. Symp. on Functionally Gradient Materials [C]. Sendai, Japan. 1990. M. Yamanonchi. M. Koizumi. T. Hirai and I. Shiota. eds, Functionally Gradient Materials Forum: 307-312.
    19 B. Beardsley. Proc. of Workshop on Coatings for Advanced Engines [C]. Castine. Maine, 1990. E.W. Gregory and E.E.Wells, eds, U.S. Department of Energy. Washington. D.C., USA: 53-56.
    20 V. Prismakov. V. Niholayev. V. Domoratsk and A. Sanin. Proc. of the First Int. Symp. on Functionally Gradient Materials [C]. Sendai, Japan. 1990. M. Yamanonchi. M. Koizumi. T. Hirai and I. Shiota. eds, Functionally Gradient Materials Forum: 89-95.
    21 K. Atarashiya, K. Kurokawa, H. Heishichiro et al Joining of Nickel to Magnesia Using Nickel-Nickelous Oxide Composite [J]. Matsui: Iron and Steel Inst. of Japan Int., 1990, 30(12): 1130-1134.
    22 F. Watari. Yokoyama, F. Saso, M. Uo. Ohkawa and T. Kawasaki: Proc. Conf. Functionally Gradient Materials [C]. 1996. Tsukuha. Japan. 1996,I. Shiota and Y. Miyamoto. Eds. Elsevier, Amsterdam: 749-754.
    23 A. Otsuka, H. Tamazaki, M. Niiyama and K. Iwasaki. Proc. Conf. Functionally Gradient Materials [C]. 1996. Tsukuha. Japan. 1996. I. Shiota and Y. Miyamoto. Eds. Elsevier, Amsterdam: 251-256.
    24 Y. Miyamoto, M. Niino and M. Koizumi. Proc. Conf. Functionally Gradient Materials [C]. 1996. Tsukuba, Japan., L. Shiota and Y. Miyamoto. Eds. Elsevier. Amsterdam: 1-8.
    25 H. Getto and S. Ishihara. Proc. Conf. Functionally Gradient Materials [C]. Tsukuba, Japan. 1996, L. Shiota and Y. Miyamoto. eds. Elsevier. Amsterdam: 743-748.
    26 O. J(?)rgensen, A. E. Giannakopoulos, S. Suresh. Spherical indentation of composite laminates with controlled gradients in elastic anisotropy [J]. International Journal of Solids and Structures, 1998,35:5097-5113.
    27 S. Suresh. A. Mortensen and H. MeMams. Functionally Gradient Materials [C]. 1994. Proc. of the MIT-Offce of Naval Research Joint Workshop, Cambridge. MA. Massachusetts Institute of Technology.
    28 Y. Kuroda, M. Tadano, A. Moro. Y. Kawamata and N. Shimoda Proc. Conf. Functionally Gradient Materials [C]. 1996. Tsukuba, Japan. 1996, L. Shiota and Y. Miyamoto. eds. Elsevier. Amsterdam: 469-474.
    29 陈刚,孙国雄,朱震刚.反应生成α Al_2O_3(p)/Al-Zn复合材料的制备及其磨损特性[J].铸造,1998(2):1-4.
    30 孙剑飞,沈军,贾均,李庆春.喷射成形一种先进的金属热成形技术[J].材料开发与应用,1999,14(2):42-45.
    31 严红革,陈振华,黄培云.金属超微粉末制备技术中几个问题[J].材料导报,1997,11(1):16-18.
    32 孙国雄,廖恒成,潘治.颗粒增强金属基复合材料的制备技术和界面反应与控制[J].特种铸造及有色合金,1998(4):12-17
    33 刘耀辉,李庆春,何镇明.金属基铸造颗粒复合材料[J].复合材料学报,1989,6(1):55-58.
    34 雨阳苗,马磊,李建平等.6061Al/SiC层合复合材料在交变温度场作用下热应力的有限元分析[J].料科学与工程,2000(4):1866-1869.
    35 梁淑华,范志康,时惠英等.超细Al_2O_3颗粒增强铜基复合材料的研究[J].复合材料学报,1998,15(3):44-48.
    36 郭成,程羽,易树清等.SiC颗粒增强铝合金基梯度复合材料的制备与压缩性能研 究[J].复合材料学报,1999,16(1):8-13.
    37.权高峰,柴东朗,宋余九等.增强体种类及含量对金属基复合材料力学性能的影响[J].复合材料学报,1999,16(2):62-66.
    38 刘金水,舒震,肖汉宁等.原位TiC粒子增强ZA43复合材料的制备及组织性能[J].复合材料学报,1999,16(3):67-72.
    39 J. Schroder, K.U. Kainer, Magnesium-base hybrid composites prepared by liquid infiltration [J]. Materials Science and Engineering, 1991, A135: 33-36.
    40 Q. Y. Liu, W. D. Fei and N. G. Liang. Effect of the thickness of specimens on thermal residual stresses in SiCw/Al composites [J]. ACTA METALLURGICA SINICA (ENGLISH LETTERS) 1999,12(4): 427-432.
    41 Y. FU, G. JIANG, J. J. LANNUTTI et al. Effect of Cyclic Pressure Consolidation on the Uniformity of Metal Matrix Composites [J]. METALLURGICAL AND MATERIALS TRANSACTIONS, 2002, A33:183-190.
    42 Saraev D, Schmauder S. Finite element modelling of Al/SiCp metal matrix composites with particles aligned in stripes comparison [J]. International Journal of Plasticity. 2003, 19 Issue 6: 733-747,
    43 Rattanachan Sirirat, Miyashita Yukio, Mutoh Yoshiharu. Microstructure and fracture toughness of a spark plasma sintered Al_2O_3-based composite with BaTiO_3 particulates [J]. Journal of the European Ceramic Society, 2003, 23 Issue 8: 1269-1276.
    44 吴人洁.复合材料[M].天津大学出版社,天津:2000.
    45 Zhang L M, et al. Properties of TiC/Ni_3Al composites and structural optimization [J]. Materials Sci & Eng, 1995, A203/1-2: 272.
    46 E.Pagounis, M.Talvitie & V.K.Lindroos. Influence of The Metal/Ceramic Interface on The Microstructure and Mechanical Properties of HIPed Iron-based Composites [J]. Composites Science and Technology, 1996, 56: 1329-1337.
    47 杨瑞成,师瑞霞,王晖等.WC/钢基复合材料奥氏体化后的硬化效应及微观机理[J].复合材料学报,2002,19(2):41-44.
    48 Hans Berns. Comparison of wear resistant MMC and white cast iron [J]. Wear, 2003, 254:47-54.
    49 S.C. Tjong, K.C. Lau. Sliding wear of stainless steel matrix composite reinforced with TiB particles [J]. Materials Letters, 1999, 41: 153-158.
    50 E. Pagounis, V.K. Lindroos. Processing and properties of particulate reinforced steel matrix composites [J]. Materials Science and Engineering, 1998,A246:221-234.
    51 D.Lou, J.Hellman, D.Luhulima et al. Interaction between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites [J]. Materials Science and Engineering, 2003, A340: 155-162.
    52 陈飞雄,强劲熙,贾左诚等.热等静压法制造复合轧辊的研究[J].钢铁研究学报,1997,9(3):15-18.
    53 陈飞雄,李世魁.热等静压烧结-连接法制取硬质合金/钢复合材料初探[J].粉末冶金技术,1997,15(1):38-42.
    54 陈飞雄,强劲熙,贾佐诚,李海明.热等静压法制取复合硬质合金轧辊[J].稀有金属材料与工程,1998,27(3):26-27,181.
    55 陈飞雄,强劲熙,贾佐诚.硬质合金与铁基复合材料热等静压扩散连接[J].粉末冶金技术,1998,16(3):183-186.
    56 Yisan Wang, Fengchun Li, Guangting Zeng et al. Structure and wear-resistance of an Fe-VC surface composite produced in situ [J]. Materials and Design, 1999, 20: 19-22.
    57 Yisan Wang, Xinyuan Zhang, Guangting Zeng et al. Cast sinter technique for producing iron base surface composites[J]. Materials and Design, 2000, 21: 447-452.
    58 许大庆,罗吉荣,宋象军.V-EPC铸渗工艺的研究[J].铸造设备研究,1999(2):3-6.
    59 鲍崇高,王恩泽,高义民等.颗粒体积分数对Al_2O_3/钢基复合材料高温抗磨性的影响[J].复合材料学报,2001,18(2):61-64.
    60 张军,童杏林,曹彪.超重力场铸渗表面合金化研究[C].第61届世界铸造会议论文集,铸造杂志社,沈阳,1995:215-223.
    61 福井泰好.日本机械学会论文集(C),1990:56-67.
    62 L. Lajoye, M. Suery. Modeling of Particle Segregation During Centrifugal Casting of Al-Matrix Composites [J]. ASM INTERNATIONAL, Metals Park, OH, 1988: 15-20.
    63 Yasuyoshi FUKI. JS ME International Journal, Series Ⅲ [C]. 1991, 34 (1): 144-149.
    64 村田清,高田正义,中田毅等.倾斜机能材料组织耐磨耗性[J].铸物,1992,64(8):537-540.
    65 Yasuyoshi FUKUI, Noboru YAMANKA, Yoshimi Wantanabe, et al. Light Metal, 1994, 44(11): 622.
    66 于思荣,等.加速度场中过共晶Al-Si合金同液两相液体的再分布[C].吉林省青年学术研讨会,吉林,1998.
    67 Y. Fukui and Y. Watanabe: Metall. Mater. Trans. 1996, 27A: 4145-4151.
    68 王渠东,丁文江等.离心铸造过共晶Al-Si合金自生表面复合材料[J].复合材料学报,1998,15(3):7-11.
    69 张健,王玉庆,吴欣强等. 离心铸造原位Al/Mg_2Si复合材料组织与性能的研究[J].铸造,1998(9):1-3.
    70 冯培忠,强颖怀.离心铸造WC颗粒增强钢基复合材料辊环的研制[J].轧钢,2004,21(4):14-16.
    71 冯培忠,强颖怀,王晓虹.离心铸造颗粒增强金属基复合材料的硬度行为[J].金属热处理,2004,29(7):28-31.
    72 严有为,魏伯康,林汉同等.金属基原位(in-situ)复合材料的研究现状及发展趋势[J].特种铸造及有色合金,1998(1):47-49.
    73 陈俊,边建华,刘常胜等.原位TiC颗粒强化的Fe-Cr-Ni及复合材料的拉伸性能[J].钢铁研究学报,2001,13(5):55-59.
    74 V.K.Rai, R.Srivastava, S.K.Nath et al. Wear in cast titanium carbide reinforced ferrous composites under dry sliding [J]. Wear, 1999, 231: 265-271.
    75 O.N. Dogan, J.A. Hawk, J.H. Tylczak. Wear of cast chromium steels with TiC reinforcement [J]. Wear, 2001, 250: 462-469.
    76 刘海峰,刘耀辉,于思荣.原位合成VC颗粒增强钢基复合材料组织及其形成机理[J].复合材料学报,2001,18(4):58-63.
    77 李如生.非平衡态热力学和耗散结构[M].清华大学出版社,北京,1986:96-105.
    78 邹正光,付正义,袁润章.原料组分、粒度对Ti-C-Fe体系自蔓延高温合成的影响[J].无机材料学报,1998,13(2):207-210.
    79 张卫方,韩杰才,陈贵清等.Fe含量对白蔓延高温合成TiC-Al_2O_3/Fe复合材料的影响[J].中国有色金属学报,1999.9(Suppll):178-183.
    80 张卫方,韩杰才,陈贵清等.致密TiC-Al_2O_3-Fe金属陶瓷的自蔓延高温合成[J].复合材料学报,2000,17(2):50-54.
    81 张卫方,韩杰才,杜善义等.SHS/PHIP制备TiC-Fe金属陶瓷的微观组织研究[J].复合材料学报.2001,18(2):65-69.
    82 张卫方,韩杰才,杜善义等.SHS/PHIP制备TiC-Al_2O_3/Fe复合材料的性能[J].复合材料学报.2001,18(2):70-74.
    83 严新炎,孙国雄.SHS铸造技术在材料制备中的应用[J].稀有金属材料与工程.1996,25(1):5-8.
    84 崔洪芝,李惠琪,毕勇.自蔓延高温合成技术在表面冶金强化中的研究与应用[J].机械工程材料,1996,20(4):23-25.
    85 MARTIN MARIETTA CORP, Metal-secondphase composites by direct addition [P]. US, Pat: 4915908,1990.
    86 MARTIN MARIETTA CORP. Process for forming metal-ceramic composites [P]. US, pat: 4710348,1987.
    87 朱和国,吴申庆.自生铝基复合材料的制备、性能及生成机理[J].材料导报,1998,12(4):61-64.
    88 AGHAJANIAN M K. Properties and microstructures of Lanxide Al_2O_3-Al ceramic composite materials [J]. J Mat Sci, 1989, 24(2): 658-670.
    89 崔春翔.原位金属基复合材料的制备原理及工艺[J].材料开发与应用,1995,10(5):35-39.
    90 SIGL L S. On the toughness of brittle materials reinforced with a ductile phase[J]. Acta Metall, 1988, 36(4): 945-953.
    91 LEE B I, Low-temperature synthesis of aluminium nitride via liquid-liquid mix carbonthermal reduction [J]. J Mater Sci Lett, 1990,9(10): 1389-1391.
    92 KIRCHER T A, In Metal Matrix[A]. Carbon and ceramic Matrix Composite[C]. Hanford, NASA, 1989.
    93 陶春虎.采用XD工艺合成TiAl合金及TiC/TiAl复合材料的研究[J].航空学报,1994,12(12):1445-1449.
    94 宫本奎,马恒玉,左江敏等.金属基复合材料及制备方法[J].山东冶金,1998,20(3):14-17.
    95 王恩泽,徐学武,刑建东.颗粒增强钢基铸造复合材料研究[J].材料科学与工程,1996,14(4):27-29.
    96 长谷川正义著,卡为一译.喷射弥散强化合金[M].国防工业出版社,北京,1986.
    97 Fraunhofer institute. Adv. Mater. & Proc., 1999,156(3): 33.
    98 Kenneth Petersen, Allan Schroder Pedersen, Nini Pryds et al. The effect of particles in different sizes on the mechanical properties of spray formed steel composites [J]. Materials Science and Engineering, 2002, A326: 40-50.
    99 王恩泽,鲍崇高,刑建东等 氧化铝/耐热钢基复合材料的研究[J].铸造设备研究,1998(6):46-48.
    100 严立,余宪海编著.内燃机磨损及可靠性技术[M].人民交通出版社,1992:67.
    101 M.F. Ashby, J. A bulawi, H. S. Kong. Temperature maps for frictional heating in dry sliding [J]. Tribol. Trans., 1991, 34(4): 577-587.
    102 W.Ames, A.T. A lpas. Wear mechanisms in hybrid composites of graphite 20-pct SiC in A356 aluminum alloy (Al-7 pct Si-03 pct Mg) [J]. Metall. Mater. Trans.A, 1995, 26A: 85~98.
    103 B.Venkataraman, G. S undararajan. Correlation beween thecharacteristics of mechanically mixed layer and wear behaviour of aluminum, AI 7075 alloy and Al MMCs [J]. Wear, 2000, 245: 22-38.
    104 A. T. Alpas, J. Zhang. Wear regimes and transitions in Al_2O_3 particulate reinforced aluminum alloys [J]. Mater. Sci. Eng. A, 1993, Al 61: 273-284.
    105 A. T. Alpas, J. D. Embury. Wear mechanisms in particle reinforced and laminated metal matrix composites [C]. Proc. Conf. Wear of Materials, New York: ASME, 1991: 159-166.
    106 A. T. Alpas, J. Zhang. Effect of SiC particulate reinforcement on the dry sliding wear of aluminum-silicon alloys(A356)[J]. Wear, 1992, 155: 83-104.
    107 A. S. Argon. Formation of cavities from nondeformable second-phase particles in low temperature ductile frature [J]. J. Eng. Mater. Tech., 1976, 98: 60-68.
    108 A. T. Alpas, J. Zhang. Wear rate transition in cast aluminum silicon alloys reinforced with SiC paticles [J]. Sci. Metall., 1992, 26: 505-509.
    109 Ichino K.,Kataoka Y. And Koseki T. Development of centrifugal cast roller with high wear-resistance for finishing stands of hot strip mill. KAWASAKI STEEL TECHNICAL REPORT., 1997,37: 13-18.
    110 Jayaram, S., Connacher, H. I., and Lyons, K. W., Virtual Assembly Using Virtual Reality Techniques [J]. Computer Aided Design, 1997, 29(8): 575~584.
    111 Jung, B., Hoffhenke, M., and Wachsmuth, I., Virtual Assembly With Construction Kits [M]. Proceedings of 1997 ASME Design Engineering Technical Conference, September,1997 : 14-17, Sacramento, DETC97/DFM-4363.
    112 宋延沛,李秉哲等.WC颗粒增强铁基复合材料辊环的研究[J].机械工程学报,2001,37(11):99-102.
    113 邵素芸,王刚,宋成.谈高速钢轧辊[J].轧钢,1996(2):37-40.
    114 刘炀.离心法生产针状贝氏体球铁轧辊技术[J].铸造技术,2004,25(2):101-102.
    115 俞誓达,李中和.离心铸造复合针状球墨铸铁辊环的研制[J].轧钢,1997(5):35-38.
    116 Lecomte-Beckers, J. (Liege Univ.); Pirar, E. High-speed steel with optimized carbide composition [J]. Stal'. 2003 (2): 88-92.
    117 贾艳明,高英民,龙靖字.离心复合铸造球铁轧辊辊身裂纹缺陷与应对措施[J].热加工工艺.2004(9):66.
    118 S. Suresh, A. Mortensen. Fundamentals of Functionally Graded Materials[M]. IOM Communications Ltd,. UK 1998.
    119 李庆春 铸件形成理论基础[M].机械工业出版社,北京,1984.
    120 王承尧,王正华,杨晓辉.计算流体力学及其并行算法[M].国防科技大学出版社,长沙.2000.2.
    121 N. Saka, D. P. Karalekas. Friction and wear of particle reinforced metal ceramic composites[C], Proc. Conf. Wear of materials, New York: ASME, 1985: 784-793.
    122 E Rana, D. M. Stefanescu. Friction properties of Al 15 pct Mg SiC particulate metal matrix composites [J]. Metall. Trans. A, 1989, 20A: 1564-1566.
    123 邵荷生,曲敬信,许小棣,陈华辉.摩擦与磨损[M].煤炭工业出版社,北京,1992: 120-122.
    124 温诗铸.摩擦学原理[M].清华大学出版社,北京,1990.
    125 J. E. Wilson, E H. Stott, G. C. Wood. The development of wear-protective oxides and their influence on sliding friction [J]. Proc. R. Soc. of London A, Mathematical and Physical Sciences, 1980, 369: 557.
    126 T. F. J. Quinn. Models for the Generation of Oxides During Sliding Wear [J]. Wear, 1971, 18: 413-419.
    127 操光辉,王恒志,吴申庆.硅酸铝短纤维增强ZL109复合材料的磨损机制.摩擦学学报,1998,18(2):141-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700