用户名: 密码: 验证码:
起重机变截面复杂梁杆系统稳定性与非线性大位移研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有复杂梁杆系统的起重机械在重载吊装机械中极为典型,其结构高耸细长,承载形式复杂,对其进行准确的稳定性与几何非线性分析是保证其安全工作的重要基础。同时,为合理利用材料、减轻结构自重,起重机金属结构通常会存在变截面格构式构件及其组合结构,其特殊的边界条件和结构形式为起重机金属结构的理论分析和设计计算带来了很大困难,这一直是行业中众多技术人员关注的焦点。为此,本文在国家十二五科技支撑计划项目(2011BAJ02B01-02)资助下,以具有变截面格构式构件的起重机复杂梁杆系统为研究背景和应用对象,对起重机复杂梁杆系统的稳定性、几何非线性大位移与变截面结构的抗扭性能进行深入的研究和探讨。
     基于纵横弯曲理论,对惯性矩沿轴向二次变化的变截面悬臂梁柱的侧向位移和稳定性进行了分析。运用微分方程法建立了考虑轴力影响的变截面Bernoulli-Euler梁的挠曲微分方程,推导了变截面悬臂梁柱在复合载荷作用下的挠度精确表达式和失稳特征方程,并在Timoshenko放大系数与精确理论放大系数基础上,给出了形式简单的变截面悬臂构件轴力影响系数的近似表达式。分析结果表明,在工程中常用锥度范围内,当轴力与欧拉临界力的比值小于0.6时,该近似表达式所引起的误差均小于2%,因此,惯性矩二次变化的变截面悬臂梁顶端挠度可以使用统一的近似放大系数公式乘以相应仅有横向载荷作用所产生的最大挠度表出。同时在上述研究的基础之上,讨论了计及二阶效应的情况下,弹性约束对变截面悬臂梁侧向位移与稳定性的影响,分别给出了轴力影响系数、弹性支撑影响系数和屈曲特征方程表达式。
     在以上变截面梁挠曲微分方程基础上,引入剪切变形的影响,推导出计及二阶效应的惯性矩二次变化变截面Timoshenko梁单元转角位移方程,并列写为有限元格式,给出了计及剪切变形与二阶效应影响的惯性矩二次变化变截面梁单元精确切线刚度矩阵,得到一种新型的变截面梁单元。该精确梁单元能方便的实现变截面梁到等截面梁、计及剪切和不计及剪切变形之间的转化,与传统有限元方法中梁单元自然衔接过渡,便于统一建模求解应用。通过经典的算例分析表明,该精确变截面梁单元在稳定性和二阶效应分析中,只需划分一个单元即可以得到精确的数值解;对于细长梁,可以忽略剪切变形的影响,但当梁较短即杆件高度相对跨度很小,而又须考虑非线性效应时,必须计入剪切变形的影响才能达到满意的计算精度;剪切变形使结构的横向位移增大,使梁杆的屈曲能力减弱。
     针对空间变截面梁杆结构抗扭刚度问题的研究,本文将空间桁架分解成平面桁架计算,根据空间桁架扭转时的等效力分配原则,将复杂的空间桁架扭转问题转化为简单变截面单片平面桁架结构的弯曲问题,最终推导出空间变截面结构扭转刚度的表达式。首先以单片变截面桁架结构为研究对象,给出了不同腹杆布置形式的变截面桁架各杆件内力与侧向位移表达式。以单片桁架结构的柔度系数为基础,全面考虑弦杆、腹杆对空间桁架结构的侧向刚度和抗扭刚度的影响,推导出适用于矩形空间桁架结构的侧向位移表达式和扭转刚度计算公式,并给出了扭矩的等效力偶分配系数计算式。最后讨论了腹杆对变截面空间梁杆结构侧向刚度的影响,当构件长细比较大时,可忽略腹杆对结构侧向刚度的影响,可将变截面空间刚架结构等效为惯性矩二次变化的实腹式变截面梁。实际算例表明,应用本文方法计算空间桁架结构的扭转刚度是正确和有效的。
     基于虚位移原理与更新的拉格朗日(U.L.)格式,提出了一种可用于分析变截面Timoshenko梁单元几何非线性大位移问题的计算方法。采用转角、位移独立插值的方法,给出了考虑剪切变形影响的惯性矩二次变化变截面梁单元插值函数,并建立了同时考虑轴力、剪切、弯曲效应及其耦合项在内的平面惯性矩二次变化变截面梁柱单元几何非线性虚功增量方程,得到了变截面梁单元大位移切线刚度阵。该方法严格计入了剪切变形与变截面因素的影响,当锥度系数
     1时,可很好的退化为相应的等截面梁单元,因此,本文分析方法适用于变截面梁、等截面梁以及其组合结构的大位移几何非线性分析。最后,编制了计及剪切变形的变截面梁杆系统大位移几何非线性分析计算程序,通过典型算例分析,验证了本文几何非线性大位移分析建模方法的正确性。
Hoisting machinery with complex truss structure is the typical heavy lifting machinery, which has slender structure and can bearing complex load form. The analysis of the stability and geometric nonlinear is important to ensure working safely. In order to use materials rationally and reduce the weight of structural, crane metal structures are usually fabricated as non-uniform cross-section lattice components or their composite structure. The special boundary conditions and structure types induce greater difficulties in the calculation of the theoretical analysis and design, which are the focus points of many industries and scholars. Therefore, by the supporting of the National Key Technology Research and Development Program (Grant No.2011BAJ02B01-02), this paper researches on stability, large displacement geometric nonlinear and torsional behavior with the background and application object of the tapered lattice crane’s beam-bar structures.
     Based on the vertical and horizontal bending theory, the lateral displacement and stability of tapered cantilever are analyzed, whose inertia moment varies quadratic in axial. Using differential equation method, the deflection differential equation of non-uniform Bernoulli-Euler beam with axial force effects is established. The deflection exact expression and instability characteristic equation of the non-uniform cantilever are deduced under complex loads. Approximate formula of tapered cantilever member axial force influence coefficients is presented according to the Timoshenko factor and the exact factor. The results show that, while the taper range in commonly engineering, and the ratio of the axial force and Euler critical force is less than0.6, then the error of approximate expression is less than2%. Therefore, the tip deflection of the quadratic inertia moment variation cantilever can be approximated using a unified amplification factor formula multiplied by the maximum deflection caused by transverse load only. Meanwhile, based on the above research, axial force impact factor, impact factor of elastic support and buckling characteristic equation are expressed with taking into account the second-order effects and the effects on lateral displacement and stability of tapered cantilever by elastic constraints.
     Based on the deflection differential equations of the non-uniform beam, considering the shear deformation effect and the second order effects, the angle displacement equation of tapered Timoshenko beam, whose moment of inertia changes quadratic, is deduced and written as finite element formulation. Precise element tangent stiffness matrix of tapered beam with secondary changes in moment of inertia, taking into account the effect of shear deformation, is obtained. The precise beam elements can realize the transformation between the tapered beam and the uniform beam, taking into account of shear deformation or not, and with good performance degradation. The result of classical example shows that the accurate numerical solution can be obtained by simply performing as one element in analysis of stability and second-order effects, using the precision tapered beam element; For slender beams, shear deformation effects can be ignored, but when the beam is relatively short, the height is small, and the nonlinear effects has to be considered, the shear deformation effect must be included for achieving satisfactory accuracy; Shear deformation increases the lateral displacement of the structure and diminished the buckling capacity of beams.
     In order to study the torsional stiffness problem of space non-uniform beam-bar structure, space truss are decomposed into flat truss, and according to the equivalent force distribution principle of space truss in torsion, the complex spatial truss torsional problem is switched into simple single non-uniform cross-section truss’ bending problem in this paper, and then, the torsional stiffness expressions of the spatial tapered structure are deduced. First, taking the single-chip tapered truss structure as research object, the each member’s force and lateral displacement expressions of the tapered truss with different arrangement in the form of webs are given. Then, based on the flexibility coefficient of monolithic truss structure, considering comprehensively the effects of lateral stiffness and torsional stiffness caused by the chords, webs of space truss structure, the lateral displacement and torsional stiffness formulas are deduced for rectangular space truss structure, and the distribution coefficient formula of torque equivalent couple is also given. Final, the effect on lateral stiffness of tapered space beam caused by webs is addressed. When the member slenderness is relatively large, the effect of the lateral stiffness caused by webs can be ignored, and the non-uniform cross-section space frame structure can be equivalent to a solid-web tapered beam with moment of inertia quadratic variation. Result of examples show that the application of this method to calculate the torsional stiffness of space truss structure is absolutely correct and effective.
     Based on the virtual displacement principle and the updated Lagrangian (U.L.) format, a calculation method of Timoshenko beam element to analyze the geometrically nonlinear large displacement is proposed. By using angular displacement independent interpolation method, element interpolation function of tapered beam is presented by considering the shear deformation effect. Element geometrical nonlinear incremental virtual work equation of tapered plane beam with moment of inertia secondary variation is established by taking into account the axial force, shear, bending effect and its coupling terms simultaneously. Large displacement element tangent stiffness matrix of tapered beam is obtained. The presented method strictly takes account into the effect caused by shear deformation and tapered cross-section factors. It can be well degenerated into a uniform section beam element while the taper coefficient is1. Therefore, the proposed analysis method is suitable for large displacement geometric nonlinear structural analysis of tapered beam, uniform beam and other composite forms. Finally, large displacement geometric nonlinear analysis and calculation procedures of tapered beam-bar system considering the shear deformation are programed, and the numerical results show that, the proposed geometric nonlinear large displacement analysis modeling method and programe are correct.
引文
[1] Shapira Aviad, Lyachin Beny. Identification and Analysis of Factors AffectingSafety on Construction Sites with Tower Cranes [J]. Journal of ConstructionEngineering and Management,2009,135(1):24-33.
    [2] McDonald Brian, Ross Bernard. The Bellevue Crane Disaster [J]. EngineeringFailure Analysis,2011,18(7):1621-1636.
    [3] Timoshenko SP, Gere JM. Theory of Elastic Stability [M].2nd ed. New York:McGraw-Hill,1961:49-169.
    [4]张宏生,兰朋,陆念力.梁杆结构稳定性分析的传递矩阵法[J].哈尔滨工业大学学报.2010,42(3):414-417.
    [5]陈太聪,马海涛.框架结构屈曲的精确有限元求解[J].力学学报,2009,41(6):953-960.
    [6]张正元.塔机水平臂主载荷下线性和非线性变形与内力[J].同济大学学报.2000,28(6):731-737.
    [7]石来德,周中坚,张正元.塔式起重机双吊点水平动臂的线性和非线性计算及其比较分析[J].同济大学学报,1992,20(4):483-492.
    [8]陈骥.钢结构稳定理论与设计[M].北京:科学出版社,2011:1-6.
    [9]刘光栋,罗汉泉.杆系结构稳定[M].人民交通出版社,1988:1-4.
    [10] Chen W F. Structural stability: From Theory to Practice [J]. EngineeringStructures,2000,22(2):116-122.
    [11] Peter N. Jiki. Buckling Analysis of Pre-Cracked Beam-Columns by Liapunov’sSecond Method [J]. European Journal of Mechanics A/Solids,2007,26(3):503-518.
    [12]兰朋,刘曼兰,陆念力.弯曲梁柱结构平面外失稳的研究[J].工程力学,2005,22(增刊):152-155.
    [13] Courant, R.. Variational Method for Solutions of Problems of Equilibrium andVibrations [J]. Bull. Am. Math. Soc,1943,(49):1-23.
    [14]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997:157-160.
    [15]夏拥军,陆念力.梁杆结构稳定性分析的高精度Euler-Bernoulli梁单元[J].沈阳建筑大学学报,2006,22(3):362-366.
    [16]夏拥军,缪谦.一种新型空间梁单元及其在梁杆结构稳定分析中的应用[J].工程力学,2009,26(4):86-91.
    [17]夏拥军,缪谦.计及二阶效应的门座起重机变幅工况动力学分析[J].计算力学学报,2010,27(4):711-715.
    [18] S. L. Chan, Z. H. Zhou. Pointwise Equilibrating Polynomial Element forNonlinear Analysis of Frames [J]. Journal of Structural Engineering,1994,120(6):1703-1717.
    [19] Z. H. Zhou, S. L. Chan. Self-Equilibrating Element for Second-Order Analysisof Semirigid Jointed Frames [J]. Journal of Engineering Mechanics,1995,212(8):896-902.
    [20]许红胜,周绪红,舒兴平.空间刚框架几何非线性分析的一种新单元[J].工程力学,2003,20(4):39-44.
    [21] N. Silvestre, D. Camotim. Elastic Buckling and Second-Order Behaviour ofPitched-Roof Steel Frames [J]. Journal of Constructional Steel Research,2007,63(6):804-818.
    [22] Aristidis V. Asimakopoulos, Dimitris L. Karabalis, Dimitri E. Beskos.Inclusion of P-Δ effect in displacement-based seismic design of steel momentresisting frames [J]. Earthquake Engineering&Structural Dynamics,2007,36(14):2171-2188.
    [23] R. Adman, H. Afra. Exact Shape Functions of Imperfect Beam Element forStability Analysis [J]. Computational Structures Technology,2007,38(8-9):576-585.
    [24] J. M. Gere, W. O. Carter. Critical Buckling Loads for Tapered Columns [J].Journal of the Structure Division,1962,88(1):1-11.
    [25]谢杨波.下端固接上端弹性支承变截面压杆的屈曲[J].重庆工商大学学报(自然科学版),2009,26(2):178-182.
    [26] Z. Elfelsoufi, L. Azrar. Buckling, Flutter and Vibration Analyses of Beams byIntegral Equation Formulations [J]. Computers&Structures,2005,83(31-32):2632-2649.
    [27] S. M. Darbandi, R. D. Firouz-Abadi, H. Haddadpour. Buckling of VariableSection Columns under Axial Loading [J]. Journal of Engineering Mechanics,2010,136(4):472-476.
    [28]杨立军,邓志恒,吴晓,孙晋.变截面压杆弹性稳定的解析解[J].河南理工大学学报(自然科学版),2013,32(1):85-88.
    [29]谢海,寿开荣,李龙等.基于最小势能原理的变截面压杆临界压力的计算方法[J].浙江理工大学学报.2013,30(1):87-89.
    [30] A. R. Rahai, S. Kazemi. Buckling Analysis of Non-Prismatic Columns Basedon Modified Vibration Modes [J]. Communications in Nonlinear Science andNumerical Simulation,2008,13(8):1721-1735.
    [31] Theodore G. Konstantakopoulos, Ioannis G. Raftoyiannis, George T.Michaltsos. Stability of Steel Columns with Non-Uniform Cross-Sections [J].The Open Construction and Building Technology Journal,2012,6:1-7.
    [32]蒋纯志,李海阳,金桂.变截面铁木辛柯梁的数值分布传递函数法[J].辽宁工程技术大学学报(自然科学版),2011,30(4):530-532.
    [33]刘庆谭.含锥形变截面压杆稳定计算的传递矩阵法[J].计算结构力学及其应用.1996,13(3):364-368.
    [34] Q. S. Li. Buckling of Multi-step Non-uniform Beams with ElasticallyRestrained Boundary Conditions [J]. Journal of Constructional Steel Research,2001,57(7):753-777.
    [35] Q. S. Li. Buckling Analysis of Non-uniform Bars with Rotational andTranslational Springs [J]. Engineering Structures,2003,25(10):1289-1299.
    [36]宋启根,徐梁,宋丹.变截面梁柱刚度方程的Bessel函数解[J].计算力学学报,2001,13(3):355-357.
    [37]王晓臣,蒲军平.变截面梁有限元分析[J].浙江工业大学学报,2008,36(3):311-315.
    [38] Reza Attarnejad. Basic displacement functions in Analysis of NonprismaticBeams [J]. Engineering Computations,2010,27(6):733-745.
    [39]卞敬玲,王小岗.变截面压杆稳定计算的有限单元法[J].武汉大学学报,2002,35(4):102-104.
    [40] J. R. Banerjee, F. W. Williams. Exact Bernoulli-Euler Static Stiffness Matrixfor a Range of Tapered Beam-Column [J]. International Journal for NumericalMethods in Engineerng,1986,23(9):1615-1628.
    [41]陆念力,张宏生.计及二阶效应的一种变截面梁精确刚度阵[J].工程力学,2008,25(12):60-64.
    [42]杨楑一,金建国.变截面Timoshenko梁的有限元解法[J].北京科技大学学报,1992,(3):389-392.
    [43] W. L. Cleghorn, B. Tabarrok. Finite Element Formulation of a TaperedTimoshenko Beam for Free Vibration Analysis [J]. Journal of Sound andVibration,1992,152(3):1531-1544.
    [44] G. Q. Li, J. J. Li. A Tapered Timoshenko-Euler Beam Element for Analysis ofSteel Portal Frames [J]. Journal of Constructional Steel Research,2002,58(12):1531-1544.
    [45] Jin-Jun Li, Guo-Qiang Li. Buckling Analysis of Tapered Lattice ColumnsUsing a Generalized Finite Element [J]. Communications in NumericalMethods in Engineering,2004,20(6):479-488.
    [46] Yasha H. Zeinali, S. Milad Jamali, Saman Musician. General Form of theStiffness Matrix of a Tapered Beam-Column [J]. International Journal ofMining, Metallurgy&Mechanical Engineering.2013,1(2):149-153
    [47] K. J. Bathe, S. Bolourchi. Large Displacement Analysis of Three-DimensionalBeam Structures [J]. International Journal for Numerical Methods inEngineering,1979,14(7):961-986.
    [48]陈政清,增庆元,颜全胜.空间杆系结构大挠度问题内力分析的UL列式法[J].土木工程学报,1992,25(5):34-44.
    [49] Cenap Oran. Tangent Stiffness in Plane Frames [J]. ASCE,1973,99(6):973-985.
    [50] Cenap Oran. Tangent Stiffness in Space Frames [J]. ASCE,1973,99(6):987-1001.
    [51]古雅琦,王海龙,杨怀宇.一种大变形几何非线性Euler-Bernoulli梁单元[J].工程力学,2013,30(6):11-15.
    [52] Turkalj Goran, Brnic Josip, Lanc Domagoj, Kravanja Stojan. UpdatedLagrangian Formulation for Nonlinear Stability Analysis of Thin-WalledFrames with Semi-Rigid Connections [J]. International Journal of StructuralStability and Dynamics,2012,12(3):1-22.
    [53]黄文,李明瑞,黄文彬.杆系结构的几何非线性分析——平面问题[J].计算结构力学及其应用,1995,12(1):7-16.
    [54]王连坤,郝际平,张俊峰等.空间钢框架几何非线性分析的新梁-柱单元[J].西安建筑科技大学学报(自然科学版),2008,40(1):53-59.
    [55] Y. B. Yang, S. P. Lin, C. S. Chen. Rigid Body Concept for GeometricNonlinear Analysis of3D Frames, Plates and Shells Based on the UpdatedLagrangian Formulation [J]. Computer Methods in Applied Mechanics andEngineering,2007,196(7):1178-1192.
    [56] J. Dario Aristizabal-Ochoa. Slope-Deflection Equations for Stability andSecond-Order Analysis of Timoshenho Beam–Column Structures withSemi-Rigid Connections [J]. Engineering Structures,2008,30(9):2517-2527.
    [57] A. Banerjee, B. Bhattacharya, A.K. Mallik. Large Deflection of CantileverBbeams with Geometric Non-Linearity: Analytical and Numerical Approaches[J]. Non-linear Mechanics,2008,43:366-376
    [58] Yongchang Cai, J. K. Paik, Satya N. Atluri. Large Deformation Analyses ofSpace-frame Structures, Using Explicit Tangent Stiffness Matrices, Based onthe Reissner Variational Principle and a Von Karman Type Nonlinear Theory inRotated Reference Frames [J]. Computer Modeling in Engineering andStructures,2009,54(3):335-368.
    [59] JYR Liew. Improved Nonlinear Plastic Hinge Analysis of Space FrameStructures [J]. Engineering Structures,2000,22(10):1324-1338.
    [60]郑廷银,赵惠麟.空间钢框架结构的改进双重非线性分析[J].工程力学,2003,20(6):202-208.
    [61] Pechstein Astrid, Gerstmayr Johannes. A Lagrange-Eulerian Formulation of anAxially Moving Beam Based on the Absolute Nodal Coordinate Formulation[J]. Multibody System Dynamics,2013:1-16.
    [62] O. Millet, A. Hamdouni, A. Cimetiere. An Eulerian Approach of Non-linearMemberane Shell Theory [J]. International Journal of Non-linear Mechanics,2003,38(9):1403-1420.
    [63] Wempner G. Finite Elements, Fininte Rotations and Small Strains of FlexibleShells [J]. International Journal of Solids&Structures,1969,5(2):117-153.
    [64] C Oran, A Kassimali. Large Deformations of Framed Structures under Staticand Dynamic Loads [J]. Computers&Structures,1976,6(6):539-547.
    [65] MA Crisfield, G Cole. Co-Rotational Beam Elements for Two-andThree-Dimensional Non-Linear Analysis[C]. Discretisation Methods inStructural Mechanics, New York: Springer-Verlag,1990:115-124.
    [66] N D Kien. A Timoshenko Beam Element for Large Displacement Analysis ofPlanar Beam and Frames [J]. International Journal of Structural Stability andDynamics,2012,12(6):141-149.
    [67] R. Alsafadie, M. Hjiaj, J. M. Battini. Three-Dimensional Formulation of aMixed Corotational Thin-walled Beam Element Incorporating Shear andWarping Deformation [J]. Thin-Walled Structures,2011,49(4):523-533.
    [68] R. Alsafadie, J. M. Battini, H. Somja, M. Hjiaj. Local Formulation forElasto-plastic Corotational Thin-walled Beams Based on Higher-orderCurvature Terms. Finite Elements in Analysis and Design2011,47(2):119-128.
    [69] N. L. Lu. Eine Methode Zum Aufbau Ebener, Elastokinetischer Modelle FürLenkerkrane[D]. Darmstadt: Dissertation Technische Hochschule Darmstadt,1988.
    [70]陆念力.大位移梁杆系统非线性分析的一种实用方法[J].建筑机械,1990,9:17-21.
    [71]蔡松柏,沈蒲生,胡柏学等.基于场一致性的2D四边形单元的共旋坐标法[J].工程力学,2009,26(12):31-34.
    [72]邓继华,邵旭东,蔡松柏等.大转动三角形平面单元有限元分析的共旋坐标法[J].长沙理工大学学报(自然科学版),2010,7(4):32-36.
    [73]罗晓明,齐朝晖,许永生.含有整体刚体位移杆件系统的几何非线性分析[J].工程力学,2011,28(2):62-68.
    [74] Just D J. Plane Frameworks of Tapering Box and I-Section [J]. Journal of theStructural Division ASCE,1977,103(1):71-86.
    [75] Yang Yeong-Bin, Yau Jong-Dar. Stability of Beams with Tapered I-Sections [J].Journal of Engineering Mechanics,1987,113(9):1337-1357.
    [76]孙逊,舒赣平.变截面框架的二阶非线性分析[J].钢结构,2002,17(6):39-42.
    [77] E. J. Sapountzakis, D. G. Panagos. Nonlinear Analysis of Beams of VariableCross Section, Including Shear Deformation Effect [J]. Arch Appl Mech,2008,78(9):687-710.
    [78] Zhang Hong-sheng, Lu Nianli. Large Displacement Analysis of Tapered BeamStructures [J]. Journal of Donghua University,2010,27(1):117-122.
    [79]郭彦林,王文明,石永久.变截面门式刚架结构的非线性性能[J].工程力学,2000,17(4):29-36.
    [80] GB3811-2008,起重机设计规范[S].北京:中国标准出版社,2008:177-180.
    [81]孙焕纯,王跃方,刘春良.桁架结构稳定分析的几何非线性欧拉稳定理论[J].计算力学学报,2007,24(4):539-544.
    [82] Junke Han, Jingbo Yang, Fengli Yang. Analysis of Overall Stability and LocalStability of Legs on UHV Transmission Steel Tubular Tower[C].2010International Conference on Intelligent System Design and EngineeringApplication,2010:285-289.
    [83] SJ Song, L Li, JY Wang, RN Mao. APDL Language-Based Optimization ofTower Crane[C].2010International Conference on Digital Manufacturing andAutomation,2010:248-251.
    [84]李涵,陆念力.缀条式格构受压构件整体稳定性计算精度的探讨[J].建筑机械化,2005(9):25-27.
    [85]郭彦林,张博浩,赵思远等.梭形钢管格构柱整体稳定承载力设计方法研究[C].第十四届空间结构学术会议,2012:531-539.
    [86] X Wang, RM Teng, J Zhang, etc. Equivalent Inertia Moment in Linear StabilityCalculation of Stepped Beam[C].2009International Symposium onComputational Intelligence and Design,2009:213-217.
    [87] J. S. Wu, M. Hsieh, C. L. Lin. A Lumped-mass Model for the DynamicAnalysis of the Spatial Beam Like Lattice Girders [J]. Journal of Sound andVibration,1999,228(2):275-303.
    [88] Wang Jia, Lu Nianli, Luo Bing. Equivalent Inertia Moment Method to StabilityAnalyze of Lattice Type Beam [J]. Proceedings of the3rd InternationalConference on Steel and Composite Structures, ICSCS07-Steel andComposite Structures,2007:311-315.
    [89] Sim o, Pedro D., Gir o Coelho, Ana M., Bijlaard, Frans S.K.. Stability Designof Crane Columns in Mill Buildings [J]. Engineering Structures,2012,(42):51-82.
    [90]谭伦.履带起重机组合臂架整体稳定性研究[D].大连:大连理工大学,2012:19-45.
    [91]郑昭明,严彬,郑亮.高层塔式起重机稳定性的半解析公式[J].武汉科技大学学报(自然科学版).2004,27(3):280-282.
    [92] Chen, K.Y., Liu, D.S., Tsai. Buckling Load Strength Studies on a Crane Jib byTheoretical Calculations and Finite Element Analysis [J]. European Safety andReliability Annual Conference: Reliability, Risk and Safety: Back to the Future,2010:1928-1937.
    [93] Kim Min-Saeng, Lee Jae-Chul, Jeong Suk-Yong. Structure Evaluation for theLevel Luffing Crane Boom [J]. Transactions of the Korean Society ofMechanical Engineers,2008,32(6):526-532.
    [94] GB/T13752-92.塔式起重机设计规范[S],1992.
    [95]田广范.空间杆系结构的几何非线性分析及塔式起重机塔身计算的研究[D].哈尔滨:哈尔滨建工学院,1987:18-23.
    [96]王恒华,沈祖炎,陆瑞明.平面梁杆结构几何非线性分析的一种简便方法[J].计算力学学报,1997,14(1):119-123.
    [97]王恒华,沈祖炎.平面运动弹性梁杆系统动力分析的实用方法[J].东南大学学报,1997,27(S1):95-102.
    [98] И.Я.КОГАН(黄松元译).建筑用塔式起重机[M].中国工业出版社,1963:48-63.
    [99] G. Mayer. Krafte an Raumfachwerken Torsions BeansPruchung vonFachwerkturmen mit Rechteckigen Querschnitt und Parallelen Seiten [D].1973,(23):13-15.
    [100]李颖,陶学明.塔式起重机塔身腹杆体系抗扭刚度分析[J].四川工业学院学报,1996,(3):66-70.
    [101]曹俊杰,徐克晋.空间塔架静力分析(一)——空间塔架的侧向位移计算[J].太原重型机械学院学报,1985,6(1):39-51.
    [102]曹俊杰,徐克晋.空间塔架静力分析(二)——空间塔架的扭转计算[J].太原重型机械学院学报,1986,7(2):22-32.
    [103]徐格宁.空间桁架扭转惯性矩的计算[J].太原重型机械学院学报,1984,(1):43-54.
    [104]徐格宁.特殊腹杆系统塔架的扭转惯性矩[J].太原重型机械学院学报,1992,13(1):46-55.
    [105] S. Hafner, F. Vogel, C. Konke. Finite Element Analysis of Torsion forArbitrary Cross-Section[C]. Weimar:18th International Conference on theApplication of Computer,2009:1-11.
    [106]桑楠.变截面梁扭转的有限元分析[J].常州工学院学报,2005,18(6):6-8.
    [107]王赞芝,江林雁,江培信.变截面连续梁抗扭惯矩修正系数的计算方法[J].铁道标准设计,2011,(4):45-49.
    [108]朱皓明,高轩能,沈剑波.变截面悬臂构件挠度计算的等效柱法[J].井冈山大学学报(自然科学版),2010,31(4):71-75.
    [109] George C. Tsiatas. Exact Stiffness and Mass Matrices of a Non-UniformBernoulli-Euler2D Beam Resting on an Elastic Foundation[C].10th HSTAMInternational Congress on Mechanics.2013,19(2):25-27.
    [110]陆念力,顾迪民,张立强.塔式起重机塔身稳定性计算[J].起重运输机械,1996,(10):21-22.
    [111]陈玮璋.起重机械金属结构[M].北京:人民交通出版社,1986:93-115.
    [112]陆念力,刘明思.再论弹性约束杆挠度影响系数及稳定性计算[J].建筑机械,2001,(6):37-39.
    [113]陆念力,罗冰,夏拥军.基于二阶理论的两端弹性约束压弯梁的稳定性分析和最大弯矩计算[J].起重运输机械,2009,(5):8-11.
    [114] Zhang Hongsheng, Lu Nianli, Lan Peng. Buckling of Stepped Beams withElastic Supports [J]. Journal of Harbin Institute of Technology,2009,16(3):436-440.
    [115]陈至达.杆、板、壳大变形理论[M].科学出版社.1996:68-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700