用户名: 密码: 验证码:
芍药质量控制方法与白芍总苷药物动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芍药为我国传统中药材。《中国药典》2005年版规定,赤芍为毛茛科植物芍药(Paeonia lactiflora Pall.)或川赤芍(Paeonia veitchii Lynch.)直接使用的干燥根,白芍为植物芍药水煮去皮后使用的干燥根。本论文以白芍和赤芍为研究对象,分别对白芍的化学成分、白芍和赤芍的质量控制方法、白芍的加工和白芍总苷体内药物动力学过程进行了研究。具体内容如下:
     首先采用各种色谱分离手段,对白芍饮片进行了化学成分研究。从中提取分离到了11个化合物,依据化学和波谱分析方法分别鉴定为:芍药苷亚硫酸酯、芍药苷、芍药内酯苷、苯甲酰芍药苷、儿茶素、没食子酸、1,2,3,4,6-五没食子酰基葡萄糖、没食子酸甲酯、没食子酸乙酯、蔗糖和β-谷甾醇。其中芍药苷亚硫酸酯为新化合物。且在白芍饮片中含量较高。经产地进行白芍采收加工调查,推测该化合物可能为白芍的加工产物,提示对白芍加工方法进行研究的必要性。
     从全国各地药店和产区收集了37个白芍样品、34个赤芍样品和芍药鲜根,对其进行质量控制方法研究。
     建立了白芍样品的高效液相指纹图谱,应用对照品对照将色谱图中8个主要色谱峰分别指认为没食子酸、芍药苷亚硫酸酯、儿茶素、芍药内酯苷、芍药苷、1,2,3,4,6-五没食子酰基葡萄糖、苯甲酸和苯甲酰芍药苷。对37个白芍样品进行了指纹图谱分析,并将获得的数据进行相似度分析。结果表明,采用所建立的方法,可将37个白芍样品分为3类。三类样品的相似度分别在0.9-1.0、0.6-0.9和0.2-0.4之间。其中对照药材和来自道地产区的饮片与对照药材划分到了一类(0.9-1.0),其余两类同类样品间相似度比较结果一致,说明所建立的方法能很好地区分白芍药材的质量差异,为白芍的质量控制方法做了有意义的补充。同时发现,芍药苷、芍药内酯苷和芍药苷亚硫酸酯三个成分的变化对白芍药材类别划分有着较大的影响。
     相同条件下建立了赤芍的高效液相指纹图谱,应用对照品对照,图中8个主要色谱峰分别指认为没食子酸、儿茶素、芍药内酯苷、芍药苷、1,2,3,4,6-五没食子酰基葡萄糖、苯甲酸、苯甲酰芍药苷和丹皮酚。对34个赤芍样品进行指纹图谱分析,并将获得的数据进行相似度分析。结果表明,采用所建立的方法,无论以赤芍或川赤芍为对照,都能根据相似度数据将34个样品明显分为两类,一类为赤芍样品,另一类为川赤芍样品,且分类结果与形态学鉴定结果一致,说明所建立的方法可以很好地区分赤芍和川赤芍两个品种,该法简单快速,弥补了传统鉴别的不足。同时发现,赤芍和川赤芍的主要化学成分的区别是没食子酸、1,2,3,4,6.五没食子酰基葡萄糖和鞣质类成分。
     采用所建立的指纹图谱分析方法也可明显区分白芍和赤芍。
     以扑热息痛为内标,采用HPLC对白芍和赤芍中没食子酸、芍药苷亚硫酸酯、儿茶素、芍药内酯苷、芍药苷、1,2,3,4,6-五没食子酰基葡萄糖、苯甲酸和苯甲酰芍药苷等8个主要成分进行了同时定量分析。方法精密度RSD<4.3%,回收率>93.2%,为赤芍和白芍的质量控制方法提供了定量依据。
     分别对37个白芍样品和34个赤芍样品中8个化学成分进行了测定。结果显示:(1)白芍和赤芍化学成分的含量差别显著。芍药苷、芍药内酯苷、芍药苷亚硫酸酯和苯甲酸是两者的最大差别。芍药苷亚硫酸酯只存在于白芍,白芍中芍药内酯苷的含量远远大于赤芍,而赤芍中芍药苷和苯甲酸的含量又明显高于白芍。(2)37个白芍样品中芍药苷的量符合药典规定的仅有20个,而16个样品中芍药苷亚硫酸酯是含量最高的成分。提示,对白芍进行严格地质量控制是当务之急。(3)川赤芍样品中没食子酸含量是赤芍中含量的近10倍,而1,2,3,4,6-五没食子酰基葡萄糖的量更是远远高于赤芍。(4)测定的赤芍样品中芍药苷的含量除1个为1.8%之外,其他均大于2.5%。根据以上结果建议白芍的质量标准增加芍药内酯苷的含量测定项,以区分白芍和赤芍。
     利用所建立的定量分析方法对不同年生和不同商品等级的白芍以及不同产地的芍药根进行了初步比较分析。在所检测的一到三年生样品中,芍药苷的含量随生长年限的延长而增加,而芍药内酯苷随着生长年限的延长而含量明显降低。单从芍药苷的量上分析,可以解释芍药根经三年才能采挖的规定。对商品等级一等品、三等品和芍药侧根化学分析结果说明,芍药侧根不做药用有其科学依据。一等品和三等品之间的化学成分变化并无明显的规律性,依据大小粗细划分等级的规定不科学。杭芍和亳芍的测定结果说明杭芍质量最佳的说法也值得探讨。
     考察了去皮、水煮和硫磺熏制对白芍中8个成分的影响,说明三个阶段都可使白芍成分发生较明显的变化。经去皮水煮加工,除没食子酸和五没食子酰葡萄糖外,白芍中其他6种成分的含量均比加工前的芍药根降低。分别将芍药根经硫磺熏制、与二氧化硫反应和将芍药苷对照品与二氧化硫反应后进行检测,发现芍药苷在有水存在时可与二氧化硫反应生成芍药苷亚硫酸酯,证实了芍药苷亚硫酸酯是在白芍硫磺熏制加工过程中芍药苷的转化产物。经药理实验初步证明芍药苷亚硫酸酯不具有芍药苷对胃肠平滑肌的药理活性,而芍药苷亚硫酸酯的产生明显使芍药苷的含量降低,故白芍的加工过程是否需要硫磺熏制值得探讨。建议白芍的质量标准中增加该化合物的限量检查。
     首次建立了大鼠血浆中芍药苷、芍药内酯苷和二者同时定量分析的HPLC-MS-MS方法。该方法准确、快速,灵敏度高,解决了芍药苷和芍药内酯苷在正常剂量给药时的检测问题。利用该方法分别研究了灌胃给予大鼠单体芍药苷、不同剂量的芍药内酯苷和白芍有效部位白芍总苷后的药物动力学。分别测定了给药后血浆中芍药苷和芍药内酯苷的浓度,根据药-时曲线计算各成分药物动力学参数,并比较各给药形式下的药动学特征。给予单体芍药苷和白芍总苷后芍药苷的C_(max)分别为836.4 ng/ml和947.9 ng/ml,T_(max)分别为20 min和19 min,t_(1/2)分别为122.4 min和64.9 min,AUC_(0-∞)分别为81011.4ng.min/ml和97758.2 ng.min/ml。统计学检验结果表明,芍药苷的C_(max)和T_(max)无显著性差异(p>0.05),AUC_(0-t)与t_(1/2)有显著性差异(p<0.05)。说明尽管两种情况下芍药苷给药剂量相同,但芍药苷动力学过程受不同存在形式的影响。与芍药苷单体比,白芍总苷AUC_(0-t)增加,说明其芍药苷的生物利用度增加,这将更有利于发挥芍药苷的疗效。白芍总苷的t_(1/2)降低,说明其消除加快,提示白芍总苷中有其他成分促进芍药苷的消除。给予低、中、高三种不同剂量的芍药内酯苷后芍药内酯苷的C_(max)分别为221,434,817 ng/ml,T_(max)分别为20,22,19 min,t_(1/2)分别为64.5,70.5,66.6 min,AUC_(0-∞)分别为15948.8,38948.7,72717.8 ng.min/ml。表明芍药内酯苷在体内吸收迅速,消除也较快。经统计学检验表明,在给定的三个剂量范围内,芍药内酯苷药动学具有线性动力学的特征。给予白芍总苷后芍药内酯苷的C_(max)为275.3 ng/ml,T_(max)为19 min,t_(1/2)为63 min,AUC_(0-∞)为11592.0 ng.min/ml。与给予低剂量芍药内酯苷的药动学比较,统计学检验结果表明,芍药内酯苷的C_(mxa)、T_(max)、t_(1/2)和AUC_(0-∞)均无显著性差异(p>0.05),芍药内酯苷药物动力学过程不受白芍总苷中其他成分的影响。白芍总苷中两主要成分的t_(1/2)均为65 min左右,提示白芍总苷在给药时间间隔上应该缩短,日给药次数增加。
     本研究是在中医药学理论和实践指导下,对白芍和赤芍两种药材的质量控制方法进行了研究,并对质量标准提出了建议。对芍药苷、不同剂量芍药内酯苷和白芍总苷的体内药物动力学特征进行了探讨,丰富了中药化学成分的药代动力学研究内容,为探讨中药复杂体系药动学特征作了有益的尝试。本论文为中药材的质量控制和中药药物动力学研究做了有意义的探索。
Paeony root is a commonly used traditional Chinese medicine. It is specified in Chinese Pharmacopoeia (2005 version) that red peony root is the dried root of Paeonia lactiflora Pall. and Paeonia veitchii Lynch. and that white peony root is the decorticated, boiled and dried roots of Paeonia lactiflora Pall.. In the present study, the chemical constituents in white peony root, methods of quality control of paeony, processing of white peony root and pharmacokinetics of total glucoside of paeony was discussed.Eleven compounds were separated from white peony root by using different isolating technique. On the basis of chemical properties and spectroscopic analysis, the compounds were identified as: paeoniflorin sulfonate, paeoniflorin, albiflorin, benzoylpaeoniflorin, catechin, gallic acid, 1,2,3,4,6-pentagalloyglucose, methyl gallate, ethyl gallate, sucrose andβ-sitosterol. Among them, paeoniflorin sulfonate was a novel compound, which was presumed a processing induced artefact from white peony root. Therefore, it was necessary to study the effect of processing on the quality of white peony root.Thirty seven samples of white peony roots and 34 samples of red peony roots were collected from drug stores or from their habitats around China and the quality control method was developed.The HPLC fingerprint used for the quality control of white peony roots was established after investigating chromatography and extracting condition and eight peaks were identified as gallic acid, paeoniflorin sulfonate, catechin, albiflorin, paeoniflorin, 1,2,3,4,6-pentagalloyglucose, benzoic acid and benzoylpaeoniflorin. Thirty seven samples of white peony roots were analyzed with the HPLC fingerprint, and the data were used for similarity evaluation. It was indicated that the 37 samples were identified into three types. The similarity of three types was 0.9-1.0, 0.6-0.9 and 0.2-0.4, respectively. The controlled white peony roots and samples from their habitats were in the same type and the similarity of samples in the same types was close with each other, which showed that the fingerprint could divided white peony roots. The method was a supplement to the quality control of white peony roots. At the same time, it was showed that the viaration of the ratios of paeoniflorin sulfonate, paeoniflorin and albiflorin had serious effect on the type of white peony roots.
     The fingerprint of red peony root was established in the same way and eight peaks were identified as gallic acid, catechin, albiflorin, paeoniflorin, 1, 2, 3, 4, 6-pentagalloyglucose, benzoic acid, benzoylpaeoniflorin and paeonol respectively. Thirty seven samples of white peony roots were analyzed with the HPLC fingerprint, and the data were used for similarity evaluation. It was indicated that the 37 samples could be classified into two types no matter Paeonia lactiflora Pall. or Paeonia veitchii Pall. was used as the reference chromatographic fingerprint. One type of Paeonia lactiflora Pall., the other Paeonia veitchii Pall., which was conformed with the result of morphology identification. It was showed that the fingerprint could identify white and red peony roots. The method was simple and rapid, which is a significant addition to the traditional identification. At the same time, it was showed that the great difference between Paeonia lactiflora Pall. and Paeonia veitchii Pall. lies in the contents of gallic acid, 1, 2, 3, 4, 6-pentagalloyglucose and tannin.
     The developed fingerprint method were also used distinguish white peony roots and red peony roots.
     A reversed phase HPLC method was established for simultaneous determination of eight major constituents, namely gallic acid, paeoniflorin sulfonate, catechin, paeoniflorin sulfonate, albiflorin, paeoniflorin, benzoic acid, pentagalloylglucose and benzoylpaeoniflorin in red peony root and white peony root, with paracetamol as internal standard. The method provided good reproducibility with precision of less than 4.34% and good accuracy with recovery of more than 93.16%.
     Thirty seven white peony roots and 34 red peony roots were determined with the developed quantitative method. Following results were achieved from the analysis. 1. There were significant difference in constituents between white peony roots and red peony roots. And the content difference in paeoniflorin, albiflorin, paeoniflorin sulfonate and benzoic acid was the most prominent. Paeoniflorin sulfonate only existed in white peony roots. The content of albiflorin in white peony root was much higher than that in red peony roots. While, the contents of paeoniflorin and benzoic acid in red peony roots were much higher than those in white peony roots. 2. Among 37 samples of white peony roots, there were only 20 samples whose contents of paeoniflorin was in accordance with the rule of Ch.P.., while paeoniflorin sulfonate was the predominating constituents in 16 samples. 3. The content of gallic acid in Paeonia veitchii Pall. was nearly ten times of that in Paeonia lactiflora Pall.. And, the content of 1, 2, 3, 4, 6-pentagalloyglucose was much higher than that in Paeonia lactiflora Pall.. 4. All red peony samples contained paeoniflorin above 2.5% except that one sample. Therefore, it could be concluded that the lowest limit ofpaeoniflorin in Paeonia lactiflora Pall. specified in ChP was worth to study. According to the above results, it was suggested that the quantitation of albiflorin should be added to the standard for control of white peony roots and the limit of paeoniflorin should be promoted in the standard for control of red peony roots.
     The samples with different years of growth, grads, habitats were compared with the established quantitative method. It was showed that the content of paeoniflorin increased with years of growth. On the contrary, the content of abiflorin decreased. The analysis results also could explain why the tail white peony roots was not used as medicine. But the rule of viaration of constituents between grade one and grade two was not found. And, the determined results of root from Hangzhou and Bozhou indicated that the allegation of root from Hangzhou is the best should be investigated.
     The effect on the constituents in white peony root of decorticating, boiling and fumigating by burning of sulphur was discussed. After boiling, the content of constituents decreased except for gallic acid and 1, 2, 3, 4, 6-pentagalloyglucose. It was also confirmed that paeoniflorin sulfonate was a processing induced artefact from white peony root, which would decrease the content of albiflorin. Preliminary pharmacological experiment showed that paeoniflorin sulfonate did not possess the effect of paeoniflorin on stomach intestine smooth muscle. Therefore, it was suggested that the limit of paeoniflorin sulfonate be added to the standard for control of white peony roots.
     The HPLC-MS-MS methods were developed to determine paeoniflorin, albiflorin and simultaneously determine these two compounds in rat plasma. The methods were sensitive, accurate and rapid. It settled out the problem that paeoniflorin and albiflorin could not be detected in normal dosage. It also provided a good example of applying modem analysis technique for determination of traditional medicine in vivo. The HPLC-MS-MS method was applied to a pharmacokinetie study of paeoniflorin and albiflorin after oral administration of paeoniflorin, albiflorin and total glucoside of paeony. The parameters were calculated according to concentration-time curve. After oral administration of paeoniflorin and total glucoside ofpaeony, the relevant parameters for paeoniflorin were C_(max) 836.4, 947.9 ng/ml, T_(max) 20, 19 min, t_(1/2) 122.4, 64.9 min, AUC_(0-∞) 81011.4, 97758.2 ng.min/ml, respectively. The result of statistics analysis showed, there was no significant differences (p>0.05) in C_(max) and T_(max). On the contrary, there was in AUC_(0-t) Land t_(1/2)(p<0.05). It was indicated that the pharamacokenetic characteristics of paeoniflorin were affected by other constituents in total glucoside of paeony. After oral administration of albiflorin in low, medium and high dosage, the relevant parameters for albiflorin were C_(max) 221, 434, 817 ng/ml, T_(max) 20, 22, 19min, t_(1/2) 64.5, 70.5, 6.6min, AUC_(0-∞) 15948.8, 38948.7, 72717.8 ng.min/ml. The result of statistic analysis showed the pharmacokinetic of albiflorin was linear in the three dosages. After oral total glucoside of paeony, the relevant parameters for albiflorin was C_(max) 275.3 ng/ml, T_(max) 19 min, t_(1/2) 63 min, AUC_(0-∞) 11592.0 ng.min/ml. By comparing the parameters after oral administration of albiflorin in low dosage with that after oral administration of total glucoside of paeony, there were no significant differences(p>0.05) in C_(max)、T_(max)、t_(1/2) and AUC_(0-∞). It was idicated that pharamacokenetic characteristic of albiflorin was not effected by other constituents in total glucoside of paeony.
     It was also showed t_(1/2) of both paeoniflorin and albiflorin were about 65 min, which indicated that the times per day of administration in clinical should be increased.
     The present research provided a significant exploration for the modernization of TCMs.
引文
[1] 梁鑫淼,徐青,肖红斌.中药质量控制的策略与方法.中国中西医结合杂志,2002,22(9):646-647.
    [2] 谢培山.中药质量控制模式的发展趋势.中药新药与临床药理.2001,12(3):188-191.
    [3] 罗国安,王义明,曹进.多维多息特征谱及其应用.中成药,2000,22(6):395-397.
    [4] 毕开顺,孙毓庆,王延琮.用模糊数学评价中成药质量的方法研究.分析测试学报,1988,72 (2):64-70.
    [5] 罗序,毕开顺,王玺等.中药质量化学模式识别研究的进展.药学学报,1993,28(12):936-940
    [6] 吴忠,苏薇薇,何新新.中药连翘质量灰色模式识别研究.中药材,2000,23(9):536-537
    [7] 邹华彬,袁久荣,袁洁.中药质量控制技术方法的历史发展.中成药,2003,25(9):4-6
    [8] 裴利霞.中药药动学研究集粹.中医药学刊,2005,23(1):121-123
    [9] 刘昌孝.中药的药代动力学研究在中药现代化中面临的任务.天津中医药,2003,20(6):1-5
    [10] 卢弘,李敏,邢东明,杜力军.对中药复方药代动力学研究中血药浓度测定方法的评述与思考.世界科学技术——中药现代化,2000,2(4):22-25
    [11] 张丽萍,杨春清,赵永华等.安徽白芍规范化种植加工技术研究及SOP的制定.世界科学技术——中医药现代化,2004,6(30):63-72
    [12] 周红涛.赤芍与白芍的道地性研究.北京中医药大学硕士论文,2002.
    [13] Shibata S, Nakahara M. Paeonoflorin, a glucoside of Chinese paeony root. Chem Pharm Bull, 1963, 11 (3): 372-378.
    [14] 常新金,丁丽霞主编.中药活性成分分析手册(上),学苑出版社,2002:1144
    [15] Kaneda M, Iitaka Y, Shibata S. The absolute structure of paeoniflorin, albiflorin, oxypaeoniflorin and benzoylpaeoniflorin isolated from Chinese paeony root. Tetrahedron, 1972, 28: 4309-4317
    [16] Tanaka T, Kataoka M, Tsuboi N, et al. New monoterpene glycoside esters and phenolic constituents of paeoniae radix, and increase of water solubility of proanthocyanidins in the presence of paeoniflorin. Chem Pharm Bull, 48(20): 201-207
    [17] Murukami N, Saka S, Shimada H, et al. New bioactive monoterpene glycosides from paeoniae radix. Chem Pharm Bull, 44(6): 1279-1281
    [18] Kang S, Shin K, Chi H, et al. Galloylpaeoniflorin, a new acylated monoterpene glucoside from paeony root. Arch Pharm Res, 1991, 14(1): 52-54
    [19] Hsu F, Lai C, Cheng J. Antihyperglycemic effects of paeoniflorin and 8-debenzoylpaeoniflorin, glucosides from the root of paeonia lactiflora. Planta Medica, 1997, 63: 323-325
    [20] 杨秀伟,白云鹏和严仲铠.卵叶芍药化学成分的研究.中国中药杂志,1994,19(4):234-235
    [21] Yu J, Elix J, Iskander M. Lactiflorin, a monoterpene glycoside from paeony root. Phytochemistry, 1990, 29(12): 3859-3863
    [22] 郎蕙英,李守珍和梁晓天.中药赤芍中化学成分的研究.药学学报,1983,18(7):551-552
    [23] Shimizu M, Hayashi T, Morita N, et al. Paeoniflorigenone, a new monoterpene from paeony roots. 1981, 22(32): 3069-3070
    [24] Shimizu M, Hayashi T, Morita N, et al. The structure of paeoniflorigenone, a new monoterpene isolated from paeoniae radix. Chem Pharm Bull, 1983, 31(2): 577-583
    [25] Lang HY, Li SZ, Terrence M, et al. A new monoterpene glycoside of paeonia lactiflora. Planta Medica, 1984, 50(60): 501-504
    [26] Hayashi T, Shinbo T, Shimizu M, et al. Paeonilactone-A,-B and-C, new monoterpenoids from paeony root. Tetrahedron letters, 1985, 26(31)3699-3702
    [27] Akira I, Hideji i. Triterpenoids of paeonia japonica callus tissue. Phytochcmistry, 1988, 27(9): 2813-2815
    [28] Akira l, Kohei K, Toshiko S, et al. Triterpenoids from callus tissue cultures of paeonia species. 1995, 38(5): 1203-1207
    [29] Kamiya K, Yoshioka K, Saiki Y, et al. Triterpenoids and flavonoids from paeonia lactiflora. Phytochemistry 44(1): 141-144
    [30] Kadota S, Terashima S, Basnet P, et al. Palbinone, a novel terpenoid from paeonia albiflora; potent inhibitory activity on 3α-hydroxysteroid dehydrogenase. Chem Pharm Bull, 41 (3): 487-490
    [31] 陈海生,徐一新,廖时萱等.川赤芍化学成分研究.第二军医大学学报,1994,15(1):72-73
    [32] Structure of gallotannins in paeoniae radix. Chem Pharm Bull. 1980, 28(9): 2850-2852
    [33] Nishizawa M, Yamagishi T, Nonoka G, et al. Tannins and related compounds. Ⅻ. Isolation and characterization of galloyglucoses from radix and their effect on urea-nitrogen concentration in rat serum. Chem Pharm Bull, 1983, 31 (8): 2593-2600
    [34] 傅丰永,尚天民,徐宗沛.中药赤芍化学成分的研究.药学学报,1963,10(9)
    [35] 郎蕙英,李守珍,梁晓天.中药赤芍化学成分的研究,药学学报,1983,18(7):551-552
    [36] 陈海生,廖时萱,洪志军.川赤芍化学成分的研究.中国药学杂志,1993,28(3):137-138
    [37] 王文祥,蒋小岗,顾明等.芍药的化学成分研究.天然产物研究与开发,2000,12(6):37-39
    [38] Tomoda M, Matsumoto K, Shimizu N, et al. Characterization of a neutral and an acidic polysaccharide having immunological activities from the root of paeonia lactiflora. Biol Pharm Bull, 1993, 16(12): 1207-1210
    [39] 梁君山,陈敏珠,徐叔云.白芍总苷对大鼠佐剂关节炎及其免疫功能的影响.中国药理学与毒理学杂志,1990,4(4):258-261
    [40] 李俊,赵维忠,陈敏珠.白芍总苷对大鼠腹腔巨噬细胞产生白三烯B_4的影响.中国药理学通报,1992,8(1):36-38
    [41] 菅谷爱子.芍药的药理与药效.国外医学中医中药分册.1992,14(5):15-18
    [42] 梁昊若,刘倩娴,辛达愉等.白芍药的抗炎免疫药理作用研究.新中医,1989,21(3):51
    [43] 吴春福.芍药总苷的镇痛作用.中药通报,1985,10(6):43
    [44] 王永祥.白芍总苷的镇痛作用.中国药理学通报,1993,9(1):58
    [45] 彭招华,王朝虹,闵知大.芍药苷对小鼠学习记忆能力的影响.中药材,2000,23(8):482-483
    [46] 楚正绪,沈洪兴,竺青等.赤芍提取物改善学习记忆的作用.第二军医大学学报,1991,1295):465-466
    [47] 倪建伟.芍药及其成分芍药苷对大鼠空间识别障碍的改善作用.国外医学中医中药分册,1993,15(2):40
    [48] 杨军,王静,冯平安等.赤芍总苷对小鼠脑缺血再灌注损伤的保护作用.中药材,2000,23(2):95-97
    [49] 黄泰康主编.常用中药成分与药理手册.北京:中国医药科技出版社.1994
    [50] 李金才.白芍食疗的回顾与展望.中药通报,1987,12(8):54-56
    [51] 刘超,王静,杨军.赤芍总苷活血化淤作用的研究.中药材.2000,23(9):557-560
    [52] 丁正康.重用白芍治肠道激惹综合症.浙江中医杂志,1990,25(10):445
    [53] 杨秦等.中药药理研究方法学.北京:人民卫生出版社,1993
    [54] 戚心广,稻桓丰.丹参、赤芍对实验性肝损伤大鼠血浆纤维联接蛋白影响的研究.中国医科大学学报,1990,199
    [55] 周丹,韩大庆,刘静等.白芍、赤芍及卵叶芍药滋补强壮作用的研究探讨.吉林中医药,1993,(2):38
    [56] 丁俊杰.再谈白芍利小便.辽宁中医杂志,1990,14(3):40-41
    [57] 肖尚喜,张咏南,史百芬.白芍总苷促干扰素诱生及抗病毒作用的研究.中国药理学通报,1993,9(1):58-60
    [58] 张雪琴,汪伟民.白芍总苷对老年性疾病的治疗作用.中国药理学通报,1988,4(5):314-315
    [59] 胡世林,刘岱,杨立新,等.不同产地白芍中芍药甙和丹皮酚的含量测定及比较.中国中药杂志,1994,19(6):328-330
    [60] 金卫国,胡晓京,韩宏伟.白芍炮制的初步研究.中成药研究,1987,(5):16-17
    [61] 孙秀梅,张兆旺,郑毅.芍药药用的炮制研究.中国中药杂志,1983,18(7):411-413
    [62] 徐丽华,文红梅.赤芍中芍药营含量测定方法研究.中药材,2001,24(5):346-347
    [63] 钱亚男,刘信顺,张先芬.高效液相色谱法测定白芍总苷中芍药苷的含量.中草药,1995,26(7):349~350
    [64] 刘玉红,陈燕,易进海.HPLC法测定白芍总苷的含量.华西药学杂志,2002,17(4):295-296
    [65] 刘玉红,陈燕,易进海.不同提取溶剂对白芍中芍药总苷含量测定结果的影响.基层中药杂志,2001,15(5):19-20
    [66] 金昌东,徐国钧,金蓉鸾等.反相HPLC法测定13种芍药根中甙类和苯甲酸的含量。中国药科大学学报,1989,20(3):139-142
    [67] 金昌东,徐国钧,金蓉鸾等.反相HPLC法测定不同采集期毛果芍药根中甙类和苯甲酸的含量.中国药科大学学报,1991,22(5):279-281
    [68] 徐先祥,刘青云,俞能高等.双波长薄层扫描测定赤芍总苷中芍药苷的含量.时珍国医国药,2001,12(1):25~26
    [69] 胡世林,刘岱,杨立新,等.不同产地白芍中芍药甙和丹皮酚的含量测定及比较.中国中药杂志,1994,19(6):328~330
    [70] 寿国春,吕归宝.大孔树脂预分离-薄层光密度法测定消炎灵软胶囊中芍药苷的含量.中草药,1997.28(8):462-463
    [71] 中华人民共和国卫生部药典委员会.中国药典(一部).广东科技出版社,化学工业出版社.1995:142~143
    [72] 杨更亮,宋秀荣,张红医等.胶束毛细管电泳法测定牡丹皮及芍药中牡丹酚和芍药甙.分析化学研究报告,1997,27(1):1~4
    [73] Susumu Honda, Kenji Suzuki, Mayumi Kataoka, et al. Analysis of components of Paeonia radix by capillary zone electrophoresis. J Chromatogr. 1990, 515: 653~658
    [74] Hsin-Kai Wu, Shuenn-Jyi Sheu. Capillary electrophoretic determination of constituents of Paeonia Radix. J. Chromatogr. A. 1996, 753(1): 139~146
    [75] Lu ZH, Morinaga O, Tanaka H, Shoyama Y. A quzntitative ELISA using monoclonal antibody to survey paeoniflorin and albiflorin in crude drugs and traditional Chinese herbal medicines. Biological and Pharmaceutical Bulletin, 2003, 26(6): 862-866
    [76] 张克荣,刘荣霞,许俊博等.RP-HPLC同时测定赤芍中3种化学成分.中国药学杂志,2003,38(10):793-795
    [77] 张克荣,白丽,徐赞美等.RP-HPLC同时测定白芍中芍药苷和芍药内酯苷的含量.药物分析杂志,2003,23(3):222-224
    [78] 周红涛,骆亦奇,胡世林等.赤芍与白芍化学成分含量比较研究.中国药学杂志,2003,38(9):654-657
    [79] 兰亦青,范友华,卢宁等.白芍中丹皮酚、芍药苷和苯甲酸的反相薄层色谱分析.天然产物与开发,2002,13(6):42-44
    [80] Wu HK, Sheu SJ. Capillary electrophoretic determination of constituents of Paeoniae Radix. Journal of Chromatography A, 1996, 753: 139-146
    [81] 张克荣,毕开顺.赤芍HPLC指纹图谱的研究.中草药,2003,34(11):1048-1051
    [82] 邹忠梅,徐丽珍,杨世林.芍药总苷高效液相色谱指纹图谱研究.药学学报,2003,38(1):46-49
    [83] 贾国惠,洪筱坤,王智华.白芍炮制品与生品的色谱指纹谱分析.中草药,2002,33(增刊):38-42
    [84] 谢培山,林巧玲.白芍总苷的薄层色谱指纹图谱实验研究.中药新药与临床药理,2004,15(3):171-173
    [85] 董彬,孙素琴,周红涛等.红外光谱和聚类分析法无损快速鉴别赤芍.光谱学与光谱分析,2002,(232-234)
    [86] 陈崇宏,张源,陈光亮等.芍药甙的药代动力学研究.中国药理学通报,1990,6(5):299-301
    [87] 陈光亮,徐叔云,陈崇宏等.芍药甙的药代动力学研究.安徽医科大学学报,1991,26(1):65-66
    [88] Xu SY, Ch CH, Ch GL. The pharmacokinetics of paeoniflorin. Eur. J. Parmacol. 1990, 183: 2390
    [89] Takeda S, Isono T, Wakui Y, et al. Absorption and excretion of paeoniflorin in rats. J Pharm Pharmacol, 1995, 47: 1036-1040
    [90] Takeda S, Isono T, Wakui Y, et al. In-vivo assessment of extrahepatic metabolism of paeoniflorin in rats: relevance to intestinal floral metabolism. J Pharm Pharmacol, 1997, 49: 35-39
    [91] Heikal OA, Akao T, Takeda S, et al. Pharmacokinetic study of paeonimetabolin-Ⅰ, a major metabolite of paeoniflorin from paeony poots. Biol Pharm Bull, 1997, 20(5): 517-521
    [92] Chen LC, Lee MH, Chou MH, et al. Pharmacokinetic study of paeoniflorin in mice after oral administration of paeoniae radix extract. J Chromatogr B, 1999, 735: 33-40
    [93] 国家药典委员会编.中华人民共和国药典2005年版(一部).北京:化学工业出版社.
    [94] 黄璐琦,王敏,格小光等.赤、白芍药的划分和地域分布的相关性探讨.中国中药杂 志.1998:23(4),204~205
    [95] Wu-Chang Chuang, Weng-Chung Lin, Shuenn-lyi Sheu. et al. A comparative study on commercial samples of the Roots of Paeonia Vitchii and P. lactiflora. Pianta Medica. 1996, 62 (4): 347-351
    [96] 周红涛,胡世林,郭宝林等.芍药野生与栽培群体的遗传变异研究.药学学报,2002,37(5):383~388
    [97] 卫生部药政局.中药材手册.人民卫生出版社.1990,82
    [98] 中华人民共和国药典(1990年版一部)注释编委会编.中华人民共和国药典(1990年版一部)注释选编.广东:广东科技出版社.1993,84~86
    [99] Hayes P. Y, Lehmann R, Penman K, Kitching W and J. De Voss J. Sodium paeoniflorin sulfonate, aprocessing derived artefact from paeoniflorin. Tetrahedron Letter, 2005, 46: 2615-2618.
    [100] 张晓燕,王金辉,李铣.白芍的化学成分研究.沈阳药科大学学报,2001,18(1):30-32.
    [101] Kazuo Yamasaki, Miyuki Kaneda, Dsamu Tanaka. Carbon-~(13)NMR spectral assignments of paeoniflorin homologues with the aid of spin-lattice relaxation time. Tetrahedron Letters, 1976, 44: 3965-3968.
    [102] 陈海生,廖时萱,洪志军.川赤芍化学成分的研究.中国中药杂志,1993,28(3):137-138.
    [103] 裴月湖,韩冰,冯宝民等.狼毒大戟化学成分的研究.中草药,2002,33(7):591-592.
    [104] 李昆贤,陈育平,李若琦.没食子酸甲酯合成工艺改进.贵州化工,2002,27(1):12-13.
    [105] M. Yoshikawa, E. Uchida, A. Kawaguch. Galloyl-oxypaeoniflorin, suffruticosides A, B, C and D, five new antioxidative glycosides, and suffruticoside E, a paeonol glycoside, from Chinese Moutan cortex. Chem. Pharm. Bull, 1992, 40(8): 2248-2250.
    [106] 于德泉,杨峻山.《分析化学手册 第七分册》(第二版).北京,化学工业出版社,1999,70.
    [107] 徐坚,王春英,吴良才.三种炮制方法对白芍化学成分得影响.中药材,1988,11(5):35-36
    [108] Zhou Q, Li Z G. Pharmaceutical effects of total glucosides of peony and its application in autoimmune disease [J]. Chin J New Drugs Clin Rem (中国新药与临床杂志), 2003, 22 (11): 687-691.
    [109] H. Ishida, M. Takamatsn, K. Tsuji, T. Kosuge. Studies on active substances in herbs used for oketsu ("stagnant blood") in Chinese medicine Ⅵ. Chem Pharm Bull, 1987, 35: 849-852.
    [110] K. Dezaki, I. Kimura, K. Miyahara, M. Kimura. Complementary effects of paeoniflorin and glycyrrhizin on intracellular Ca~(2+) mobilization in the nerve-stimulated skeletal muscle of mice. Jpn J Pharmacol, 1995, 69: 281-284.
    [111] M. Kimura, 1. Kimura. Decreasing effects by glycyrrhizin and paeoniflorin on intracellular Ca~(2+) -aequorin luminescence transients with or without caffeine in directly stimulated-diaphragm muscle of mouse. Jpn J Pharmacol, 1985, 39: 387-390.
    
    [112] M. Kimura, I. Kimura, H. Nojima. Depolarizing neuromuscular blocking action induced by eletropharmacological coupling in the combined effect of paeoniflorin and glycyrrhizin. Jpn J Pharmacol, 1985, 37: 395-399.
    
    [113] J. Liang, A. Zhou, M. Chen, S. Xu, Eur J Pharmacol, 1990, 183: 901-907.
    [114] H. Y. Tsai, Y. T. Liu, C. H. Tsai, Y. F. Chen. Effects of paeoniflorin on the formalin-induced nociceptive behaviour in mice. J Ethnopharmacol, 2001, 75: 267-271.
    [115] F. L. Hsu, C. W. Lai, J. T. Cheng. Antihyperglycemic effects of paeoniflorin and 8-debenzolpaeoniflorin, glucosides from the root of Paeonia lactiflora. Planta Med, 1997, 63: 323-325.
    [116] T Okubo, F Nagai, T Seto, K Satoh, K Ushiyama, I Kano. The inhibition of phenylhydroquinone-induced oxidative DNA cleavage by constituents of Moutan Cortex and Paeoniae Radix. Biol Pharm Bull, 2000, 23: 199.
    
    [117] A Sugaya, T Suzuki, E Sugaya, N Yuyama, K Yasuda, T Tsuda. Inhibitory effect of peony root extract on pentylenetetrazol-induced EEG power spectrum changes and extracellular calcium concentration changes in rat cerebral cortex. J Ethnopharmacol, 1991, 33: 159.
    [118] Kanaoka M, Yano S, Kato H, Nakanish K, Yoshizaki M. Studies on the enzyme immunoassay of bio-active constituents contained in oriental medicinal drugs. III. Enzyme immunoassay of paeoniflorin, a constituent of Chinese paeony root. Chem.Pharm. Bull. 32:1461-1466
    [119] Xu S, Chen C and Chen G The Pharmacokinetics of paeoniflorin. European Journal of Pharmacology 1990; 183:2390.
    [120] Chen LC, Chou MH, Lin MF and Yang LL. Pharmacokinetics of paeoniflorin after oral administration of Shao-yao Gan-chao Tang in mice. Japanese Journal of Pharmacology 2002; 88: 250-255.
    [121] Chen LC, Lee MH, Chou MH, Lin MF and Yang LL. Pharmacokinetic study of paeoniflorin in mice after oral administration of Paeoniae radix extract. Journal of Chromatography B 1999; 735: 33-40.
    
    [121] Zhang Z, Qin LM and Chen KJ. Study on the pharmacokinetic of paeoniflorin contained in xiongshao capsule in canine. Chinese Journal Experimental Traditional Medical Formulae 2000, 6: 21-24.
    [123] Ye G, Li YZ, Li YY, Guo HZ and Guo DA. SPE-HPLC method for the determination and pharmacokinetic studies on paeoniflorin in rat serum after oral administration of traditional Chinese medicinal preparation Guan-Xin-Er-Hao decoction. Journal of Pharmceutical and Biomedical Analysis 2003; 33: 521-527.
    [124] Takeda S, Isono T, Wakui Y, Mutsuzaki Y, Sasaki H, Amagaya S and Maruno M. Absorption and excretion ofpaeoniflorin in rats. Journal of Pharmacy and Pharmacology 1995; 47: 1036-1040.
    [125] Sheng YX, Li L, Wang CS, Li YY and Guo DA. Solid-phase extraction-liquid chromatographic method for the determination and pharmacokinetic studies of albiflorin and paeoniflorin in rat serum after oral administration of Si-Wu decoction. Journal of Chromatography B, 2004, 806: 127-132.
    [126] 钟大放.以加权最小二乘法建立生物分析标准曲线的若干问题.药物分析杂志,1996,16(5):343-346
    [127] H. Thomas karnes, Clark March. Precision, Accuracy, and Data Acceptance criteria in biopharmaceutical analysis. Pharmaceutical Research, 1993. 10(10): 1420-1426
    [128] R. A. Upton. Simple and reliable method for serial sampleing of blood from rats. Journal of Pharmaceutical sciences. Sciences, 1975, 64(1): 112-114

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700