用户名: 密码: 验证码:
微晶技术在水泥土中的应用和复合地基应力场数值试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要论述了微晶体水泥土配方试验和复合地基单桩应力场数值试验研究工作。
     首先,基于对水泥加固土的机理和水泥水化、硬化的原理分析,制定了微晶体添加剂配方,大量正交试验结果表明;微晶体水泥在水泥掺合比较低(水泥稳定土)时,对水泥土早期强度有增强作用,并能够缓解随着龄期增长抗折强度降低的趋势。通过以上试验结果,结合电子显微镜扫描试验,笔者从热力学和结晶学角度对微晶体水泥加固土的机理进行解释。
     其次,从连续体力学理论出发,有限单元法在计算机容量允许的情况下,网格划分越细越精确。笔者运用拟连续微元概念,说明考虑到研究对象是具有一定材料特性时,网格的划分范围就受到一定的限制。并且举例论证了基于材料特性的网格划分范围的极值。以此来探讨了有限单元法应用于非连续体时应注意的主要问题。
     最后,笔者运用ANSYS6.1大型有限元通用软件,分析了复合地基单桩的附加应力分布规律,得出:附加应力等值线图虽呈马鞍型,但应力数值的分布很复杂,其中桩侧摩阻力对其周围桩、土应力的分布有明显的影响。根据对大量附加应力数据的分析,得出附加应力在地基土中的传递规律:与荷载平行时,附加应力传递规律与纵波传播规律类似。垂直与荷载时,附加应力传递规律与横波传播规律类似。通过实例证明,复合地基数值试验对确定其附加应力、桩侧摩阻力有积极作用,可以解决一些目前常规方法无法完成的任务。
This paper mainly expounded the experimental researching on the minicrystal Cement-Stabilized Soil (CSS) additive recipe and the numerical test on stress field of composite foundation.
    Firstly, base on the analysis of the mechanism of Cement-Stabilized Soil and the principles of hydration and hardening of cement, the author drew up the additive recipe of minicrystal Cement-Stabilized Soil. The results of a large quantity of orthogonal experiments indicated that the early intensity of Cement-Stabilized Soil can been swelled when the intermingle ratio was slow and the trendy of intensity increased due to time prolonging can be put off. Base on the analysis of the above experimental result, combining the experiments of scanning electron microscope, The author explained the mechanism of the minicrystal Cement-Stabilized Soil from the theory of Thermodynamic and crystallography.
    Secondly, Girding of Finite Element Method (FEM) is more precision while gird has been plotted more densely, if capability of computer can been done, according to the theory of continuum mechanics. The author accounted for the confine of girding taking into account the material property according to the conception of resembling continuum tiny element. And testified the extremum of gird by illustrating an example. The same time, the author discussed the mainly problem of non-continuum when using FEM.
    With the software of ANSYS6. 1, the law of the single pile stress field of composite foundation has been analyzed. The results show that isoclines of additional stress field of composite foundation take on the shape of saddle. But distributing dates is complex, because the pile lateral friction resistance affects it. Analysis a lot dates of additional stresses, the author know the law of them passing on, which are consistent with the law of longitudinal wave direction of its passing on parallel the direction of lode, and are consistent with the law of transverse wave while the passing on upright the direction of lode. The numerical test can gain the additional stresses and the pile lateral friction resistance by illustrating testified, and can solve some problem which cannot solve by the routine methods at present.
引文
[1] 叶书麟、韩杰、叶观宝编著.地基处理与拖换技术.中国建筑工业出版社.1997.
    [2] 刘景政、扬素春、钟冬波编著.地基处理及实例分析.中国建筑工业出版社。1998.
    [3] 曾小强.水泥土的力学特征和复合地基沉降计算研究.浙江大学硕士学位论文.1993.
    [4] Yuan-zhong hu, Gary c. barber, dong zhu. "Numerical Analysis for the Elastic Contact of Real Rough Surfaces" .Tribology Transactions. Vol. 42(1999),3, 443-452.
    [5] 谢慕华编著.表面物理化学.中国建筑工业出版社.1997.
    [6] 白云.钢渣—硅酸盐水泥界面形成热力学探讨.硅酸盐建筑制品.1991(3).
    [7] 王政、赵晶、李家和等.晶种水化的热力学研究.哈尔滨师范大学自然科学学报.1996,(3),60—63.
    [8] 吕辉、钟景裕等。添加少量熟料烧制水泥机理初探。华南理工大学学报(自然科学学报)。1996(4),32—34.
    [9] 王政、龚春明、苏波.晶种在水泥负温水化系统中的应用.工业建筑.1998(4),32—34.
    [10] Jaeger Jc. CookNw. Fundamentals of Rock mechanics. John Wiley and sons ,Inc ,Newyork. Ny, 1996.
    [11] 肖志兴.油井水泥水化过程中微晶作用机理分析.石油钻探工艺.1998(5),46—49.
    [12] T. Telliskivi and Uolofsson. Contact mechanics analysis of measured wheel-rail profiles using the finite element method. Proc Instn Mech Engrs Vol215 Part F, 65-72.
    [13] C.W.W. Ng, L.M. Zhang, and K. K.S. Ho. Influenceof Iaterally Load sleeved piles snd pile groups on slope stabi]ity. Can. Geotech. 1.38; 553-566(2001).
    [14] Broms, B. The lateral resistance of piles in cohesive soils. Jounmal of the Soil Mechanics and Foundation Engineering Division. ASCE, 90(2): 27-63. (1964).
    [15] Johnson, K.L. Contanct Mechanics. Cambridge University Press, Cambridge, (1985).
    [16] 童小东.水泥土添加剂及其损伤模型试验研究.浙江大学博士学位论文.1998.
    [17] Wriggers, P. Finite element algorithms for contact problems. Arch. Comput. Meth. Engng, 1995,2,1-49.
    [18] 张土乔.水泥土的应力应变关系及搅拌桩破坏特性研究.浙江大学硕士学位论文.1992.
    [19] 熊厚金、林天健、李宁.岩土工程化学.科学出版社.2001.
    [20] 河海大学 钱家欢、殷宗泽主编.土工原理与计算(第二版).中国水利水电出版社.1996.
    [21] 郭庆国著.粗粒土的工程特性及应用.黄河水利出版社.1998.
    [22] 叶瑞伦.无机材料物理化学.武汉工业出版社.1986,217.
    
    
    [23] (苏)E.T 叶姆采夫著,关醒凡,于华译.工程流体力学.高等教育出版社.1990(6).
    [24] 屈智炯编著.土的塑性力学.成都科技大学出版社.1987.
    [25] 洪康主编.土质学与土力学.人民交通出版社.1982.
    [26] 俞炯奇.非挤土长桩性状数值分析.浙江大学博士学位论文.2000.
    [27] 金宗川、顾源兴等.垫层作用下石灰桩复合地基工作性状.岩土工程学报.1998,20(2),37—40.
    [28] 黄孟生、张载华.水泥搅拌桩复合地基研究.河海大学学报.1998,26(4),115—118.
    [29] 郑宏、李焯芬、潭国焕等.有限元分析的位移控制法及其应用.岩土工程学报.2002,24(1),81—85.
    [30] 郑俊杰,区剑华,吴世明等.多元复合地基的理论与实践.岩土工程学报.2002,24(2),208—212.
    [31] 何昌荣、扬桂芳.邓肯—张模型参数变化对计算结果的影响.岩土工程学报.2002,24(2),170—174.
    [32] 胡同安等.水泥—磷石膏固化剂的实验研究.中国土木工程学会第七届土力学及基础工程学术会议论文集.中国建筑工业出版社.1994,525—528.
    [33] 李明逵等.浙江太平洋化学有限公司环氧丙烷工程深层水泥搅拌桩实验报告.浙江大学土木系岩土工程研究所.1991.
    [34] 李明逵等.浙江太平洋化学有限公司离子膜烧碱工程深层水泥搅拌桩实验报告.浙江大学土木系岩土工程研究所.1991.
    [35] 林琼.水泥系搅拌桩复合地基实验研究.浙江大学硕士学位论文.1989.
    [36] 潘林有.(温州)软土—水泥土桩复合地基实验研究和理论探讨.浙江大学硕士学位论文.1995.
    [37] 周明凯等.HS软土固化剂性能研究.武汉工业大学学报.1996(4),120—122.
    [38] 何满潮、景海河、孙晓明.软岩工程力学.科学出版社.2002.
    [39] 牛志荣、李宏等.复合地基及其工程实例.中国建材工业出版社.2000(10).
    [40] 徐芝纶.弹性力学简明教程.高等教育出版社.1998.
    [41] 嘉木工作室编.ANSYS5.7有限元实例分析教程.机械工业出版社.2002.
    [42] 谭建国 编著.使用ANSYS6.0进行有限元分析.北京大学出版社.2002(3).
    [43] ANSYS, ANSYS Manual Set, 1998, ANSYS Ins, Southpoint, 275 Technology Drive, Canonshurg, PA 15317, USA.
    [44] P. Fanning, O. Kelly. Smeared crack models of RC bezms with externally bonded CFRP plates. Computational Mechanics 26 (2000) 325-332.
    [45] Kotsovos MD, Spiliopoulos KV (1998). Evaluation of structuralconcrete design concept based on finite element analysis. J. Comput mech. 21 (4/5): 330-338.
    [46] F. Slanina. Self-organized branching process for a one-dimemsional rice-pile model. Eur. Phys. J. B 25. 209-216 (2002).
    [47] C. O. Okagbue. JA. Yakubu. Limestone ash waste as a substitute for lime in soil improvement for engineering construction. Bull Eng Geol Env (2000) 58: 107-113.
    [48] OLA SA. The potential of lime stabilization of laterite soils. Eng Geo1(1977) 11: 305-317.
    
    
    [49] OLA SA. Geotechnical properties and behaviour of some stabilized Nigerian laterite soils. Q J Eng (1978) 11: 145-160.
    [50] S. Schrader. M. Langmaack. K. Helming. Impact of Collembola and Enchytraeidae on soil surface roughness and properties. Biol Ferul Soils(1997) 25: 396-400.
    [51] Vliet PCJ van, West LT, Hendrix PF, Coleman De. The influence of Enchytracidac(Oligochacta) on the soil porosity of small microcosms. Geoderma(1993) 56: 287-299.
    [52] 韩煊、李宁、王玉娥.复合地基设计理论的数值试验研究.勘察科学技术.2000,(3)3—12.
    [53] 韩煊、李宁.复合地基中群桩相互作用机理的数值试验研究.土木工程学报.1999,(8)75—80.
    [54] 韩煊、李宁.单桩复合地基加固机理数值试验研究.岩土力学.1999,(4)42—49.
    [55] 雷小燕、G.Swoboda,杜庆华.接触摩擦单元的理论及其应用.岩土工程学报。1994,(3).
    [56] 朱百里,沈珠江等编著.计算土力学.上海:上海科学技术出版社.1990.
    [57] 陈仲颐、叶书麟主编.基础工程学.北京:中国建筑工业出版社.1991.
    [58] 殷宗泽、朱泓、许国华.土与结构材料接触面的变形及其数学模拟.岩土工程学报.1994,16(3)23—32.
    [59] 王玉兰.水泥系拌合法加固软土地基研究报告.交通部一航局科研所.1979

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700