用户名: 密码: 验证码:
地下埋藏式岔管非线性分析与加固措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前水电站规模越来越大,地下埋藏式钢岔管越来越多的被应用在大中型水电站项目中。对于高水头、大直径的地下埋藏式压力钢管的HD值已经超过钢管规范值,而且规范中限制钢管在弹性范围内工作,视围岩为弹性体,这不能真实反映钢材和围岩的实际承载能力。因而不能满足现代水电站项目的需要。
     由于埋藏式钢岔管结构非常复杂,设计中一般按明岔管进行,但是这种方法没有反映出钢岔管与围岩的真实应力,也无法体现围岩的承载能力。
     随着计算机技术的发展和有限元理论的不断完善,许多优秀的计算软件越来越广泛的应用在工程设计与分析中,已经成为解决复杂工程问题的有效工具。
     本论文以ANSYS和FLAC~(3D)为平台,对某大型水电站埋藏式钢岔管进行了多种方案的计算分析。为了尽可能准确的反映结构的力学行为,作者分别对混凝土衬砌和围岩的线弹性和弹塑性材料不同考虑时,岔管应力状态及荷载分配的影响进行了分析。并且考虑了由于开挖造成的一次应力场和衬砌形成的二次应力场的影响作用。对于钢衬、混凝土衬砌和围岩,作者选取了不同的单元形式和材料进行了计算分析。
     由于地下埋藏式岔管的结构复杂性,岔裆区域应力高度集中,为了降低俞裆区域应力、加固岔管,作者提出了三种加固方法:增加钢衬厚度、钢衬钢筋混凝土衬砌新型式和设置预应力支撑,并对这三种方案进行了计算分析,从适用性和经济性上进行了比较。加厚钢衬和钢衬钢筋混凝土衬砌新型式都能有效地达到降低岔管应力集中的效果,然而这两种方案会增加工程造价、加大施工难度,影响工期。布置预应力支撑体系同样能达到降低岔管应力集中的效果,而且具有操作方便、经济实用的优点。
     对于加固效果更加理想的预应力支撑体系,作者进行了敏感性分析,得出了一些有益的结论。
Steel penstocks embedded in rock are being widely used in middle and large-scale hydroelectric projects, whose scales are getting larger and larger. The value of HD exceeds the value set by the Code, and the method suggested by the Code can not embody the real load bearing capability of the materials under the internal water pressure. So it can not meet the need of construction of modern hydroelectric projects.
     Embedded bifurcation is generally regarded as exposed bifurcation in engineering design for its complex structure. However, this method doesn't reflect on the interaction of steel bifurcation and surrounding rock. Therefore, their real stress can't be rightly judged, and the influence of surrounding rock bearing capacity. In addition, the very complex structure cause stress to high converge, and the large stress exceed the criterion of material.
     With increasing development of computer science and continuous perfection of the finite element theory, many kinds of excellent universal analysis software are more and more widely used in engineering design and analysis, and even have been valid tools in solving complicated engineering problem.
     In this paper, with the help of ANSYS and FLAC software, several schemes are carded out for embedded bifurcation in one large-scale hydroelectric projects. In order to reflect the loads-bearing characteristic of the structure as accurate as possible, the author take into account for the elastic and plastic behavior of filled concrete and surrounding rock, consider the effects of initial geostress and secondary geostress caused by excavation and supports, and the bending and shear effects of steel lining subject to internal water pressure. Different element types and material forms are chosen according to steel shell, concrete and rock.
     To reinforce the bifurcation, the author gives three schemes: thickenning steel、using the steel lined-reinforced concrete、pre-stress anchor pile, and analyze mechanics behaviors of three schemes separately. To thicken steel or use the steel lined-reinforced concrete can meet the need of reinforcing the bifurcation, but the two schemes have shortcomings as well, because they will cost more money and time.
     The author analyze the sensibility of three schemes to optimize crucial parameters, then get some useful conclusions for the project design.
引文
[1] A.P.弗列依谢斯特等.水电站钢管道[M].北京:水利电力出版社,1990.
    [2] 陆家佑.水利水电地下工程设计理论发展.水力发电学报,Vol.49,No.2,1995
    [3] 中华人民共和国水利电力部.水电站压力管道设计规范(试行)SD144-85.北京:水利水电出版社,1985.
    [4] 潘家铮.压力钢管[M].北京:电力工业出版社,1982.
    [5] 马善定,汪如泽.水电站建筑物[M].北京:中国水利水电出版社,1996.
    [6] 伍鹤皋,生晓高,刘志明。水电站钢衬钢筋混凝土压力管道[M].中国水利水电出版社,2000.
    [7] 杨桂通,树学锋.塑性力学[M].中国建材工业出版社,2000.
    [8] 王勖成,邵敏.有限单元法基本原理和数值方法[M].清华大学出版社,1997.3.
    [9] 蒋友谅.非线性有限元法[M].北京:北京工业学院出版社,1988.
    [10] 钟秉章,马善定.水电站埋藏式压力钢管弹塑性设计原理和方法[M].水利学报,1983.4.
    [11] 董哲仁.钢筋混凝土非线性有限元法原理与应用[M].中国铁道出版社,1993.
    [12] 董哲仁.钢衬钢筋混凝土压力管道设计与非线性分析[M].中国水利水电出版社,1998.
    [13] 钟秉章,陆强.按联合受力设计的埋藏式钢岔管有限元分析方法.水利学报,1994.2.
    [14] 肖明,伍鹤皋.抽水蓄能电站大PD值压力管道结构研究—埋藏式压力钢管与围岩联合承载研究.武汉大学,2002.
    [15] 王志国.高水头大PD值内加强月牙肋岔管布置与设计.机电与金属结构,水力发电,2001.10.
    [16] 马以超.水电站月牙肋钢岔管的设计分析[M].水电站压力管道.武汉:湖北科学技术出版社,2002.
    [17] 陈官福,张楚汉,伍鹤皋.地下埋藏式压力管道非线性有限元分析.水利水运科学研究,2000.3.
    [18] 张强勇,俞欲泰.有压隧洞衬砌与围岩相互作用数值模拟分析.武汉水利电力大学学报,1998.4.
    [19] 叶英华,刁波.钢筋混凝土结构非线性分析中的本构关系.哈尔滨建筑大学学报,1995.6.
    [20] 李曼.考虑围岩联合承载的埋藏式钢岔管有限元分析.武汉大学硕士学位论文,2003.6.
    [21] 丁旭柳.地下埋藏式钢岔管结构研究,武汉大学硕士学位论文,2001.4.
    [22] 俞欲泰等.大型地下洞室围岩稳定三维弹塑性有限元分析.岩石力学与工程学报,1987(1),47-56.
    [23] 金丰年,钱七虎.隧洞开挖的三维有限元计算.岩石力学与工程学报,1996(3).
    [24] 田斌,刘启超.大型地下钢筋混凝土岔管的工作性态研究.武汉水利电力大学(宜昌)学报,1998(2).
    [25] S. Jacobsen. Pressure distribution in the stell-lined tunnels and shafts. Dec. 1977.
    [26] S. Jacobsen. Recommendation on the design of steel linings for penstock. Water power & dam construction, Apr. 1990.
    [27] Hegao Wu, P.D. Gosling. An Economic Solution for Penstock Bifurcation. The International Journal on Hydropower and Dams, 1999(2).
    [28] Anon. Progress for Himalayan hydro. Tunnels and Tunnelling International, v 34, n 6, June, 2002, p 22-24
    [29] 王金龙.地下埋管非线性有限元分析.武汉水利电力大学硕士论文,2000.6.
    [30] 刘树亚.高地应力区复合衬砌地下结构数值模拟及岩土强度理论研究.武汉:武汉水利电力大学硕士学位论文,1995.6.
    [31] Chen WF. Plasticity in Reinforced Concrete. MeGraw-Hill Book Company. New York, 1982.
    [32] 惠卓,秦卫红,吕志涛.非线性空间有限元在钢筋混凝土分析中的应用.东南大学学报,1997.9.
    [33] J.N. Thomas. An Improved Accelerated Initial Stress Procedure for Elastoplastic FEM Analysis. Int. J. Num. Analy. Meth. Geomech, Vol. 8,1984.
    [34] Zhao, Jian. Tunnels and underground structures:proceedings of the International Conference on Tunnels and Underground Structures. Singapore, 26-29 Nov. 2000.
    [35] 周颖.地下洞群开挖过程的三维非线性仿真分析.武汉水利电力大学博士后研究工作报告,1999.
    [36] 吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M].上海:同济大学出版社,1997.
    [37] 苏凯.水工隧洞钢筋混凝土衬砌非线性有限元分析.武汉大学硕士学位论文,2003.
    [38] 李哲斐.钢岔管结构的优化设计.河海大学硕士学位论文,2005.
    [40] Zhou Y, Sensitivity Analysis and Optimal for stiffener Plates in Penstock Bifurcation, PH.D. Thesis University of Illinois at Chicago, USA, 1991.
    [41] 周勇,朱彦鹏,王卫华.黄土边坡框架预应力锚杆支档结构的优化设计[G].第十三届全国结构工程学术会议论文集.北京:清华大学出版社,2004,21(Ⅱ):393-398.
    [42] (日)野口建夫,片山英名,村山弘.月牙肋钢岔管的围岩负荷设计在奥美浓水电站的应用。山西水利科技,1994(2):82-91.
    [43] M.A. Lynch, D.G. Moffat, D.N. Moreton. Limit loads for cracked piping branch junctions under pressure and branch out-of-plane bending. Pressure Vessels and Piping, 77(2000):185-194.
    [44] 秦继章,龚国芝.月牙肋钢岔管结构模型实验与计算结果的比较[J].水利学报,2003(12):114-127.
    [45] Broch E. Unlined High Pressure Tunnels in Areas of Complex Topography. Water Power & Dam Construction, 1984(9).
    [46] Swanson H S, Chapton H J, Wilkinson H J, King C L, Neison E D, Design of Wye Branches for Steel Pipe. Journal of the American WaterworksAssociation, 1995,47(6).
    [47] Seeber G. Power Conduits for High Plants. Water Power & Dam Construction, 1985(7):95-98.
    [48] Seeber G. Power Conduits for High Head Plants. Water Power & Dam Construction, 1985(6):50-54.
    [49] 刘沛清,屈秋林等。内加强月牙肋三岔管水利特性数值模拟[J].水利学报,2004,(3):42-46.
    [50] Amphlett, M B. et al. Similarity of Free-Vortex at Horizontal Intake. Journal of Hydraulic Research, 1978,16(2):95-105.
    [51] U. Bucle, M. Peric. Numerical simulation of buoyant and thermocapilary convection in a squsre cavity. Numer Heat Transfer, Part A, 1992,21,121-141.
    [52] 张晋秋.水电站埋藏式钢管弹塑性工作原理及材料特性研究,武汉水利电力大学硕士学位论文,1988.
    [53] 吴文峰.地下埋管的受力分析及结构优化研究.河海大学硕士学位论文,2001.
    [53] 陈观福.地下埋藏式压力钢管强度及抗外压稳定研究.武汉水利电力大学硕士学位论文,1999.
    [54] 候艳春.预应力技术在地下支护工程中的应用研究.同济大学硕士学位论文,2006.
    [55] 杨新安,黄宏伟,丁全录.FLAC程序及其在隧道工程中的应用[J].上海铁道大学学报(自然科学版),1996(17):39-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700