用户名: 密码: 验证码:
玉米粗缩病相关性状的遗传学分析和QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米(Zea mays L.)是世界范围内重要的粮食和饲料作物,在农业生产中占有举足轻重的地位。玉米粗缩病是世界范围内严重危害玉米生产的一种病毒病。经过我国科研工作者的长期研究,确定了我国玉米粗缩病的病原是水稻黑条矮缩病毒(RBSDV)。RBSDV主要通过传播介体灰飞虱(Laodelphax sreiatellus Fallen.)进行传播,当玉米生育期和灰飞虱迁飞的高峰期重合时,引起玉米粗缩病的爆发和流行。由于我国生产上所用的骨干自交系和杂交种的粗缩病抗性差,近年来玉米粗缩病导致玉米大面积减产,严重制约了我国玉米产量的提高。培育抗粗缩病玉米品种已成为我国玉米育种高度关注的课题和难题。玉米粗缩病抗病性鉴定试验结果表明,玉米对粗缩病的抗性呈现数量性状的特征,是受到多基因控制的。经过多年努力,我国玉米育种工作者已培育出一批抗玉米粗缩病的自交系,如90110、齐319、X178等。为了控制该病害的发生和流行、减少生产损失,开发并利用抗病玉米品种本身的抗病QTL进行遗传改良是减轻玉米粗缩病危害的关键。
     近年来,国内外对玉米粗缩病研究逐步深入,但并没有取得突破性的进展,主要原因在于玉米粗缩病发病的方式较为复杂,涉及到病毒、传播介体灰飞虱和玉米植株这三方面的相互关系,导致玉米植株抗病性鉴定难度大,鉴定的准确性较差和抗病性QTL定位困难。因此,建立科学合理的粗缩病抗性鉴定方法和准确鉴定分离群体中不同基因型的粗缩病抗性是准确定位和克隆粗缩病抗病QTL的前提。本工作开展了玉米粗缩病抗性鉴定方法的改进和粗缩病抗病QTL定位研究。
     1.建立田间自然发病结合人工接毒的联合鉴定方法
     本研究利用灰飞虱作为传毒介体,以山东济南地区自然发病的玉米粗缩病植株叶片饲喂灰飞虱。而后从饲喂灰飞虱的饲养桶中随机挑选5头灰飞虱成虫作为检测的样本,利用我国玉米粗缩病病原水稻黑条矮缩病毒(RBSDV)基因组的特异性引物检测灰飞虱带毒情况。在来自14个灰飞虱饲养桶的样本中检测出有11个样本中的灰飞虱携带RBSDV.2010年5月在网棚中利用塑料萌种盘萌发玉米实验材料,待植株处于一叶一心期时,将携带RBSDV的灰飞虱按照500头/m2的密度放入网棚中,连续传毒5天。5天后利用虱蚜净将剩余灰飞虱全部杀灭。待植株长至三叶期时,将它们移栽到济南地区吕家村试验田中生长,由于此时适逢田间灰飞虱的迁飞高峰期,而玉米植株又处在对灰飞虱侵染敏感阶段,因而在田间又经历一次田间自然感染。通过两种接毒方法的联合使用,提高了试验材料的粗缩病发病率,提高了鉴定结果的可靠性和重复性。该方法可以在较短时期内检测大量的玉米植株,为鉴定大量分离群体材料的粗缩病抗性和相关的QTL定位奠定了基础。
     2.玉米粗缩病的遗传分析
     本研究利用课题组创制的“掖478×90110”的RILs的F7:9群体为实验材料,从2008年到2010年,在山东省济南和莱州两个试验点连续种植RIL群体和掖478、90110以及其F1植株,通过田间自然发病的方法和联合接毒鉴定的方法进行粗缩病的抗病性评判。在实验材料开花期对玉米粗缩病相关性状,包括上部节间性状、叶片背面蜡质性状、雄穗发育情况以及粗缩病发病指数等进行观测和统计。按照植株粗缩病的病级和各个性状的等级整理数据,然后对三年两地的实验数据进行遗传分析,结果表明玉米粗缩病在“掖478×90110”的后代中,抗病特性主要由基因型决定,受到环境效应、基因型与环境互作效应的影响较小。粗缩病抗性的广义遗传力范围为0.71~0.94。即在该RILs群体中粗缩病的抗性主要是由遗传因素决定的。分析粗缩病相关性状参数的分布可得出,玉米植株的粗缩病抗性决定于来自90110的主效QTL。
     3.玉米粗缩病抗病QTL定位
     利用覆盖整个玉米基因组的512对SSR引物在RILs群体中检测标记多态性,选多态性良好且扩增条带清晰的SSR引物用于QTL的定位检测,共计检测到5个控制粗缩病抗性及相关性状的加性QTL,分别位于玉米基因组的2号、6号、7号、8号以及10号染色体上,分别命名为qMRD2、qMRD6、qMRD7、qMRD8以及qMRD10。其中QTL qMRD8几乎在所有的粗缩病相关性状中被检测到,而且qMRD8单独能够解释粗缩病表型变异的12-28.9%,是一个主效QTL。QTL qMRD2、qMRD6和UqMRD7在整个QTL的定位实验中至少被检测到3次,也是重复性良好的粗缩病抗性相关QTL。QTL qMRD10仅仅在上部节间性状中被检测到了一次,且效应值较小,该QTL需要后续的工作继续进行验证。检测到的全部QTL总共可以解释粗缩病表型变异值的41.43-50.84%。本实验中qMRD6、 qMRD7和qMRD83个QTL与之前本实验室王飞等利用SSR-BSA去检测到的粗缩病抗性位点相重合,这提示在这些QTL区及其邻近位置上存在着玉米粗缩病抗性基因。本研究检测到的主效QTL可以通过MAS的方法导入抗病性较弱的骨干自交系中,用于加快玉米粗缩病抗病性育种的进程。
     本工作的意义有:1.首次利用田间自然发病结合人工接毒的联合检测方法进行了玉米粗缩病抗性鉴定。该方法可有效提高玉米粗缩病抗性鉴定的准确性和稳定性。2.通过粗缩病抗病性的遗传分析确定了来自“掖478×90110”的RILs群体中抗病性主要由遗传因素决定,且存在抗粗缩病的主效QTL。3.通过粗缩病抗性QTL检测,定位了5个粗缩病抗性相关的QTL,其中3个QTL与SSR-BSA法鉴定出的相关位点重合,可用于采用MAS方法培育抗粗缩病玉米材料。
Maize (Zea mays L.) is the worldwide most important food and forage crop as well as a model plant for genetics and development biology, and plays a decisive role in agriculture. Maize rough dwarf disease (MRDD) is a viral disease that is widely distributed in the worldwide and causes great yield reduction of maize. In China, The pathogen of MRDD has been identified as rice black-streaked dwarf virus (RBSDV). RBSDV is mainly transmitted by a kind of planthopper (Laodelphax sreiatellus Fallen.) in a persistent manner among individuals. When the maize seedlings suffer the large scale migration of planthopper from wheat or other grasses in the field, it may cause the outbreak of MRDD. The MRDD has caused a great and large-scale yield reduction of maize in China for the poor resistance to MRDD of elite inbred lines and hybrids in recent years. The MRDD has become one of the hardest problems in maize production, and obstructs our grain production. The results of the assays of maize resistance to MRDD show that the maize resistance to MRDD take on the features of quantitative trait and is controlled by multiple genes. Meanwhile, Chinese breeders have selected a bulk of maize inbred lines with resistantance to MRDD, such as90110, Qi319, X178et al. To control the outbreak and transmission of MRDD and reduce the loss of maize yield, it is the key step to identify the resistant QTL in maize and improve the elite maize inbred and hybrid using these QTL.
     Recently, the researches of maize resistance to MRDD have been accelerated, but the breakthrough progresses are not made. The major reason is the conditions of MRDD are complicated that involve the correlations of the virus, vector-planthopper and maize. It is hard to accurately identify the individual phenotype and to map the QTL conferring resistance to MRDD. But, the phenotype identification is the foundation for mapping and cloning the resistant QTL that develop the appropriate scientific methods to identify maize resistance to MRDD accurately in the segregation populations. In this study, the improved method to identify the maize resistance to MRDD is developed and the QTL conferring resistance to MRDD are identified.
     1. The development of combined identification method based on the combination of natural infection and artificial inoculation
     In this study, the planthoppers were used as the medium to transmit RBSDV and were cultured in the feeding buckets and fed on the diseased maize leaves from naturally infected field-grown plants with typical symptoms of MRDD in the Jinan area of Shandong province. Subsequently, five adult-planthoppers were randomly selected as a sample to detect RBSDV, and then the RBSDV specific primers were used to screen the samples from different feeding buckets.11out of14samples were positive. May1st in2010, the RILs and their parental lines (90110and Ye478) were germinated at plastic plates in the net house. When the seedlings grew to the1-leaf period, the planthoppers with RBSDV were dispersed into the net house. The average density of planthoppers was about500/m2. After a5-day inoculation, the insecticide was used to kill all of the planthoppers, and the seedlings were maintained to grow continually in the net house and then were transplanted to the experiment fields at the3-leaf stage in Jinan area. The seedlings were infected again by the planthoppers at the migratory flight period of planthoppers in field. The incidence of MRDD and the stability and repetitiveness of identification results were increased by the combination of the artificial inoculation and natural infection. And plenty of maize plants could be screened in a short time by using this method. The combined method has laid the foundation of identifying abundant examples in the segregation population.
     2. The genetic analysis of maize rough dwarf disease
     The analysis was performed in common maize using a set of recombinant inbred lines (RILs) F7;9derived from 'Ye478×90110'.The RILs population, Ye478,90110and F1were grown continually at the area of Jinan and Laizhou respectively from2008to2010, and then were identified the resistance to MRDD through the method combining the artificial inoculation and natural infection. The phenotypes related to MRDD including the shortened superior internodes, enation, tassel type and disease severity index were evaluated at the flowering stage. Subsequently, the genetic analyses were performed using the3-year experimental data at two plots according to the disease grade and the level of traits related to MRDD. The broad sense heritability of resistance to MRDD is from0.71to0.94, that is to say, the resistance to MRDD was mainly determined by the genotype in the population of Ye478and90110, with minor influence of the environment and the interaction effect between the genotype and environment. The distribution analysis of traits related to MRDD showed that there were major QTL from90110conferring resistance to MRDD.
     3. Mapping of QTL conferring resistance to MRDD
     The512SSR markers covering the whole maize genome were screened polymorphisms between the two parents Ye478and90110. And the polymorphism SSR markers with clear band were used for QTL mapping by using the RILs. Five additive QTL related to resistance were detected and were mapped on chromosome2,6,7,8and10respectively. The QTL were named as qMRD2, qMRD6, qMRD7, qMRD8and qMRD10, respectively. The qMRD8was a major QTL, that could be detected in all traits mapping, and explain the phenotypic variation of12-28.9%. QTL qMRD2, qMRD6and qMRD7also had good repetitiveness, which were detected3times at least through the whole mapping experiment. The qMRDIO was only detected once at the trait of shortened superior intemodes with relative small effect and need to be verified in subsequent experiment. All of these QTL could explain the phonotypical variance of41.43-50.84%. In this study, the QTL qMRD6, qMRD7and qMRD8were coincidence with the loci that were detected by Dr. Wang using SSR-BSA method, previously. The results suggested that these QTL and the loci nearby these QTL may contain the genes conferring resistance to MRDD. The major QTL detected in this study can be introduced into the elite inbred lines with little resistance to MRDD by MAS to accelerate the proceeding of maize breeding.
     In this research, the combined inoculation method including natural infection and artificial inoculation was used to study the resistance to MRDD for the first time, which could enhance the stability and validity of resistance to MRDD, and could increase the detecting amount of segregation population. Moreover, this study proved that the resistance to MRDD was mainly due to the genetic factors through the genetic analysis. There were5QTL conferring resistance to MRDD detected through the QTL mapping, and3of them were coincidence with the loci detected through SSR-BSA method. Finally, this study laid the foundation of MRDD resistance breeding in maize by the method of MAS.
引文
1. Harpaz I, Minz G, Nitzani F. Dwarf disease of maize. FAO Plant Protect Bull, 1958,7:43
    2. Dovas CI, Eythymious K, Katis NI. First report of maize rough dwarf virus (MRDV) on maize crops in Greece. Plant Pathol,2004,53(2):238
    3. Distefano AJ, Conci LR, Munoz Hidalgo M, et al. Sequence analysis of genome segments S4 and S8 of Mal de Rio Cuarto virus (MRCV):Evidence that the virus should be a separate Fijivirus species. Archives of Virology,2002,147: 1699-1709
    4. 苗洪芹,陈巽祯.河北玉米粗缩病的发生和防治.植物保护,1997,23(6):17-18
    5. 李常保,宋建成,姜丽君.玉米粗缩病及其研究进展.植物保护,1999,25(5):34-37
    6. 陈景堂,池节敏,刘克增等.玉米粗缩病(MRDV)研究现状及展望.玉米科学,2000,8(3):76-78
    7. 楼辰军,李凤华,钱芳等.玉米粗缩病的研究概况.天津农业科学,2006,12(1):36-38
    8. 周益军,程兆榜,范永坚等.江苏玉米粗缩病发生规律和防治技术研究.面向21世纪植物保护发展战略,2001,1141-1143
    9. Chen SX, Zhang QY. Advance in research on rice black-streaked dwarf disease and maize rough dwarf disease in China. J Plant Prot,2005,32:97-103
    10. 李斌.玉米粗缩病7号染色体抗病位点的精细定位.山东大学硕士学位论文,2008
    11. 山东省植保总站.全省植保情况,2009年第18期
    12. Luisoni E, Lovisolo O, Kitagawa Y, et al. Serological relationship between maize rough dwarf virus and rice black-streaked dwarf virus. Virology,1973,52: 281-283.
    13. Azuhata F, Uyeda I, Kimura I, et al. Close similarity between genome structures of rice black-streaked dwarf and maize rough dwarf viruses. Journal of General Virology,1993,74:1227-1232.
    14. Marzachi C, Boccardo G, Milne R, et al. I Genome structure and variability of Fijivirus. Seminars in Virology,1995,6:103-108.
    15. McMahon JA, Dale JL, Harding RM. Taxonomic implications for Fijiviruses based on the terminal sequences of Fiji disease fijivirus. Archives of Virology,1999, 144:2259-2263.
    16. Wang ZH, Fang SG, Xu JL, et al. Sequence analysis of the complete genome of rice black-streaked dwarf virus isolated from maize with rough dwarf disease. Virus Genes,2003,27:163-168.
    17. 李照会,郭兴启,叶保华等.感染玉米粗缩病毒后玉米植株的超微结构病变研究.中国农业科学,2002,35(3):264-266
    18. 阮义理,蒋文烈,林瑞芬.稻病毒病介体昆虫灰飞虱的研究.昆虫学报,1981,24(3):283-289
    19. 蔡邦华,黄复生,冯维熊等.华北稻区灰飞虱的研究.昆虫学报,1964,13(4):552-571
    20. 李济宸,高立起,李青松.灰飞虱发生规律研究.北京农业科学,1988,16(6):24-27
    21. 陈巽祯,杨满昌,刘信义等.玉米粗缩病发生规律及综合防治研究.华北农学报,1986,1(2):90-97
    22. 刘志增,池书敏,宋占权等.玉米自交系及杂交种抗粗缩病鉴定与分析.玉米科学,1996,4(4):68-70
    23. 张会孔,杨振霞,陈振东等.玉米粗缩病严重度分级标准的研究.植保技术与推广,1998,18(5):3-4
    24. Di Renzo MA, Bonamico NC, Diaz DD, Salerno JC, Ibanez MA, Gesumaria. Inheritance of resistance to Mal de Rio Cuarto (MRC) disease in Zea mays L. J Agric Sci,2002,139:47-53
    25. 苗洪芹,田兰芝, 路银贵等.简便易行的玉米粗缩病严重度分级标准.植物保护,2005,31(6):87-89
    26. 路银贵, 曹永胜, 田兰芝等.玉米粗缩病病情严重度分级标准及病情指数与产量损失率关系的研究.华北农学报,2006,21(4):87-90
    27. 钱幼亭,孙晓平,刘艳.我国玉米粗缩病发生现状和综合防治策略探讨.中国有害生物论文集,北京农业出版社,1996
    28. 成长庚,赵阳,林付根等.玉米粗缩病播种期避病研究.玉米科学,2000, 8(3):81-82
    29. 陈永坤,李新海,肖木辑等.64份玉米自交系抗粗缩病的遗传变异分析.作物学报,2006,32(12):1848-1854
    30. 郭启唐,李钊敏,董哲生.玉米粗缩病及自交系抗病性观察与分析.植物保护,1995,1:21-23
    31. Basso CM, Presello D, Frutos E, et al. Characterization of sources of genetic resistance to "mal de rio cuarto" (MRDV-RC) in populations of maize (Zea. may L.) under natural infection. Cochabamba, Santa Cruz, Bolivia, Tomo,1995,361-376
    32. 王安乐, 赵德发, 陈朝辉等.玉米自交系抗粗缩病特性的遗传基础及轮回选择效应研究.玉米科学,2000,8(1):80-82
    33. 路银贵,苗洪芹,田兰芝等.国外及国内玉米自交系抗粗缩病鉴定及分析.河北农业科学,2001,5(4):22-25
    34. 张永生.玉米遗传图谱构建和花粉管通道法转化玉米的研究.山东大学,博士学位论文,2005
    35. 王飞.玉米粗缩病抗病位点的分子标记定位.山东大学,博士学位论文,2007
    36. Shi LY, Hao ZF, Weng JF et al. Identification of a major quantitative trait locus for resistance to maize rough dwarf virus in a Chinese maize inbred line X178 using a linkage map based on 514 gene-derived single nucleotide polymorphisms. J Mol Breed,2012, doi:10.1007/sl1032-011-9652-0
    37. Bonamico NC, Di Renzo MA, Ibanez MA, Borghi ML, Diaz DG, Salerno JC, Balzarini MG. QTL analysis of resistance to Mal de Rio Cuarto disease in maize using recombinant inbred lines. J Agric Sci,2012, doi:10.1017/S0021859611000943
    38.王安乐,王娇娟等.网棚控制灰飞虱传毒感病鉴法.山西农业科学,1998,26(2):68-69
    39. 邸垫平,苗洪芹,路银贵等.玉米抗粗缩病接种鉴定方法研究初报.河北农业大学学报,2005,28(2)76-78
    40. Louie R, Abt JJ. Mechanical transmission of maize rough dwarf virus. Maydica,2004,49:231-240
    41. Zhou T, Wu LJ et al. Transmission of Rice Black-Steaked Dwarf Virus from Frozen Infected Leaves to Healthy Rice Plants by Small Brown Planthopper (Laodelphax striatellus). J Rice Sci,2011,18(2):152-156
    42. Bostein B, White R L, Skolnick M. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet,1980,32: 314-331
    43. Beckmann JS, Soller M. Restriction fragment length polymorphisms in genetic improvement:methodologies, mapping and costs. Theor Appl Genet,1983,67: 35-43
    44. Davis GL, McMullen MD, Baysdorfer C et al. A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map. Genetics,1999,152:1137-1172
    45. Chang C, Bowman JL, Dejohn AW et al. Restriction fragment length polymorphism map for Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA,1988,85: 6850-6860
    46. Nam HG, Giraudat J, der Boer B et al. Restriction fragment length polymorphism linkage map of Arabidopsis thaliana. The Plant Cell,1989,1:699-705
    47. Nagamura Y, Antonio BA, Sasaki T. Rice molecular genetic map using RFLPs and its applications. Plant Mol Biol,1997,35(1):79-87
    48. Paillard S, Schnurbusch T, Winzeler M et al. An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet,2003,107(7): 1235-1242
    49. Becker J, Vos P, Kuiper M et al. Combined mapping of AFLP and RFLP markers in barley. Mol Gen Genet,1995,249(1):65-73.
    50. Warnke SE, Barker RE, Jung G et al. Genetic linkage mapping of an annual x perennial ryegrass population. Theor Appl Genet,2004,109(2):294-304.
    51. Jin H, Domier LL, Shen X et al. Combined AFLP and RFLP mapping in two hexaploid oat recombinant inbred populations. Genome,2000,43(1):94-101.
    52. Menz MA, Klein RR, Mullet JE et al. A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP, RFLP and SSR markers. Plant Mol Biol,2002,48(5-6):483-99.
    53. Zhu Y, Strassmann JE, Queller DC. Insertions, substitutions, and the origin of microsatellite. Genet. Res,2000,76:227-236
    54. Han OK, Kaga A, Isemura T et al. A genetic linkage map for azuki bean. Theor Appl Genet,2005,111:1278-1287
    55. Roder MS, Korzun V, Wendehake K et al. A microsatellite map of wheat. Genetics,1998,149:2007-2023
    56. Jones ES, Dupal MP, Dumsday JL et al. An SSR-based genetic linkage map for perennial ryegrass (Lolium perenneL.). Theor Appl Genet,2002,105:577-584
    57. Haussmann BIG, Hess DE, Seetharama N et al. Construction of a combined sorghum linkage map from two recombinant inbred populations using AFLP, SSR, RFLP, and RAPD markers, and comparison with other sorghum maps. Theor Appl Genet,2002,105:629-637
    58. Sharopova N, McMullen MD, Schultz L et al. Development and mapping of SSR markers for maize. Plant Molecular Biology,2002,48:463-481
    59. Gonzalo MJ, Oliver M, Garcia-Mas J et al. Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis meloL.). Theor Appl Genet,2005, 110:802-811
    60. Liu XM, Smith CM, Gill BS. Identification of microsatellite markers linked to Russian wheat aphid resistance genes Dn4and Dn6. Theor Appl Genet,2002,104: 1042-1048
    61. Chu CG, Faris JD, Friesen TL et al. Molecular mapping of hybrid necrosis genes Neland Ne2in hexaploid wheat using microsatellite markers. Theor Appl Genet, 2006,112(7):1374-1381
    62. Guo RX, Sun DF, Tan ZB, Rong DF et al. Two recessive genes controlling thermophotoperiod-sensitive male sterility in wheat. Theor Appl Genet,2006,112(7): 1271-1276
    63. Zabeau M. Selective restriction fragment amplification:a general method for DNA fingerprinter. European Patent Application. Publication No.0534858 A1,1993
    64. Vos P, Hogers R, Bleeker M et al. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Research,1995,23:4407-4414
    65. Bachem CWB, Hoeven RS, Bruijn SM et al. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP:analysis of gene expression during potato tuber development. Plant J,1996,9:745-753
    66. Bachem CWB, Oomen RJ, Visser GF. Transcript imaging cDNA-AFLP:a step-by-step protocol. Plant Mol Biol Report,1998,16:157-173
    67. Bove J, Lucas P, Godin B et al. Gene expression analysis by cDNA-AFLP highlights a set of new signaling networks and translational control during seed dormancy breaking in Nicotiana plumbaginifolia. Plant Mol Biol,2005,57:593-612
    68. 吴敏生,高志环,戴景瑞.利用cDNA-AFLP技术研究玉米基因的差异表达.作物学报,2001,24(3):339-342
    69. Cnops G, Boer B, Gerats A et al. Chromosome landing at the Arabidopsis TORNADOI locus using an AFLP-based strategy. Mol Gen Genet,1996,253:32-41
    70. Lahaye T, Shrrasn K, Schulze-Lefert P. Chromosome landing at the barley Rarl locus. Mol Gen Genet,1998,20:92-101
    71. Simons G, Van der lee T, Diergarde P et al. AFLP-based fine mapping of the Mlo gene to a 30-kb DNA segment of the barley genome. Genomics,1997,44:61-70
    72. Thomas CM, Vos P, Zabeau M et al. Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to Clados-porium fulvum. Plant J,1995,8(5):785-794
    73. Miftahudin GJ, Scoles JP, Gustafson. AFLP markers tightly linked to the aluminum-tolerance gene Alt3 in rye (Secale cereale L). Theor Appl Genet,2002,104: 626-631
    74. Karlsson EK, Baranowska I, Wade CM, et al. Efficient mapping of mendelian traits in dogs through genome-wide association. Nat Genet,2007,39:1321-1328
    75. Andersson L. Genome-wide association analysis in domestic animals:a powerful approach for genetic dissection of trait loci. Genetica,2009,136:341-349
    76. Clark RM, Schweikert G, Toomajian C, et al. Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science,2007, 317(5836):338-342
    77. Yan J, Yang X, Shah T, et al. High-throughput SNP genotyping with the GoldenGate assay in maize. Mol Breed,2009,25(3):441-451
    78. Akhunov E, Nicolet C, Dvorak J. Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina Golden Gate assay. Theor Appl Genet,2009,119:507-517
    79. Murray SC, Rooney WL, Hamblin MT, et al. Sweet sorghum genetic diversity and association mapping for brix and height. Plant Genome,2009,2(1):48-62
    80. Emersion RA, Beadle GW and Fraser AC. A summary of linkage studies in maize. Cornell university Agric. EXP. Stn. Memoir,1935,180:1-83
    81. Roman H and Ullstrup LL. The use of A-B translocations to locate genes in maize. Agron. J.1951,43:450-454
    82. Helentjaris T, Slocum M, Wright S et al. Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor Appl Genet,1986,72:761-769
    83. Weber D, Helentjaris T. Mapping RFLP Loci in Maize Using B-A Translocations. Genetics,1989,121:583-590
    84. Burr B, Burr FA, Thompson KH et al. Gene Mapping with Recombinant Inbreds in Maize. Genetics,1988,118:519-526
    85. Beavis WD, Grant D. A linkage map based on information from four F2 populations of maize (Zea mays L.). Theor Appl Genet,1991,82:636-644
    86. Gardiner JM, Coe EH, Melia-Hancock S et al. Development of a core RFLP map in maize using an immortalized F? population. Genetics,1993,154:917-930
    87. Sibov ST, de Souza CL, Franco Garcia AA et al. Molecular mapping in tropical (Zea mays L.) using microsatellite markers.1. Map construction and localization of loci showing distorted segregation. Hereditas,2003,139:96-106
    88. Davis G, Musket T, Melia-Hancock S et al. The intermated B73 x Mo 17 genetic map:a community resource. Maize Genetics Conference Abstracts,2001,43: 62
    89. Sharopova N, McMullen MD, Schultz L et al. Development and mapping of SSR markers for maize. Plant Molecular Biology,2002,48:463-481
    90. Michelmore RW, Paranand I, Kessali RV. Identification of markers linked to disease resistance gene by bulked segregant analysis:a rapid method to detect markers in specific genomic regions using segregating populations. Proc. Natl. Acad. Sci. USA,1991,88:9829-9832
    91. Mohan M, Nair S, Bentur JS et al. RFLP and RAPD mapping of the rice Gm2 gene that confers resistance to biotype 1 of a gall midge (Orseolia oryzae). Theor Appl Genet,1994,87:782-788
    92. 朱立煌,徐吉臣,陈英等.用分子标记定位一个未知的抗稻瘟病基因.中国科学(B辑),1994,24:1048-1052
    93. Mansur LM, Orf J, Lark KG. Determing the linkage of quantitative trait loci to RFLP marker using extreme phenotypes of recombinant inbreds of Soybean (Glycine max L.Merr). Theor Appl Genet,1993,86:914-918
    94. Edwards MD, Helentjaris T, Wrighta S, Stuber CW. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics,1987,116: 113-125
    95. Tanksley SD, Medina-Filho HP, Rick CM. Use of naturally-occurring enzyme variation to detect and map genes control-ling quantitative traits in an interspecific backcross of tomato.,1982, Heredity,49:11-25
    96. Lander ES and Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics,1989,121:185-199
    97. Jansen RC. Interval mapping of multiple quantitative trait loci. Genetics, 1993,135:205-211
    98. Zeng ZB. Precision mapping of quantitative trait loci. Genetics,1994,136: 1457-1468
    99. Zhu J, Weir BS. Mixed model approaches for genetic analysis of quantitative traits. In:Advanced Topics in Biomathematics. Proceedings of International Conference on Mathematical Biology, ed. by Chen L S, Ruan S G, Zhu J, World Scientific Publishing Co., Singapore,321-330
    100. Li H, Ye G, Wang J A modified algorithm for the improvement of composite interval mapping. Genetics,2007,175:361-374
    101. Li H, Li Z, Wang J. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet,2008,116: 243-260
    102. 王健康.数量性状基因的完备区间作图方法.作物学报,2009,35(2):239-245
    103. Glazier AM, Nadeau JH, Aitman TG. Finding genes that underlie complex traits. Science,2002,298(5602):2345-2349
    104. Salvi S, Tuberose R. To clone or not to clone plant QTL:present and future challenges. Trends Plant Sci,2005,10:297-304
    105. Alpert KB, Tanksley SD. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2:a major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci,1996,93(26):15503-7.
    106. Dudley JW, Lamkey KR, Geadelman JL. Evaluation of populations for their potential to improve three maize hybrids. Crop Sci,1996,36:1553-1559
    107. Lee D. DNA markers in plant breeding programs. Adv Agron,1995, 55:265-344
    108. Stuber CW. Mapping and manipulating quantitative traits in maize. Trends Genet,1995,11:477-481
    109. 李玉杰.利用分子标记技术改良玉米粗缩病抗性.山东大学硕士学位论文,2010
    110. Johal G, Briggs SP. Reductase activity encoded by the HM1 disease resistance gene in maize. Science,1992,258:985-987
    111. Nicholas C, Jeff D, Michael A et al. Moiecular characterization of the maize Rp1-D rust resistance haplotype and mutants. The Plant Cell.1999,11:1365-1376
    112. Whitham S, Dinesh-Kumar SP, Choi D et al. The product of the tobacco mosaic virus resistance gene N:similarity to toll and the interleukin-1 receptor. Cell, 1994,78:1011-1015
    113. Jones DA, Thomas CM, Hammond-Kosack KE et al. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science, 1994,266:789-793
    114. Lawrence GJ, Finnegan EJ, Ayliffe MA, et al. The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. The Plant Cell,1995,7:1195-1206
    115. Roberts CA, Dietzgen RG, Heelan LA et al. Real-time RT-PCR fluorescent detection of tomato spotted wilt virus. Journal of Virological Methods,2000,88:1-8.
    116. Cullen DW, Lees AK, Toth IK et al. Conventional PCR and real-time quantitative PCR detection of Helminthosporium solani in soil and on potato tubers. European Journal of Plant Pathology,2001,107:387-398.
    117. Korimbocus J, Coates D, Barker I et al. Improved detection of sugarcane yellow leaf virus using a real-time fluorescent (TaqMan) RT-PCR assay. Journal of Virological Methods,2002,103:109-120.
    118. Balaji B, Bucholtz DB and Anderson JM. Barley yellow dwarf virus and Cereal yellow dwarf virus quantification by real-time polymerase chain reaction in resistant and susceptible plants. Phytopathology,2003,93:1386-1392.
    119. Delanoy M, Salmon M, Kummert J et al. Development of real-time PCR for the rapid detection of episomal Banana streak virus (BSV). Plant Disease,2003,87: 33-38.
    120. Nicolaisen M. Partial molecular characterization of Dahlia mosaic virus and its detection by PCR. Plant Disease,2003,87:945-948.
    121.李常保,宋建成,姜丽君,杨春英,王启柏,王守义.玉米抗粗缩病病毒(MRDV)基因的RAPD标记及其辅助选择效果研究.2002,28(4):564-568
    122.陈永坤.玉米抗粗缩病种质鉴定与基因定位初步研究.新疆农业大学,硕士学位论文,2006
    123.何龙.玉米粗缩病抗性基因SSR标记初步研究.广东农业科学,2008,8:5-8
    124. Di Renzo MA, Bonamico NC, Diaz DD, Ibanez MA, Faricell ME, Balzarini MG, Salerno JC. Mierosatellite markers linked to QTL for resistance to Mal de Rio Cuarto disease in Zea mays L. J Agric Sci,2004,142:289-295
    125. Kreff ED, Pacheco MG, Diaz DG, Robredo CG, Puecher D, Celiz A, alerno JC Resistance to Mal de Rio Cuarto Virus in maize:a QTL analysis. J Basic Appl Genet,2006,17:41-50
    126. Bonamico NC, Balzarini MG, Arroyo AT, Ibanez MA, Diaz DG, Salerno JC, Di Renzo MA. Association between microsatellites and resistance to Mal de Rio Cuarto in maize by discriminant analysis. (?)YTON,2010,79:31-38
    127. Bonamico NC, Di Renzo MA, Ibanez MA, Borghi ML, Diaz DG, Salerno JC, Balzarini MG. QTL analysis of resistance to Mal de Rio Cuarto disease in maize using recombinant inbred lines. J Agric Sci,2012, doi:10.1017/S0021859611000943
    128.陈艳萍,孟庆长,袁建华.利用SSR2 BSA:技术筛选玉米粗缩病抗性基因分子标记.江苏农业学报,2008,24(5):590-594
    129. 马侠,崔德周,刘怀华,刘旭,宁丽华,陈化榜.玉米抗粗缩病基因STS分子标记的筛选.玉米科学,2010,18(3):61-64,67
    130.龚祖埙,沈菊英,陈巽祯等.我国禾谷类病毒的病原问题Ⅷ.玉米粗缩病病原研究.生物化学与生物物理学报,1981,13(1):55-59
    131.张恒木,雷娟利,陈剑平等.浙江和河北发生的一种水稻、小麦、玉米矮缩病足水稻黑条矮缩病毒引起的.中国病毒学,2001,16(3):246-251
    132. Zhang HM, Chen JP, Lei JL et al.Sequence analysis shows that a dwarf disease on rice, wheat and maize in China is caused by rice black-streaked dwarf virus. European Journal of Plant Pathology,2001,107:563-567
    133. Zhang HM, Chen JP, Adams MJ. Molecular characterization of segments 1 to 6 of rice black-streaked dwarf virus from China provides the complete genome. Archives of Virology,2001,146:2331-2339
    134. Bai FW, Qu ZC, Yan J et al. Identification of rice blackstreaked dwarf virus in different cereal crops with dwarfing symptoms in China. Acta Virologica,2001,45: 335-339.
    135. Fang SG, Yu JL, Feng JD et al. Identification of rice black-streaked dwarf Fijivirus in maize with rough dwarf disease in China. Archives of Virology,2001,146: 167-170.
    136. 王朝辉,周益军,范永坚等.江苏省水稻黑条矮缩病毒的Sll0的cDNA克隆序列分析.中国病毒学,2002,17(2):142-144
    137. 李春波,钟永旺,张旭东等.水稻黑条矮缩病毒第9基因片段的克隆表达.微生物学报,2003,43(3):330-334
    138. 钟永旺,周洁,李毅等.水稻黑条矮缩病毒第7号基因片段的cDNA克隆.微生物学报,2003,43(4):42-47
    139. Wang ZH, Fang SG, Xu JL et al. Sequence analysis of the complete genome of rice black-streaked dwarf virus isolated from maize with rough dwarf disease. Virus Genes,2003,27:163-168.
    140. 王朝辉.水稻黑条矮缩病毒玉米分离物的分子特性及其侵染体系.中国农业大学博士学位论文,2004
    141. 陈声祥,洪健,吕永平等.RBSDV在玉米叶脉细胞里的侵染状态与灰飞虱传毒活力的关系.中国病毒学,2004,19(2):153-157
    142. 周雪平,濮祖芹.应用斑点法检测植物病毒的研究.病毒学杂志,1990,3:317-320
    143. Hatta T, Francki RLB. Cytopathic structures associatedwith tonoplasts of plant cells infected with cucumber mosaic and tomato aspermy virus. Journal of General Virology,1981,53:343-347
    144. 陈集双,周雪平,洪健.九利Potyviruses柱状内含体结构的比较研究.电子显微学报,1995,(1):39-46
    145. Derrick KS. Quantitative assay for plant viruses using serologically specific electron microscopy. Virology,1973,56:652-657
    146. Morris TJ, Dodds JA. Isolation and analysis of double stranded RNA from virus infected plant and fungal tissue. Phytopathology,1979,67:854-858
    147. Heid CA, Stevens J, Livak KJ et al. Real time quantitative PCR. Genome Research,1996,6:986-994.
    148. Mackay M, Arden KE, Nitsche A. Real-time PCR in virology. Nucleic Acids Res,2002,30 (6):1292-1305.
    149. Eun AJC, Seoh ML and Wong SM. Simultaneous quantitation of two orchid viruses by the TaqMan realtime RT-PCR. Journal of Virological Methods,2000,87: 151-160.
    150. Roberts CA, Dietzgen RG, Heelan LA et al. Real-time RT-PCR fluorescent detection of tomato spotted wilt virus. Journal of Virological Methods,2000,88:1-8.
    151. Cullen DW, Lees AK, Toth IK et al. Conventional PCR and real-time quantitative PCR detection of Helminthosporium solani in soil and on potato tubers. European Journal of Plant Pathology,2001,107:387-398.
    152. Korimbocus J, Coates D, Barker I et al. Improved detection of sugarcane yellow leaf virus using a real-time fluorescent (TaqMan) RT-PCR assay. Journal of Virological Methods,2002,103:109-120.
    153. Balaji B, Bucholtz DB and Anderson JM. Barley yellow dwarf virus and Cereal yellow dwarf virus quantification by real-time polymerase chain reaction in resistant and susceptible plants. Phytopathology,2003,93:1386-1392.
    154. Delanoy M, Salmon M, Kummert J et al. Development of real-time PCR for the rapid detection of episomal Banana streak virus (BSV). Plant Disease,2003,87: 33-38.
    155. Nicolaisen M. Partial molecular characterization of Dahlia mosaic virus and its detection by PCR. Plant Disease,2003,87:945-948.
    156. Schena L, Nigro F, Ippolito A et al. Real-time quantitative PCR:A new technology to detect and study phytopathogenic and antagonistic fungi. European Journal of Plant Pathology,2004,110:893-908.
    157. Pico B, Sifres A and Nuez F. Quantitative detection of Cucumber vein yellowing virus in susceptible and partially resistant plants using real-time PCR. Journal of Virological Methods,2005,128:14-20.
    158. Walker MJ. Real time and quantitative PCR applications to mechanism based toxicology. J Biochem Mol Toxicol,2001,15(3):121-127
    159.杨本荣,马巧月.玉米粗缩病的病毒寄主范围研究.植物病理学报,1983,13(3):1-8
    160.郑巧兮,沈菊英,龚祖埙等.一种新的纯化玉米粗缩病毒的方法及病毒形 态的研究.生物化学及生物物理学报,1984,16(6):571575
    161. 郑巧兮,陆惠华,章蓓.我国玉米粗缩病的核酸及结构蛋白的研究。生物化学及生物物理学报,1985,17(5):587-593
    162. Bocardo G, Milne RG. Plant reovirus group. CMI/AAB Descriptions of plant viruses.NO.249
    163. Caciagli P, Roggero P, Luisoni E. Detection of maize rough dwarf virus by enzyme-linked immunosorbent assay in plant hosts and in the planthopper vector. Ann Appl Biol,1985,107:463-471
    164.徐佳凌.抗病毒基因转化玉米的初步研究和水稻黑条矮缩病毒基因组片断8的全序列分析及原核表达.2002,中国农业大学硕士学位论文
    165. 孙丽英.水稻黑条矮缩病毒基因组片断S3和S9编码蛋白的表达分析.2003,中国农业大学硕士学位论文
    166. Wu SH, Wang ZH, Fang YJ et al. Detection of pathogen of maize rough dwarf disease (MRDD) in Jiangsu province with RT-PCR. Journal of Agricultural Biotechnology,2000,8:369-372.
    167. Wang ZH, Zhou YJ, Fan YJ et al. Detection of rice black-streaked dwarf fijivirus by RT-PCR, dot-blot hybridization and SDS-PAGE. Journal of Nanjing Agricultural University,2001,24:24-28.
    168. Yim YS, Davis GL, Duru NA et al. Characterization of three maize bacterial artifical chromosome libraries toward anchoring of the physical map to the genetic map using high-density bacterial artificial chromosome filter hybridization. Plant Physiology,2002,130:1686-1696
    169. Coe E., Cone K, Mcmullen M et al. Access to the maize genome:an integrated physical and genetic map. Plant Physiol.2002,128:9-12
    170. Dennis C. Maize map sees geneticists split over choice of direction. Nature, 2003,424:476
    171. Cone KC, McMullen MD, Karen C et al. Genetic, Physical, and Informatics Resources for Maize. On the Road to an Integrated Map. Plant Physiology,2002,130: 1598-1605
    172. McChouch SR, Kochert G, Yu ZH et al. Molecular mapping of rice chromosomes. Theor Appl Genet,1988,76:148-149
    173. Luo Z W. Precision and high-resolution mapping of quantitative trait loci by use of recurrent selection backcross or intercross schemes. Genetics,2002,161: 915-929
    174. Cong B, Liu JP, Tanksley SD et al. Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations. Proc Natl Acad Sci USA,2002,99:13606-13611
    175. Liu JP, Eck JV, Cong B et al. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA,2002,99:13302-13306
    176. Fridman E, Pleban T, Zamir D. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484bp within an invertase gene. Proc Natl Acad Sci USA,2000,97:4718-4723
    177. Fridman E, Carrari F, Liu YS et al. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science,2004,305:1786-1789
    178. Yano M, Katayose Y, Ashikari M et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell,2000,12:2473-2484
    179. Kojima S, Takahashi Y, Kobayashi Y et al. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hdl under short-day conditions. Plant Cell Physiol,2002,43:1096-1105
    180. Takahashi Y, Shomura A, Sasaki T et al. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the a-subunit of protein kinase CK2. Proc Nat1 Acad Sci USA,2001,98:7922-7927
    181. Doi K, Izawa T, Fuse T et al. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hdl. Genes Dev,2004,18:926-936
    182. Assal S, Alonso BC, Peeters AJ et al. A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat. Genet.2001,29:435-440
    183. Werner JD, Borevitz JO, Warthmann N et al. Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation. Proc. Natl. Acad. Sci. USA,2005,102:2460-2465
    184. Kroymann J, Donnerhacke S, Schnabelrauch D et al. Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus. Proc. Natl. Acad. Sci. USA.,2003,100(Suppl.2):14587-14592
    185. Mouchel CF, Briggs GC, Hardtke CS et al. Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root. Genes Dev.2004,18:700-714
    186. Doebley J, Stec A, Gustus C. Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics,1995,141:333-346
    187. Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature,1997,386:485-488
    188. Bentolila S, Guitton C, Bouvet N et al. Identification of an RFLP marker tightly linked to the Htl gene in maize.1991, Theor. Appl Genet.82:393-398.
    189. Freymark PJ, Lee M, Martinson CA et al. Molecular-marker-facilitated investigation of host-plant response to Exserohilum turcicum in maize (Zea mays L.): components of resistance. Theor. Appl. Genet.1994,88:305-313
    190. Zaitlin D, DeMars S J, Gupta M. Linkage of a second gene for NCLB resistance to molecular markers in maize. Maize Genetics Cooperation News Letter, 1992,66:69-70
    191. Welz HG, Schechert AW, Geiger HH. Dynamic gene action at QTLs for resistance to Setosphaeria turcica in maize Theor Appl Genet,1999,98:1036-1045
    192. 黎裕,王天宇,贾继增.玉米抗病虫性的分子标记研究进展.生物工程进展,2001,21(3):42-48
    193. Redinbaugh MG, Jones MW and Gingery RE. The genetics of virus resistance in maize (Zea mays L.). Maydica,2004,49:183-190
    194. Redinbaugh MG, Pratt RC Virus resistance. In:Bennetzen J and Hake S (ed.) Handbook of Maize:Its biology. Springer, New York pp:251-270,2009
    195. James D. A simple and reliable protocol for the detection of apple stem grooving virus by RT—PCR and in a multiplex PCR assay. J Virol Methods,1999, Vol.83, NO.1/2
    196.邱又彬, 陶刚, 李奇科, 刘作易, 郑世玲, 朱英.贵州马铃薯Y病毒外窍蛋白基因的克隆与分析.分子植物育种,2009,7(3):p524
    197. Clark MS主编,顾红雅等主译。植物分子生物学-实验手册.高等教育出版社,1998
    198. Bassam BJ,. Caetano-Anolles G and Gresshoff PM. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Bioche,1991,196:80-83
    199. Lander ES, Green P and Abrahanson J. MAPMAKER:an interactive computer package for constructing primary genetic linkage map s of experimental and natural populations. Genomics,1987,1:174-181
    200. Lincoln SE, Daly MJ and Lander ES. Constructing genetic maps with Mapmaker/Exp 3.0, Whitehead Institute Technical Report.3rd. edition.1992
    201. Kosambi DD. The estimation of map distance from recombination values. Ann. Eugen,1944,12:172-175
    202. Hallauer AR, Miranda JB (1988) Quantitative Genetics in Maize Breeding. 2nd edition. Iowa State University Press, Ames
    203. Beavis WB. QTL analyses:power, precision, and accuracy. In:Patterson AH (eds) Molecular dissection of complex traits,1998, CRC Press, Boca Raton
    204. Dintinger J, Verger D, Caiveau S, Risterucci AM, Gilles J, Chiroleu F, Courtois B, Reynaud B, Hamon P (2005) Genetic mapping of maize stripe disease resistance from the Mascarene source. Theor Appl Genet 111:347-359
    205. Lu GY, Zhang LY, Tian ZL, Di DP, Miao HG (2009) Effect of maize resistance to rice black-streaked dwarf on tropism and survival of Laodelphax striatellus. J Hebei Agric Univ 32(5):73-76
    206. 吴为人,李维明,卢浩然.建立一个重组自交系群体所需的自交代数.福建农业大学学报,1997,26(2):129-132
    207.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.科学出版社,2000
    208. Jia MA, Li YQ, Lei L, Di D, Miao HQ, Fan ZF. Alteration of gene expression profile in maize infected with a double-stranded RNA fijivirus associated with symptom development. Mole Plant Pathol,2012,13(3):251-262
    209. Li KP, Xu CZ, Zhang JR. Proteome profile of maize (Zea Mays L.) leaf tissue at the flowering stage after long-term adjustment to rice black-streaked dwarf virus infection. Gene,2011,485:106-113
    210. Vigliocco A, Bonamico B, Alemano S, Miersch O, Abdala G. Stimulation of jasmonic acid production in Zea Mays L. infected by the maize rough dwarf virus Rio Cuarto. Reversion of symptoms by salicylic acid. Biocell,2002,26(3):369-374
    211. Patrick SS, Doreen W, Robert SF. et al. The B73 Maize Genome: Complexity, Diversity, and Dynamics. Science,2011,326:1112-1115
    212.商伟,张彦军,魏海忠,孔晓民,蒋飞,刘保申.玉米SSR连锁图谱构建和粗缩病抗性QTL的初步定位.山东农业科学,2011,12:16
    213. Chen Y, Chao Q, Tan G, Zhao J, Zhang M, Ji Q, Xu M. Identification and fine-mapping of a major QTL conferring resistance against head smut in maize. Theor Appl Genet,2008,117:1241-1252
    214. Fujino K, Sekiguchi H, Sato T, Kiuchi H, Nonoue Y, Takeuchi Y, Ando T, Lin S, Yano M. Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.). Theor Appl Genet,2004,108:794-799
    215. Fujino K, Sekiguchi H, Matsuda Y, Sugimoto K, Ono K and Yano M. Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. PNAS,105(34):12623-12628

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700