用户名: 密码: 验证码:
三维GIS空间数据模型及可视化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机软硬件技术、图形学、空间测量、空间数据存储等技术的日益成熟,地理信息系统(GIS)由二维向三维的转变已成为必然的发展趋势。三维空间数据模型研究已成为三维GIS领域内的研究热点和难点,也是空间信息可视化的基础。如何高效地组织和管理三维空间数据,构建易于交互的三维空间模型已成为三维GIS成功应用的关键。目前,由于三维GIS的理论与技术尚不成熟,其应用主要集中于地质、矿山、数字城市等一些特殊的领域,并且提供的功能也非常有限。尤其是在地质领域,尚有一系列问题亟待解决,例如:如何根据钻孔数据,自动生成三维地质体的表面模型;针对特定的地质体,如何利用现有的模型(或者是模型集成的方式)对其实现高效、完整的三维表达;如何在三维环境下对模型进行可视化渲染,以及如何对大规模场景进行实时漫游等等。这些问题的解决,无疑将对三维GIS的发展产生较大的推动作用。因此,针对上述问题,本文主要从以下几个方面展开研究。
     (1)针对矿山地质三维数据的特征,根据离散拟合的思想,提出了三维GIS模型的分层表示策略及基于离散算法的自动建模技术。给定原始地质钻孔数据,利用自适应神经网络预测地质体横剖面内信息未知区域的品位属性,生成分层数据;结合离散网络模型自动创建相邻数据分层内控制点之间的拓扑关系,由此建立三维地质体的表面模型;然后利用OpenGL技术对三维表面模型进行可视化渲染,并在此基础上设计了模型动态交互算法。
     (2)在重新定义地质块段模型的基础上,提出了基于八叉树和四面体格网的集成数据结构模型(Block Octree Tetrahedron Model,BOT模型)。采用BOT模型生成算法对块段模型进行重新分割,八叉树作整体描述,四面体格网作局部精确描述,并以不同的灰度值表示不同的单元块属性。同时,为节省存储空间,提出了线性BOT编码技术,并结合基于Morton码的压缩技术实现了对BOT模型的数据压缩。
     (3)在充分分析不规则三角网(Triangulated Irregular Network,TIN)与构造实体几何(Constructive Solid Geometry,CSG)各自特性的基础上,提出了限定TIN与CSG集成的仿真建模算法。采用TIN模型描述地形,CSG模型描述建筑物,通过抽取建筑物地面轮廓线作为地形三角剖分时的限定约束条件,将两种模型有机集成在一起。同时,给出了任意限定条件下的地形Delaunay剖分算法,实现了两类模型可视化渲染操作的同步进行。
     (4)为了解决大规模地形实时漫游过程中,由于不同细节层次模型之间过渡而引起的图像跳变(popping)以及图像绘制帧率不高的问题,提出了自底向上的一次性整体构网,网格节点实时更新的建模策略。运用基于块和三角形面片的混合裁剪模式,结合简化的高度差投影计算方法,快速选取适合的地形节点;然后采用“加点、删点和局部更新”三种途径对Delaunay地形三角网进行实时更新。同时在地形漫游过程中实现了对高度差投影限的自适应控制。
     为验证本文上述研究成果的有效性,针对每一种模型与算法都设计了相应的试验原形系统。在条件许可的情况下,与传统算法进行了试验对比分析。结果表明:地质体分层模型在保证精度要求的前提下,降低了人为因素的影响,有效地简化了建模过程;BOT模型充分发挥了八叉树和四面体格网各自表示空间实体的优势,具有精确表示目标和表示较为复杂空间拓扑关系的能力:限定TIN与CSG集成模型实现了不同对象(地形与建筑物)的同步可视化渲染操作,有效减少了三维场景的渲染时间;视点相关的大规模地形实时绘制算法消除了地形漫游时的图像跳变现象,并有较高的图像绘制帧率,特别适合于大规模地形近距离漫游仿真。
With the rapid development of technologies such as computer software and hardware, graphics, spatial measurement and spatial data storage, it is inevitable for geographic information system (GIS) turning from 2D to 3D. The study of 3D spatial data model is of great importance in 3D GIS application and is the basis of spatial information visualization. To organize and manage 3D data efficiently and to construct interactive 3D spatial model are the keys to successful application of 3D GIS. Currently, applications of 3D GIS mainly focus onsome special areas, including geology, mine, digital city and so on, with limited function for its undevelopment theory and technology. Especially in the field of geology, there still exist a series of problems unresolved, some of which are constructing 3D surface model of ore body based on drill hole data, representing 3D spatial objects integrally by means of model integration, realizing visualization under 3D environment and real-time walkthrough for large-scale terrain. The settlement of these problems will undoubtedly have a greater impetus to the development of 3D GIS. Therefore, aiming at the above problems, related studies are carried out as follows:
     (1) In view of characteristics of 3D geological data, a layered representation method for 3D model and its modeling technology based on discrete algorithm are put forward. The modeling process is as follows: firstly, on the basis of original geological drill hole data, the layered data can be obtained by forecasting the attributes value of information unknown areas in geological section planes using self-adaptive neural network; secondly, based on dynamic discrete network model, the topological relations for control points of adjacent layer can be established automatically, and then the surface model of 3D ore body can be obtained; finally, the OpenGL is adopted to render the established 3D surface model, and the model dynamic interactive algorithm is realized as well.
     (2) On the basis of redefining the geological block model, a hybrid data structure model called BOT model (block octree tetrahedron model) is presented, which combines octree and tetrahedral network (TEN) structures. Using BOT generation algorithm, the block model is redivided with octree as general shape description and TEN as partial precise description, in which different gradations of grey are used to stand for different attributes of unit blocks. To reduce memory space a linear BOT coding technology is proposed as well to implement data compression based on Morton code.
     (3) In view of characteristics of triangular irregular network (TIN) and constructive solid geometry (CSG), a new integrated model structure is put forward, which combines data structures of constrained TIN and CSG. In this model, TIN is used to represent terrain and CSG to represent buildings. The two simulation models are integrated by extracting ground contour lines of buildings as constrained conditions when carrying out triangulating terrains. And the visualization for all parts of the integrated model can be processed synchronously.
     (4) During the flyover of large-scale terrain, in order to eliminate the popping effect of switching among levels of detail and to increase the frame rates with high image quality, a new bottom-up modeling strategy is put forward, which constructs simplified terrain triangle mesh globally and updates mesh nodes dynamically. Hybrid culling technique based on blocks and triangle faces and simplified computing method for screen-space errors are employed to select appropriate terrain nodes rapidly. Then the Delaunay terrain mesh is updated by adding nodes, deleting nodes and modifying locally: At the same time self-adaptive control for screen-space error tolerance is achieved during the terrain flyover.
     To validate the effectiveness of the above work, related prototype systems are developed. Results of simulation experiments demonstrate that: ore body layered representation model reduces the influence of human factor with receivable precision and simplifies modeling process effectively; BOT model holds merits of both octree and TEN and has the ability of precisely representing 3D objects and complicated spatial topological relations; constrained TIN and CSG integrated model can perform 3D visualization for different objects (terrain and buildings) simultaneously, which reduces 3D scene render time effectively; view-dependent real-time rendering algorithm for large-scale terrain eliminates popping effect effectively, and has a higher frame rate compared with conventional algorithms, particularly suitable for close-distance flyover simulation of large-scale terrain.
引文
[1] AI Tinghua, WANG Hong, LIU Yaolin. Multi-scale Representation of Building Feature in Urban GIS [J]. Geo-spatial Information Science, 2002, 5(2): 37-44
    
    [2] Alok K Chaturvedi, Les A Piegl. Procedural method for terrain surface interpolation[J]. Computer & Graphics, 1996, 20(4): 541 -566
    
    [3] Ana Elisa F.Schmidt, Marcelo Gattass, Paulo Cezar P.Carvalho, Combined 3D visualization of volume data and polygonal models using a Shear-Warp algorithm [J], Computer & Graphics, 2000(24): 583-601
    
    [4] Bak P.R.G., Mill A.J.B.. 3-D Representation in a Geoscientific Resources Management System for the Minerals Industry, In Raper J.(eds), Three Dimensional Applications in GIS, PA: Taylor and Francis,1989: 155-182
    
    [5] Bidarra. Semantic feature modeling [J]. Computer-Aide Design, 2000(32): 201-225
    
    [6] Blaha M, Premerlani W. Object-Oriented Modeling and Design for Database Applications [M]. Prentice Hall, 1998
    
    [7] Breunig M., Bode T., Cremers A.B.. Implementation of Elementary Geometric Database Operations of A 3D-GIS [C], Advances in GIS Research: Proceedings of the 6~(th) International Symposium on Spatial Data Handling, 1994: 604-617
    
    [8] Chen X Y. A Workstation for Three Dimensional Spatial Data Re-search [C]. Proc. of 4~(th) International Symposium of LESMARS. Wuhan, 1995: 42-51
    
    [9] Christopher B J. Data Structure for 3D Spatial Information System in Geology [J]. Int. J. GIS, 1989,3(1): 15-31
    
    [10] Cignoni, P., Montani, C, Scopigno, R. A comparison of mesh simplification algorithm [J]. Computer & Graphics, 1998, http://citeseer.nj.nec.com/cignoni97comparison.html
    
    [11] Cohen, J., Varshney, A., et al. Simplification envelopes [C]. In: Proceedings of the SIGGRAPH'96, http://www.cs.unc.edu/~geom/envelope.html
    
    [12] Coors. V. 3D GIS in Networking environments [J]. Environment and Urbaqn Systems, 2003(27): 345-357
    
    [13] Debevec P D, Taylor C J, Malik J. Modeling and Rendering Architecture form Photographs. Computer Graphics (SIGGRAPH96), New York, 1996: 11-20
    
    [14] Ding S, Mannan MA, Poo AN. Oriented bounding box and octree based global interference detection in 5-axis machining of free-from surfaces [J]. Computer-Aide Design, 2004(36): 81-94
    
    [15] D. Luebke, C. Erikson. View-Dependent simplification of arbitrary polygonal environments[C]. Proceedings of the Computer Graphics, Annual Conference Series, SIGGRAPH'97, 1997: 199-208
    [16] DonaldM. Geometric Modeling Using Octree Encoding [J]. Computer Graphics and Image Processing, 1982(19): 129-147
    
    [17] Duchaineau, M., Wolinsky, M, Sigeti, D. ROAMing terrain: real-time optimally adapting meshes[C]. In: Proceedings of the IEEE Visualization '97, 1997: 81-88
    
    [18] Edelsbrunner H., Mucke E. 3D alpha shapes [J]. ACM Transactions on Graphics, 1994, 13(1): 43-72
    
    [19] FALBY, J. S., ZYDA, M. J., PRATT, D. R., et al. Hierarchical Data Structures for Real-Time Three-Dimensional Visual Simulation [J]. Computers & Graphics, 1993, 17(1): 65-69
    
    [20] Florian Schroder, Patrick Robbach. Managing the complexity of digital terrain modes [J]. Computer & Graphics, 1994, 18(6): 775-783
    
    [21] F. Schmitt, B. Barsky. An adaptive subdivision method for surface-fitting from sampled data [C]. Proceedings of the Computer Graphics (SIGGRAPH'86). New York: ACM Press, 1986: 179-188
    
    [22] Gabriel Taubin. 3D Geometry Compression and Progressive Transmission [R]. Eurographics State of the Art Report, September 1999.
    
    [23] Gargantini I. Linear octrees for fast processing of three dimensional objects [J]. Computer Graphics and Image Processing, 1982(20): 365-374
    
    [24] Garland, M., Heckbert, P.S. Surface simplification using quadric error metric[C]. In: Proceedings of the SIGGRAPH'97, 1997: 209-216
    
    [25] Goodchild F. Geographical Data Modeling [J]. Computer & Geosciences. 1992, 18(4):401-408
    
    [26] GU De-sheng, DENG Jian, LI Xi-bing. Three dimensional numerical simulation of excavation and backfilling in mining engineering [J]. Transactions of Nonferrous Metals Society of China, 1999, 9(2): 417-421
    
    [27] Hamann, B. A data reduction scheme for triangulated surface [J]. Computer Aided Geometric Design, 1994, 11(2): 197-214
    
    [28] Han Ju Yu, Jong Beom Ra. Fast triangular mesh approximation of surface data using wavelet coefficients [J]. The Visual Computer, 1999(15): 9-20
    
    [29] Hechi Nielsen R. Theory of the back propagation neural network [J]. Proc. of IJCNN, 1989
    
    [30] Heckbert, P.S., Garland, M. Survey of polygonal surface simplification algorithms. Proceedings of the SIGGRAPH'97, Multiresolution Surface Modeling Course, 1997
    
    [31] Hinker, P., Hansen, C. Geometry optimization[C]. In: Proceedings of the IEEE Visualization'93, http://www.acl.lanl.gov/Viz/abstracts/GeometricOptimization.html
    
    [32] H. Medellin, J. Corney, J.B.C. Davies. Algorithms for the physical rendering and assembly of octree models [J]. Computer-Aided Design, 2006(38): 69-85
    
    [33] Hoppe, H., DeRose, T., Duchamp, T., et al. Mesh optimization[C]. In: Proceedings of the SIGGRAPH'93, 1993, http://citeseer.nj.nec.com/hoppe93rnesh.htrnl
    [34] Hoppe, H. New quadric metric for simplification meshes with appearance attributes [J]. In: Proceedings of the IEEE Visualization 99. 1999: 59-66
    [35] Hoppe, H. Progressive meshes[C]. Proceedings of the SIGGRAPH'96, 1996: 99-108
    [36] Hugues Hoppe. Smooth View-Dependent Level-of-Detail Control and its Application to Terrain Rendering [C]. In: Proceedings of IEEE Visualization'98, 1998: 35-42
    [37] Isler, V, Lau, R.W.H., Green, M Real-Time multi-resolution modeling for complex virtual environments [C]. In: Proceedings of the VRST'96, Hong Kong, 1996: 11-19
    [38] J. Cremer, Y. He, Y. Pape lis. Dynamic terrain for real-time ground vehicle simulation [C]. Proceedings of the Image 2000 Conference, 2000: 98-105
    [39] Joe B. Construction of 3D Delaunay Triangulations using local transformations [J]. Computer Aided Geometric Design, 1991(8): 123-142
    [40] Jung Y H, Lee K. Tetrahedron-based octree encoding for automatic mesh generation [J]. Computer-Aide Design, 1993(25): 141-52
    [41] Kalvin. A.D., Taylor, R.H. Surperfaces: polygonal mesh simplification with bounded error [J]. IEEE Computer Graphics and Applications, 1996, 16(3): 64-77
    [42] Kavouras M., Masry S.. An Information System for Geosciences [C]. Proceedings of 8~(th) International Symposium on Computer Assisted Cartography, Baltimore, 1987: 336-345
    [43] Klein Reinhard. Multiresolution representations for surface meshes based on the vertex decimation method [J]. Computer & Graphics, 1998, 22(1): 13-26
    [44] Kruschke J K, Movellan J R. Benefits of gain: speeded learning and minimal layers in back-propagation networks [J]. IEEE Trans on Syst Man Cybern, 1991, 21(1): 173-180
    [45] Lattuada, Raper. Applications of 3D Delaunay Triangulation Algorithms in Geoscitific Modeling, http://www. ncgia. ucsb. edu.PconfPSANTA-robertoPpaper.html
    [46] Lee C C. Modeling the behavioural substrates of associate learning and memory: adaptive neural models [J]. IEEE Trans on Syst Man Cybern, 1991, 21(2): 510-532
    [47] Lee C, Sterling R. Identifying probable failure models for underground opening using a neural network [J]. Int J Rock Mech Min Sci, 1992(1): 40-47
    [48] Lee D T., Schachter B J. Two Algorithms for Constructing a Delaunay Triangulation [J]. International Journal of Computer and Information Sciences, 1980, 9(3): 219-242
    [49] Lee HahnMing, Chen ChihMing. Learning efficiency improvement of back-propagation algorithm by error saturation prevention method [J]. Neurocomputing, 2002(41): 25-143
    [50] LI Deren, Zhu Qing, Gong Jianya. Fractal Based Modeling and 3D visualization for GIS's spatial query and Analysis [C]. GIS AM/FM ASIA '97 & Geoinformatics' 97, Taibei, China, 1997: 51-854
    [51] Lindstrom, P., Koller, D., Ribarsky, W., et al. Real-Time, continuous lever of detail rendering of height fields[C]. Computer Graphics (SIGGRAPH '96Proceedings), 1996: 109-118
    
    [52] Lindstrom, P. Out-of-Core simplification of large polygonal models[C]. Proc. of SIGGRAPH 2000, http://www.gvu.gatech.edu/people/peter.lindstrom/ papers/siggraph2000/siggraph2000.pdf.
    
    [53] Lindstrom, P., Turk, G. Fast and memory efficient polygonal simplification[C]. In: Proceedings of the IEEE Visualization'98, 1998: 279-284.
    
    [54] LI Qingquan, LI Deren. Algorithms for Tetrahedral Network (TEN) Generation [J]. Geo-Spatial Information Science, 20003(1): 11-16
    
    [55] LI Qingquan, LI Deren. Tetrahedral Network (TEN)-Avector Structure in 3D GIS [C]. GIS AM/FM ASIA '97 Geoinformatics', Taibei, China, 1997
    
    [56] Li R. Building octree representations of three dimensional objects in CAD/CAM by digital image matching technique [J]. Photogrammetric Engineering and Remote Sensing, 1994, 58(12): 1685-1691
    
    [57] Li R. Data Structures and Application Issues in 3D Geographic Information Systems [J]. GEOMATIC, 1994, 48 (3): 209-224
    
    [58] Li R X. Data Structure and Application Issues in 3D Geographic Information system [J], Geomatic, 1994,48(3): 209-224
    
    [59] Liu Ch Y. The Construction Method of Geometric Objects in 3D Terrain [J]. Computer Applications, 2001(21): 29-31
    
    [60] Losa A.D.E., Cervelle B., 3D Topological Modeling and Visualisation for 3D GIS [J]. Computers & Graphics, 1999(23): 469-478
    
    [61] Low, K-L., Tan, T-S. Model simplification using vertex-clustering [C]. In: Proceedings of the 1997 Symposium on Interactive 3D Graphics, ACM SIGGRAPH'97
    
    [62] Mark Duchaineau, Murray Wolinsky, David E Sigeti, et al. Roaming terrain: real-time optimally adapting meshes [C]. In: Proceedings of the IEEE Visualization 97, 1997: 81-88
    
    [63] Mark Kilgard. httpa/www.opengl.orgldevelopers/documentation/extensions.html . [64] Mark Segal, Kurt Akeley, The OpenGL Graphics System: A Specifcation(Version 1.2.1), http://www.opengl.org/documentation/spec.html
    
    [65] Masters T. Practical neural network recipes in C++ [M]. New York: Academic Company, 1992
    
    [66] Meagher D. Geometric modeling using octree encoding [J]. Computer Graphics and Image Processing, 1980(19): 129-147
    
    [67] M. Garland, P. S. Heckbert. Simplifying surfaces with color and texture using quadric error metrics [C]. Proceedings of IEEE Visualization'98, 1998: 263-269
    
    [68] Molenaar M. A Topology for 3D Vector Maps [J]. 1TC Journal, 1992(1): 25-33
    
    [69] Molenaar M. An Introduction to the Theory of Spatial Object Modelling [M]. Taylor & Francis, London, 1998.
    [70] Morackot P, Tempfli K, Molenaar M. A Tetrahedron-Based 3D Vector Data Model for Geoinformation [M]. In: Advanced Geographic Data Modelling (Ed., Molenaar M). Sylvia De Hoop: Geodesy Press, 1994: 129-140
    
    [71] Nina Amenta, Marshall Bern. Surface reconstruction by Voronoi filtering[C]. In: ACM SoCG'98 Proc, 1998: 39-48
    
    [72] P Cignoni et al. Representation and visualization of terrain surfaces at varible resolution [J]. The Visual Computer, 1997(13): 199-217
    
    [73] Peter Lindstrom, David Koller. Real-time, continuous level of detail rendering of height fields [C]. Proceedings of SIGGRAPH'96, Los Angeles, California, 1996: 109-118
    
    [74] Preparata F P, Shamos M I. Computational Geometry: An Introduction, New York/Berlin: Springer-Verlag, 1985
    
    [75] Prince, C. Progressive meshes for large models of arbitrary topology [MS. Thesis]. Washington: University of Washington, 2000
    
    [76] Qi. M. The Research Development of 3D Terrain Generation and Real-Time Display Techniques [J]. Visualization Journal of Image and Graphics, 2000(5): 269-275
    
    [77] Rick Germ, GertVan Maren, Edward Verbree. A multi-view VR interface for 3D GIS [J]. Computers & Graphics, 1999(23): 497-506
    
    [78] Roberts S A, Gahegan MN. An Object-oriented Geographic Information System Shell [J]. Information and Software Technology, 1993, 35(10):561-572
    
    [79] Ronfard, R., Rossignac, J. Full-Range approximation of triangulated polyhedra [J]. Computer Graphics Forum, 1996, 15(3): 67-76
    
    [80] Rosenblum L J. Research issues in scientific visualization [J]. IEEE Computer Graphics and Application, 1994, 14 (2): 70-73
    
    [81] Rossignac, J., Borrel, P. Multi-Resolution 3D approximation for rendering complex scenes [C]. Proceedings of the 2nd Conference Modeling in Computer Graphics: Methods and Applications, Berlin: Springer-Verlag, 1993: 453-465
    
    [82] R.P.Lippman. An introduction to computing with neural net [J]. IEEE ASSP Magazine, 1989(4): 4-22
    
    [83] SAMET, H. The Quadtree and Related Hierarchical Data Structures [J]. ACM Computing Surveys, 1984, 16(2): 187-260
    
    [84] Schaufler, G., Stüurzlinger, W. Generating multiple levels of detail from polygonal geometry models. In: Proceedings of the Virtual Environments'95(Eurographics Workshop), 1995, http://graphics.lcs.mit.edu/~gs/papers/0 1_lod_95.pdf.
    
    [85] Schmalstieg, D., Schaufler, G. Smooth levels of detail [R]. Technique Report, TR-186-2-97-03, Vienna: Vienna University of Technology, 1997
    [86] Schroder, W., Zarge, J., Lorensen, W. Decimation of triangle meshes [J]. Computer Graphics, 1992, 26(2): 65-70
    
    [87] Scott M.S.. The Extension of Cartographic Modeling for Volumetric Geographic Analysts. http://www.cla.sc.edu/geog/geogdocs/departdocs/stddocs/mscott.html
    
    [88] Serge S, Martin B. Integration of 3D geoscientific visualisation Tools with help of a Geo-Database Kernel [C]. The 6th EC-GI & GIS Workshop "The Spatial Information Society-Shaping the Future Lyon", France, 2000: 66-76
    
    [89] Shi W Z. A Hybrid Model for 3D GIS [J]. Geoinformatics, 1996(1): 400-409
    
    [90] Shi W Z. Development of A Hybrid Model for Three-Dimensional GIS [J]. Geo-Spatial Information Science, 2000, 3(2): 6-12
    
    [91] Simon W H. 3D Geoscience Modeling: Computer Techniques for Geological characterization. Springer-Verlag, 1994
    
    [92] Sterlacchini S, Zanchi A. 3D reconstruction of subsurface geological bodies: methods and Applications[C]. The Annual Conference of the International Association for Mathematical Geology, Mexico, 2001: 756-764
    
    [93] Tamminen. M, Karonen, O., Mantyla. M.. Ray-casting and Block Model Conversion Using a Spatial Index [J]. Computer Aided Design, 1984, 16(4): 203-208
    
    [94] Tang L. Raster Algorithms for Surface Modeling[C]. International Archives of Photogrammetry and Remote Sensing, Washington, USA. 1992(XX IX): 566-573
    
    [95] TANG Zesheng. Octree Representation and Its Applications in CAD [J]. Journal of Computer Science & Technology, 1992, 7(1): 29-38
    
    [96] Tomlin C.D. Geographic Information Systems and Cartographic Modeling, Englewood Cliffs, NJ: Prentice-Hall, 1990
    
    [97] Victor J D. Delaunay Triangulations in TIN Creation: An Overview and A Linear-Time Algorithm [J]. Int. J. Geographical Information Systems, 1993, 7 (6): 501-524
    
    [98] VRML 97 International Standard, http://www.vrml.org/fs_specifications.htm, 2002
    
    [99] William J Schroeder. A topology modifying progressive decimation algorithm [C]. In: Proceedings of Visualization'97, 1997: 205-212
    
    [100] Worboys M. F.. GIS: A Computing Perspective [M], London: Taylor & Francis, 1995.
    
    [101] Wu Qiang, Xu Hua. An approach to computer modeling and visualization of geological faults in 3D [J]. Computers & Geosciences, 2003,29(4): 507-513
    
    [102] Xia, J.C., Varshney, A. Dynamic view-dependent simplification for polygonal models. In: Proceedings of the IEEE Visualization'96, 1996: 327-334
    
    [103] Xiaoyong C, IKEDA K. Raster Algorithms for Generating Delaunay Tetrahedral Tessellations[C]. In: International Archives of Photogrammetry and Remote Sensing, Munich, Germany, 1994(30): 124-131
    [104] Xiaoyong C, IKEDA K. Three-dimensional Modeling of GIS Based on Delaunay Tetrahedral Tessellations [C]. In: International Archives of Phtogrammetry and Remote Sensing, Munich, Germany, 1994(30): 132-139
    [105] ZenChen, Der-BaauPerng. Automatic reconstruction of 3D solid objects from 2D orthographic views[J]. Pattern Recognition, 1998, 21(5):439-449
    [106] ZHANG Qing. Application of neural network models to rock mechanics and rock engineering [J]. Int J Rock Mech Min Sci and Geomech Abstr, 1991(6): 535-540
    [107] Zhifan Zhu, Raghu Machiraju et al. Wavelet-Based multiresolution representation of computational field simulation datasets[C]. Proceeding of Visualizaiton'97, 1997:151-158
    [108] Zlatanova S., Rahman A., Pilouk M.. 3DGIS: Current Status and Perspectives[C], Proceedings of the Joint International Symposium on Geospatial Theory, Processing and Applications, Ottawa, Canada, 2002
    [109] Zlatanova S.. VRML for 3D GIS [C]. Proceedings of 15th Spring Conference on Computer Graphics, Budmerice, 1999:74-82
    [110] A.J.惠勒,P.C.斯托克斯.块段模型和线框模型在地下采矿中的应用[J].国外金属矿山,1989(2):98-100
    [111] 蔡鸿明,何援军,吴勇.面向网络交互设计的扩展CSG模型构造[J].上海交通大学学报,2004,38(12):2057-2062
    [112] 曹彤,刘臻.用于建立三维GIS的八叉树编码压缩算法[J].中国图象图形学报(A辑),2002,7(1):50-54
    [113] 曹卫群,鲍虎军,彭群生.基于高斯球的近似共面合并层次细节模型[J].软件学报,2000,11(12):1607-1612
    [114] 常歌,黄野.基于CSG构件分析的建筑物模型提取方法[J].武汉测绘科技大学学报,2000,25(6):521-525
    [115] 陈晟.GIS空间数据库基础技术研究[D].国防科技大学博士学位论文,1998
    [116] 陈述彭,鲁学军,周成虎.地理信息系统导论[M].北京:科学出版社,2002:28-50
    [117] 陈晓勇.数学形态学与影像分析[M].北京:测绘出版社,1991.
    [118] 程朋根,龚健雅.地勘工程三维空间数据模型及其数据结构设计[J].测绘学报,2001,30(1):74-81
    [119] 戴吾蛟,邹铮蝾.基于体素的三维GIS数据模型的研究[J].矿山测量,2001(1):20-22
    [120] 德贝尔赫.计算几何——算法与应用[M].北京:清华大学出版社,2005
    [121] 邓文胜.地理信息系统发展趋势及展望[J].江汉大学学报(自然科学版),2002,19(4):84-87
    [122] 邓志高,孙增昕.利用线性再励的自适应变步长快速BP算法[J].模式识别与人工智能,1993,6(4):317-323
    [123] 地理信息系统GIS前沿技术综述.http://www.chinadci.com/gb/szcs/3s/gis_forward.htm
    [124] 地理信息系统空间,三维GIS功能与特点.http://www.gissea.com/html/2006-07/518.htm
    [125] 刁宝成,焦永和.计算机图形学[M].北京:高等教育出版社,1999
    [126] 杜国明,龚健雅,文余源.时空GIS的现状与发展[J].武汉大学学报,2002(27):91-94
    [127] 费广正,吴恩华.基于递进网格的多层次模型编辑[J].计算机学报,2000,23(9):953-959
    [128] 龚建华,林珲,肖乐斌等.地学可视化探讨[J].遥感学报,1999,3(3):236-243
    [129] 龚健雅.矢量与栅格集成的三维数据模型[J].武汉测绘科技大学学报.1997,22(1):7-15
    [130] 郭华东,杨崇俊.建设国家对地观测体系,构筑“数字地球”[J].遥感学报,1999,3(2):90-93
    [131] 郭际元,龚君芳.由三维离散数据生成四面体格网算法研究[J].地球科学:中国地质大学学报,2002,27(3):271-273
    [132] 郭薇,詹平.面向地理信息系统的三维空间数据模型[J].江西科学,1999,17(2):77-82
    [133] 韩国建,郭达志.矿体信息的八叉树存储和检索技术[J].测绘学报,1992,21(1):13-17
    [134] 侯恩科,吴立新.面向地质建模的三维体元拓扑数据模型研究[J].武汉大学学报(信息科学版),2002,27(5):467-472
    [135] 侯景儒,黄竞光.地质统计学及其在矿石储量计算中的应用[M].北京:地质出版社,1982
    [136] 黄光球,桂中岳.横剖面上矿体自动圈定的神经网络方法[J].中国钼业,1996(4):26-31
    [137] 惠文华,郭新成.3维GIS中的八叉树空间索引研究[J].测绘通报,2003(1):25-27
    [138] 蒋红斐.基于分治算法构建Delatmay三角网的研究[J].计算机工程与应用,2003,39(16):81-82
    [139] K.伊拉尔斯兰,N.塞莱比.露天矿优化设计模拟模型[J].矿业工程,2003,1(3):18-22
    [140] 李翠平,李仲学,胡乃联.矿床体视化的一种空间规则体数据生成方法[J].北京科技大学学报,2002,24(4):589-592
    [141] 李翠平,李仲学,赵文广.矿床的体视化及仿真系统框架[J].金属矿山,2001(10):44-48
    [142] 李德仁,关泽群.空间信息系统的集成与实现[M].武汉:武汉测绘科技大学出版社,2000.
    [143] 李德仁,李清泉.一种三维GIS混合数据结构研究[J].测绘学报,1997,26(2):128-132
    [144] 李杰,毛善君,张海荣等.层状矿床的三维仿真与动态显示[J].中国矿业大学学报,1999,28(4):335-338
    [145] 李捷,唐泽圣.三维复杂模型的实时连续多分辨率绘制[J].计算机学报.1998,21(6):481-491
    [146] 李军,景宁,孙茂印.集成型空间数据库技术分析[J].国防科技大学学报,2000,22(3):1-5
    [147] 李军.三维GIS空间数据模型及可视化技术研究[D],国防科学技术大学博士学位论文,2000:39-50
    [148] 李清泉,李德仁.八叉树的三维行程编码[J].武汉测绘科技大学学报,1997,22(2):103-106
    [149] 李清泉,李德仁.三维空间数据模型集成的概念框架研究[J].测绘学报,1998,27(4):325-330
    [150] 李清泉,杨必胜,史文中等.三维空间数据的实时获取、建模与可视化[M],武汉:武汉大学出版社,2003:98-120
    [151] 李青元,林宗坚,李成民.真三维GIS技术研究的现状与发展[J].测绘科学,2000,25(2):47-51
    [152] 李志刚.广义域三维散乱数据场的通用可视化技术研究[D].北京航空航天大学博士学位论文,1997
    [153] 李志林,朱庆.数字高程模型[M].武汉:武汉测绘科技大学出版社,2000:65-101
    [154] 刘国栋,张锦.数字城市中建筑物的CSG建模[J].三晋测绘,2002,9(3):31-33
    [155] 刘少华,程朋根.TIN构建算法的研究及OpenGL下三维可视化[J].计算机工程与应用,2003(18):72-75
    [156] 刘学军,符锌砂,赵建三.三角网数字地面模型快速构建算法研究[J].中国公路学报,2000,13(2):31-36
    [157] 刘学军,龚健雅.约束数据域的Delaunay三角剖分与修改算法[J].测绘学报,2001(2):82-87.
    [158] 刘衍聪,宋哲,牛文杰.基于TEN的3DGIS数据模型及其生成算法[J].计算机应用,2004,24(7):153-158
    [159] 卢炎生,蒋洪波,唐波.复杂模型的视点依赖简化算法[J].小型微型计算机系统,2005,26(1):156-160
    [160] 苗小平,余志伟,王志勇.浅论GIS的新进展[J].四川测绘,2001,24(3):105-107
    [161] 倪慧珠,邱新忠,曹先革.空间数据库引擎SDE的研究[J].测绘工程,2006,15(1):17-20
    [162] 齐安文,吴立新,侯恩科等.三维地学模拟述评及其矿山应用关键问题[J].中国矿业,2001,10(5):61-64
    [163] 齐敏,郝重阳,佟明安.三维地形生成及实时显示技术研究进展[J].中国图象图形学报,2000,5(4):269-275
    [164] 齐安文,吴立新,李冰等.一种新的三维地学空间构模方法:类三棱柱法[J].煤炭学报,2002,27(2):158-163
    [165] 尚游,陈岩涛.OpenGL图形程序设计指南[M].北京:中国水利水电出版社,2001:147-160
    [166] 石教英,蔡文立.科学计算可视化算法与系统[M].北京:科学出版社,1996
    [167] 石松,朱泉锋,唐丽玉.四叉树高效Delaunay三角网生成算法[J].计算机工程,2005,31(18):87-89
    [168] 石忠民,矿床模型块段权重与露天矿设计统一模型[J].中国有色金属学报,2000,10(1):140-143
    [169] 宋涛,欧宗瑛,王瑜.八叉树编码体数据的快速体绘制算法[J].计算机辅助设计与图形学学报,2005,17(9):1990-1996
    [170] 苏虎,周美玉.一种大规模地形的实时绘制算法[J].武汉大学学报,2003,36(3):81-85
    [171] 隋刚,刘国栋,张锦.CSG方法在建筑物三维建模中的应用研究[J].太原理工大学学报,2003,34(6):691-693
    [172] 孙长嵩,韩罡,刘金鑫.一个基于抽象类层次和扩展CSG结构的图形建模方法[J].哈尔滨工程大学学报,1998,19(1):56-59
    [173] 孙家广.计算机图形学[M].北京:清华大学出版社,2000
    [174] 孙敏,陈军.三维城市模型的数据获取方法评述[J].测绘通报,2000(11):4-6
    [175] 孙敏,唐小明,赵仁亮.面向对象的三维矢量GIS数据模型及拓扑关系的建立[J].测绘通报,1998(7):11-14
    [176] 孙敏,薛勇.基于四面体格网的3维复杂地质体重构[J].测绘学报,2002,31(4):361-365
    [177] 唐良红,满志强,孙立镌.基于CSG+Brep模式的高效可靠隐藏线消除算法[J].哈尔滨理工大学学报,1998,3(4):65-67
    [178] 唐泽圣.三维数据场可视化[M].北京:清华大学出版社,1999
    [179] 陶志良,潘志庚,石教英.支持快速恢复的可逆递进网格及其生成方法[J].软件学报,1999,10(5):503-507
    [180] 万剑华,潘正风,李清泉.城市3维地理信息系统研究的几个焦点问题[J].测绘通报,2002(7):11-13
    [181] 王家耀.空间信息系统原理[M].北京:科学出版社,2001
    [182] 王李管,何昌盛,贾明涛.三维地质体实体建模技术及其在工程中的应用[J].金属矿山,2006(2):58-62
    [183] 王明强.计算机辅助设计技术[M].北京:科学出版社,2002
    [184] 王维江,张俊霞.数据可视化技术研究的新进展[J].计算机时代,2002(5):4-6
    [185] 王洵,许胤.改进的八叉树数据结构[J].计算机科学,2000,27(6):99-100
    [186] 王洵,张青山,吴韵楠.一种三维地层模型的表示和生成方法[J].计算机工程与应用,2000(9):169-173
    [187] 王正斌,李明,杨琨琨.一种混合数据结构在三维介质体建模中的应用[J].西安邮电学院学报,2006,11(3):24-26
    [188] 王正林,刘明.精通MATLAB 7.0[M].北京:电子工业出版社,2006
    [189] 吴立新,史文中,Christopher Gold.3D GIS与3D GMS中的空间构模技术[J].地理与地理信息科学,2003,19(1):5-11
    [190] 武晓波,王世新,肖春生.Delaunay三角网的生成算法研究[J].测绘学报,1999,28(1):28-35
    [191] 武晓波,王世新,肖春生.建立多精度三角网[J].中国图象图形学报,1999,4(9):766-768
    [192] 吴信才.地理信息系统原理与方法[M].北京:电子工业出版社,2002:20-41
    [193] 武玉国,杜莹,王晓明等.大规模地形TIN模型的LOD算法设计与实现[J].系统仿真学报,2005,17(3):665-669
    [194] 希尔(F.S,Hill,Jr.).计算机图形学(OpenGL版)[M].北京:科学出版社,2003
    [195] 谢刚生.地理信息系统中的热点问题综述[J].华东地质学院学报,1999,22(2):167-174
    [196] 熊金城.点集拓扑讲义[M].北京:高等教育出版社,2003
    [197] 徐元斌,赫冀成,李宝宽等.用八叉树数据结构自动生成三维网格的算法设计[J].东北大学学报,1997,18(4):351-355
    [198] 薛惠锋,吴慧欣.OpenGL图形程序开发实务[M].西安:西北工业大学出版社,2005:134-175
    [199] 杨春,云庆夏.绘制地质分层平面图的计算机方法[C].第五届矿山系统工程学术会议论文集,长沙,1990
    [200] 杨大力,刘泽民.多层前向神经网络中BP算法的误调分析及其改进算法[J].电子学报,1995,23(1):117-120
    [201] 杨静,姬雪敏,陈立忠等.基于面向对象方法的CSG建模[J].哈尔滨工程大学学报,2000,23(3):92-95
    [202] 杨树强,陈火旺,王峰.矢量和栅格一体化的数据模型[J].软件学报,1998,9(2):91-96
    [203] 杨钦.限定Delaunay三角网格剖分技术[M].北京:电子工业出版社,2005:70-98
    [204] 杨晓雷,童光煦.矿化模型及其应用[J].国外金属矿山,1993(7):86-88
    [205] Y.C.Pao.计算机辅助设计与制造CAD/CAM基础[M].(许耀昌等译).北京:电子工业出版社,1998
    [206] 曾新平.地质体三维可视化建模系统GeoModel的总体设计与实现技术[D].中国地质大学博士学位论文,2005:98-101
    [207] 张煜,白世伟.一种基于三棱柱体体元的三维地层建模方法[J].中国图像图形学报,2001,6(3):285-290
    [208] 张志华,朱章森,李儒兵.几种修正的自适应神经网络学习算法及其应用[J].中国地质大学学报,1998,23(2):179-182
    [209] 赵友兵,石教英,周骥等.一种大规模地形的快速漫游算法[J].计算机辅助设计与图形学学报,2002,14(7):624-628
    [210] 周昆,潘志庚,石教英.多细节层次模型间的平滑过渡[J].计算机辅助设计与图形学学报,2000,12(6):463-467
    [211] 周昆,潘志庚,石教英.基于三角形折叠的网格简化算法[J].计算机学报,1998,21(6):506-513
    [212] 周秋生.建立数字地面模型算法研究[J].测绘工程,2001(1):15-18
    [213] 朱庆.三维动态交互式可视化模型[J].武汉测绘科技大学学报,1998,23(2):124-127

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700