用户名: 密码: 验证码:
枫香人工林生态系统水文过程及主要营养元素动态特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林生态系统的水文过程及主要营养元素动态特征在陆地生态系统的碳氮平衡过程中发挥着重要作用。我国人工林生态系统面积大,因此对人工林生态系统水文生态功能及养分的研究已成为当今社会关注的一个热点问题。枫香具有维护地力高,生态效益好,速生落叶的优良阔叶树种。揭示枫香人工林生态系统内与系统间水分循环的时空变异规律、机理及驱动变量,成为我们亟待解决的问题。2009年1月至2010年12月,本论文采用定位观测方法,对长沙市枫香人工林生态系统水文生态功能和养分循环的动态变化特征进行了研究,目的是揭示枫香人工林水文生态功能和养分循环特征,为估算出枫香人工林生态系统涵养水源,合理有效经营和维持林地生产力的作用,积累人工林植被与水分循环的研究数据。研究结果表明:
     1、枫香人工林林冠截留对降水的截留率主要分布在10.7%~59.3%范围内,大气降雨量与林冠截留量相关关系:y=9.6893+0.1079x,P<0.01;与树干茎流量相关关系:y=-0.0493+0.0182x,P<0.01;与林内降雨量相关关系:y=-9.6433+0.8739x,P<0.001;林冠对大气降水的截留作用呈现出明显的月变化和季节变化,夏秋季的林内降雨量小,平均最低为59.4%,林内降雨最高为84.5%。树干茎流率表现出随大气降水强度的增加而增加。观测到的季平均最低值为0.94%,季平均最高值为2.4%。同一降雨强度下,枫香人工林夏季林冠截留量最大,达到39.37%,春季、秋季、冬季林冠截留率分别为36.51%、37.75%、34.02%,呈现出夏季>秋季>春季>冬季的特征。
     2、大气降水的pH值在5.7±0.2~7.0±0.2的范围内变化,林内降雨pH值在6.4±0.1~7.2±0.2的范围内变化,树干茎流的pH值波动不大。三种降水的pH年均值由大到小排序为:穿透水(6.8±0.20)>大气降水(6.5±0.20)>树干茎流(6.34±0.17)。林外降水中以Ca2+元素含量最高,为6.323mg/L, Cu2+含量最低,仅0.038mg/L,林内降雨中Ca2+的含量最高,为11.253mg/L,占各种化学组分总量的34.29%; NO3-N含量占3.90%;NH4+-N含量占18.14%;K+含量占29.27%。Pb2+含量最低,仅0.027mg/L。树干茎流水中,NH4+-N含量最高,占总量30.72%;Pb2+含量最低,仅0.013mg/L。
     3、枫香人工林大气降水、林内降雨和树干茎流中各营养元素含量季节之间差异性显著(P<0.05),大气降水、林内降雨和树干茎流中大量元素NO3--N、NH4+-N、Ca2+、K+、SO42-、Mg2+等含量,均表现出雨季低、旱季高,含量随降水季节表现出明显的季节动态变化。林外降水中季节变化幅度最大的是NH4+-N,林内降雨中季节变化幅度最大的是K+,树干茎流中季节变化幅度与林外降水和林内降雨刚好相反,季节变化幅度最大的是PO42-。微量元素在林外降水、穿透水以及树干茎流中不同季节输入量均表现出一致的趋势。林内降雨中Fe3+、Cu2+、Zn2+、pb2+和Cd2+均表现为负淋溶。表明枫香人工林生态系统对林内降雨Cu2+、Fe3+、Zn2+、pb2+和Cd2+具有一定的吸收、吸附作用,具有净化作用。
     4、枫香大根、中根和细根营养元素含量营养元素总含量的差异性显著(P<0.05),大根、中根和细根大量元素不同季节含量的差异性显著(P<0.05)。大根、中根和细根微量元素含量季节之间差异性达到显著(P<0.05)。总含量季节变化为冬季>夏季>春季>秋季。枫香人工林林下植被营养元素总含量季节之间差异性显著(P<0.05)。林下植被的大量养分元素含量年均值为38.925±4.263g/kg,林下植被微量元素总含量季节之间差异性显著(P<0.05)。林下植被的养分元素总含量年均值为929.125±114.537mg/kg。林下植被各微量元素的季节变化显著(P<0.05)。
     5、枫香人工林凋落物生物量年平均为1023.9±114.3g/m,地表凋落物层厚度为0.8~2.0cm,其中叶、小枝占总凋落物量的69.37%。凋落物的养分元素总含量年平均值为32.480±3.537g/kg。枫香林土壤营养元素总含量从a层向下到c层呈下降趋势。a层大量元素总含量与b、c层之间差异性达到显著(P<0.05),总含量年平均值为7.419±1.053g/kg,所含大量元素之间差异性显著(P<0.05)。土壤b层养分元素总含量年平均值为5.724±.493g/kg。土壤b层大量元素之间差异性显著(P<0.05)。土壤c层营养元素总含量年平均值为5.623±0.484g/kg。土壤a、b、c层中微量元素总含量之间差异性没有达到显著(P>0.05),3层土壤养分元素总含量年平均值为1905.709±201.427mg/kg。
The hydrological processes and dynamic characteristics of the main nutrient elements carbon and nitrogen in terrestrial forest ecosystems balancing process plays an important role. Hydrological function and nutrient research has become a hot topic of social concern about the plantation ecosystem. Liquidambar the maintenance of high fertility and ecological benefits of good, excellent fast-growing deciduous broad-leaved species. Reveals Liquidambar plantation ecosystem and water circulation systems temporal variation regularity, mechanism and driving variables, we become a serious problem. In January2009to December2010, we study dynamic characteristics of Liquidamba formosana plantation ecosystem hydrology ecological function and nutrient cycling by long-term observation in Changsha. Research data of plantation vegetation and water cycle was accumulated. The purpose is to reveal the Liquidamba formosana plantation hydro-ecological function and nutrient cycling characteristics, to estimate the role of water in Liquidamba formosana plantation ecosystem conservation, reasonable and effective operation and maintenance of forest productivity. The results showed that:
     1、Liquidamba formosana artificial canopy interception of precipitation interception rate is mainly distributed in the range of10.7%to59.3%, the atmospheric rainfall canopy interception relationship:y=9.6893+0.1079x, P<0.01; stem-flow relationship:y=-0.0493+0.0182x, P<0.01; Rinnai rainfall correlation:y=-9.6433+0.8739x, P<0.001; canopy interception of precipitation showing obvious monthly and seasonal changes, rainfall in the summer and autumn forest within average minimum of59.4%the rainfall of up to84.5%. Stem-flow rate showed increase with the increase in the intensity of precipitation. The observed quarter average minimum value of0.94%, the highest season average value of2.4%. Same rainfall intensity, Liquidamba formosana plantation Summer Forest crown interception, reaching39.37percent, spring, fall, winter canopy interception rate of36.51%,37.75%,34.02%, showing a summer> autumn> spring> winter characteristics.
     2、Precipitation pH value in the range of5.7±0.2~7.0±0.2of the Rinnai rainfall pH value in the range of6.4±0.1~7.2±0.2of the changes in the pH of stem-flow fluctuations. Three precipitation average pH value descending order:the penetration of water (6.8±0.20)> precipitation (6.5±0.20)> the stem-flow (6.34±0.17). Outside the forest precipitation Ca2+element content in the highest,632.3mg/L Cu2+content of the lowest, only0.038mg/L, Rinnai rainfall of Ca2+content in the highest,11.253mg/L, representing a variety of chemical components of the total amount of34.29The%; NO3-N content accounted for3.90%; NH4+-N content of18.14%; K+content of29.27%. Pb2+content is lowest, is only0.027mg/L The sap flowing water, NH4+-N content of the highest, accounting for30.72%of the total; Pb2+content was the lowest, only0.013mg/L.
     3、Liquidamba formosana plantation meteoric Rinnai rainfall and the stem-flow difference between the content of each nutrient season was significantly (P<0.05), a large number of elements in the precipitation, forest rainfall and stem flow of NO3-N and NH4+-N, Ca2+, K+, SO42", Mg2+content showed low during the rainy season, dry season and high content with precipitation season showed obvious seasonal dynamics. Outside the forest precipitation seasonal variation biggest is NH4+-N, Rinnai rainfall seasonal variation biggest is K+. stem-flow in seasonal changes in amplitude and outside the forest precipitation and Rinnai rainfall is just the opposite, the largest seasonal variation PO42-. Trace elements outside the forest precipitation, throughfall, and stem-flow in different seasons input volume showed a consistent trend. Rainfall within the forest, Fe3+, Cu2+. Zn2+, Pb2+and Cd2+showed negative leaching. The Liquidamba formosana plantation ecosystem of forest within rainfall Cu2+, Fe3+, Zn2+,Pb2+and Cd2+with a certain degree of absorption, adsorption, purification function.
     4、Large root, root and fine root of Liquidamba formosana plantation nutrient element content of nutrient elements in the total content of the differences in significant significantly (P<0.05), large root, root and fine root of a large number of elements different season of the content of the differences in significant significantly (P<0.05). Large root, the difference between the roots and fine roots trace element contents season reached significant (P<0.05). The seasonal variation of the total content of winter> summer> spring> autumn. Liquidamba formosana Plantations differences between the vegetation total content of nutrient elements season significantly (P<0.05). The annual average of the nutrient content of the understory vegetation38.925±4.263g/kg, the difference between the total content of trace elements under vegetation season significantly (P<0.05). The annual average of the total content of nutrient elements of the understory vegetation929.125±114.537mg/kg. Understory vegetation seasonal variation of trace elements significantly (P <0.05).
     5、Annual average litterfall biomass of Liquidamba formosana plantation was1023.9±114.3g/m in surface litter layer thickness of0.8to2.0cm, which leaf, sprig of69.37%of the total litter weight. The annual average of the total content of the litter nutrient elements to32.480±3.537g/kg. Liquidamba formosana forest soil nutrient elements in the total content of a downward trend from a layer down to C and A layer of a large number of differences between the elements of the total content of B, C layer reaches a significant (P<0.05), the total content of the annual average of7.419±1.053g/kg, the difference between the large number of elements contained significantly (P<0.05). The annual average of the total content of the soil the B layer nutrient elements5.724±0.493g/kg. The difference between the large number of elements of the soil B layer significantly (P<0.05). The annual average of the total content of the soil the C layer nutrition elements5.623±0.484g/kg. No significant differences (P>0.05), the annual average of the total content of the three layers of soil nutrient elements1905.709±201.427mg/kg total content of trace elements in the soil layer.
引文
[1]Bonell M. Progress in the understanding of runoff generation dynamics in forests[J]. Journal of Hydrology,1993,150:217-275.
    [2]Bonell M. Selected challenges in runoff generation research in forests from the hillslope to headwater drainage basin scale[J]. Journal Amerian Water Resour Assoc,1998,34(4):765-785.
    [3]McDonnell J J and Tanaka T. History of forest hydrology[J]. Journal of Hydrology,1993,150:189-216.
    [4]Whitehead P G, Robinson M. Experimental basin studies-An international and historical perspective of forest impacts[J]. Journal of Hydrology,1993,145: 217-230.
    [5]林芷,许绍远,潜高星,等.柏木与枫香混交林营造技术研究[J].浙江林学院学报,1985,2(2):21-25.
    [6]王珍珍,文仕知,杨丽丽.长沙市郊枫香人工林降水再分配及养分动态[J].中南林业科技大学学报,2008,28(2):54-56.
    [7]王淑元,林升寿.我国森林生态系统定位研究的进展[J].世界林业研究,1995,6(1):44-49.
    [8]潘维铸.亚热带杉木人工林生态系统中的水文学过程和养分动态[J].中南林学院学报,1989,9(18):1-18.
    [9]Sun G, Mcnulty S G, Amtya D M, et al. A comparison of the watershed hydrology of coastal forested wetlands and the mountainous uplands in the Southern US[J]. Journal of Hydrology,2002,263:92-104.
    [10]McCulloch J G, Robinson M. History of forest hydrology [J]. Hydrology,1993, 10:189-216.
    [11]张卓文,廖纯燕,邓先珍,等.森林水文学研究现状及发展趋势[J].湖北林业科技,2004(3):34-37.
    [12]郭明春,王彦辉,于彭涛.森林水文学研究综述[J].世界林业研究,2005,18(3):6-11.
    [13]Brown A E, Zhang L, M cnahon T A, et al. Areview of paired catchment studies for determining changes in water yield resulting from alterations in vegetation[J]. Journal of Hydrology,2005,10:28-61.
    [14]魏晓华,李文华,周国逸,等.森林与径流关系:一致性和复杂性[J].自然资源学报,2005,20(5):761-770.
    [15]Cheng J D, Lin L L, Lu H S. Influences of forests on water flows from headwater watersheds in Taiwan[J]. Forest Ecology and Management,2002, 165:11-28.
    [16]Whitehead P G,C alder M. Forward [J]. Journal of Hydrology,1993,145:215-216.
    [17]张志强,余新晓,赵玉涛,等.森林对水文过程影响研究进展[J].应用生态学报,2003,14(1):113-116.
    [18]Gardner C B. Effects of forest-management activities on runoff components and ground-water recharge to Quabbin Reservoir, central Massachusetts[J]. Forest Ecology and Management,2001,143:115-129.
    [19]Giert Z S, Diekkruge R B. Analysis of the hydrological processes in a small headwater catchment in Benin (West Africa) [J]. Physics and Chemistry of the Earth,2003,28:1333-1341.
    [20]于志民,王礼先.水源涵养林效益研究[J].北京:中国林业出版社,1999,25(4):1-34.
    [21]Mc Culloch J G, Robinson M. History of forest hydrology[J]. Journal of Hydrology,1993 15(15):189-216.
    [22]Bormann F H, L ikens G E. Pattern and processes in a forested ecosystem [M]. New York:Springer Verlag,1979.
    [23]赵文智,王根绪.生态水文学[M].中国海洋出版社,北京,2002.
    [24]Sobiera J A, Elsenbeer H, Coelho R M, et al. Spatial variability of soil hydraulic conductivity along a tropical rainforest catena[J]. Geoderma,2002,108:79-90.
    [25]Galle S, Ehrman N M, PeugeoT C. Water balance in a banded vegetation pattern. A case study of tiger bush in western Niger[J]. Catena,1999,37:197-216.
    [26]张增哲,余新晓.中同森林水文研究现状和主要成果综述.见:全国森林水文学术讨论会文集[M].北京:测绘出版社,1989.
    [27]潘维俦.森林生态系统物质循环研究中的生物地球化学方法和试验技术[J].中南林学院学报,1984,4(1):111-128.
    [28]潘维俦.集水区内森林生态系统的养分分析[J].中南林学院学报,1988, 8(2):159-122.
    [29]潘维俦.亚热带杉木人工林生态系统中的水文学过程和养分动态[J].中南林学院学报,1989,9(18):1-18.
    [30]田大伦.森林水文学过程中的水质分析[J].林业科技通讯,1987,(6):13-16.
    [31]田大伦.会同杉林林小集水区环境背景值的研究[J].t中南林学院学报,1989,(18):85-91.
    [32]田大伦.杉木林生态系统生物地球化学循环规律的研究.见周晓峰主编.中国森林生态系统定位研究[M].哈尔滨:东北林业大学出版社,1994.
    [33]周晓峰,等.森林水文循环的研究.森林生态系统定位研究(第一集)[M].哈尔滨:东北林业大学出出版社,1991.
    [34]周晓峰.中国森林与生态环境[M].北京:中国林出版社,1999.
    [35]周晓峰.森林生态功能与经营途径[M].北京:中国林业出版社,1999.
    [36]雷瑞德.秦岭南坡林地蓄水功能的初步研究[J].西北林学院学报,1984,23(1):123-130.
    [37]雷瑞德.秦岭火地塘林区华山松林水源涵养功能的研究[J].西北林学院学报,1984,23(1):253-260.
    [38]雷瑞德,张仰架,党坤良.秦岭林区森林水文效应的研究.见周晓峰主编.中国森林生态系统定位研究[M].哈尔滨:东北林业大学出版社,1994.
    [39]马雪华.眠江上游森林的采伐对河流流量和泥沙悬移质的影响[J].自然资源,1980,(3):78-87.
    [40]马雪华.森林与水[M].中国林业出版社,1987.
    [41]马雪华.四川米亚罗地区高山冷杉林水文作用的研究[J].林业科学,1987,23(3):253-265.
    [42]马雪华.降雨在杉林和马尾松人工林养分循环中的作用[J].林业科学研究,1988,(2):123-130.
    [43]马雪华.森林与水质.见:全国森林水文学术讨论会文集[M].北京:测绘出版社,1989.
    [44]马雪华.在杉小林和马尾松林中雨水的养分淋济作用[J].生态学报,1989,9(1):15-20.
    [45]马雪华,杨光澄.杉木、马尾松人工二林土壤物理性质及水分含量变化的研究[J].林业科学研究,1990,3(1):63-69.
    [46]马雪华.杉木、马尾松人工林径流特征的研究[J].林业科学研究,1992,5(3):284-289.
    [47]马雪华,杨茂瑞,胡星.亚热带杉木、马尾松人工林水文功能的研究[J].林业科学,1993,29(3):199-206.
    [48]马雪华.森林水文学[M].北京:中国林业出版社,1993.
    [49]李意德,陈步峰,周光益,等.海南岛热带天然林生态环境服务功能价值核算及生态公益林补偿探讨[J].林业科学研究,2003,15(2):26-30.
    [50]陈步峰,周光益,曾庆波,等.热带山地次生雨林生态系统的水文学过程及养分动态[J].林业科学研究,1994,7(5):525-530.
    [51]陈步峰,周光益,曾庆波,等.热带山地次生雨林的水化学特征及其与降雨量关系的研究[J].林业科学研究,1993,6(2):117-128.
    [52]陈步峰,周光益,曾庆波,等.热带山地次生雨林的水化学特征及其与降雨量关系的研究.见:蒋有绪.中国森林生态系统结构与功能规律研究[M].北京:中国林业出版社,1999.
    [53]陈步峰.尖峰岭热带林集水区一组水质背景值及水质生态效应[J].林业科学研究,1998,11(3):231-236.
    [54]陈步峰.海南尖峰岭热带山地而林近冠层C02及通量特征研究[J].生态学报,2001,21(12):2166-2172.
    [55]陈步峰.热带山地雨林生态系统对降雨水质的影响[J].林业科学研究,1999,12(4):333-338.
    [56]陈步峰.热带山地雨林生态系统的水分生态效应一冠层对暴雨势能的消减、暴雨养分贮存[J].生态学报,1997,17(6):635-639.
    [57]陈步峰.热带山地雨林生态系统的水分生态效应一冠层淋溶、水化学贮滤[J].生态学报,1998,1(4):236-240.
    [58]周光益.中国热带森林水文生态功能[J].生态学杂志,1997,16(5):47-50.
    [59]周光益.海南岛热带山地雨林短期水量平衡及主要养分的地球化学循环研究[J]_生态学报,1 996,16((1):28-32.
    [60]周光益.热带山地雨林林冠层对降雨的影响分析[J].植物生态学报,1995,19(3):201-207.
    [61]周光益.热带林茎流收集及计算方法探索[J].生态学杂志,1994,13(5):63-66.
    [62]王礼先.小流域综合治理的概念与原则[J].中国水土保持,2006,2:16.
    [63]王礼先.水土保持学[M].北京:中国林业出版社,1995.
    [64]王礼先,解明曙.山地防护林水土保持水文生态效益及其信息系统[M].北京:中国林业出版社,1998.
    [65]工礼先,张志强.森林植被变化的水文生态效益研究进展[J].世界林业研究,1998,11(6):14-23.
    [66]余新晓.森林植被减弱降雨侵蚀能量的数理分析[J].水土保持学报,1988,2(2):22-30.
    [67]余新晓.防护林体系水量平衡研究[J].北京林业科技,1992,(3):568-573.
    [68]余新晓.黄土地区防护林体系根际区土壤水分平衡研究[M].水土保持科学研究与发展,中国林业出版社,1993.
    [69]余新晓.土壤动力水文学问题的研究及其在防护林体系建设中的应用[J].世界林业研究,1995,(3):27-33.
    [70]余新晓,陈丽华.黄土地区防护林生态系统水量平衡研究[J].生态学报,1996,16(3):238-245.
    [71]余新晓.森林植被影响径流形成机制研究进展[J].自然资源学报,2001,16(1):79-84.
    [72]王彦辉:刺槐对降雨的截持作用[J].生态学报,1986,7(1):43-49.
    [73]王彦辉.陇东黄土地区刺槐林水土保持效益的定量研究[J].北京林业大学学报,1996,8(1):653-662.
    [74]王彦辉.林冠截留降水模型转化和参数规律的初步研究[J].北京林业大学学报,1998,20(6):25-30.
    [75]赵鸿雁,吴钦孝,陈云明.黄土高原不同处理人工油松林地水土流失研究[J].西北农林科技大学学报(自然科学版),2002,30(6):171-173.
    [76]赵鸿雁,吴钦孝,刘国彬.黄土高原人工油松林枯枝落叶层的水土保持功能研究[J].林业科学,2003,39(1):168-172.
    [77]赵鸿雁,吴钦孝.黄土高原人工油松林林冠截留动态过程研究[J].生态学杂志,2002,21(6):20-23.
    [78]赵鸿雁,吴钦孝,陈云明.人工油松林系统水土保持功能的叠加效应[J].水土保持学报,2001,15(4):41-44.
    [79]赵鸿雁,吴钦孝,刘国彬.森林流域水文及水沙效益研究进展[J].西北林 学院学报,2001,16(4):82-87.
    [80]赵鸿雁,吴钦孝,刘国彬.山杨林的水文生态效应研究[J].植物生态学报,2002,26(4):497-500.
    [81]刘昌明,钟骏襄.黄土高原森林对年径流影响的初步分[J].地理学报,1978,23(2):112-122.
    [82]刘昌明.土壤一植物一大气系统水分运行的界面过程研究[J].地理学报,1997,52(4):266-273.
    [83]刘昌明.地理水文学的研究进展与21世纪展望[J].地理学报,1994,49(1):601-607.
    [84]刘昌明.黄土区土壤水分动态及其与降雨产流的关系[M].科学出版社,1980.
    [85]刘昌明,夏军,郭生练,等.黄河流域分布式水文模型初步研究与进展[J].水科学进展,2004,15(4):495-500.
    [86]刘昌明.黄河流域水循环演变若干问题的研究[J].地理学报,2004,15(5):608-614.
    [87]陈祖明.岷江上游森林水文效应研究[J].地理学报,1992,47(1):49-57.
    [88]陈祖铭,任守贤.眠江镇紫区间森林水文效应评价与预测[J].成都科技大学学报,1992,(4):125-131.
    [89]陈祖铭,任守贤FCHM结构与融雪模型一森林流域水文模型研究之一[J].四川水力发电,1994,(1):11-5,96.
    [90]陈祖铭,任守贤.枯枝截蓄与蒸散模型及界面水分效应一森林流域水文模型研究之二[J].四川水力发电,1994,(2):21-27.
    [91]陈祖铭,任守贤.模型参数确定与计算实例一森林流域水文模型研究之三[J].四川水力发电,1994,(3):56-62.
    [92]黄礼隆,陈祖铭,任守贤.森林水文研究方法[J].四川林业科技,1994,15(1):14-46.
    [93]Liu S R, Wang B, L C Y. Study of structure and function of forest ecosystems in China[M]. Beijing:China forestry publishing house,1996.
    [94]余新晓,陈丽华,周常青,等.长江三峡花岗岩地区坡面单场暴雨产沙过程的动态模拟[J].北京林业大学学报,1994,16(3):89-93.
    [95]康文星.杉木人工林水量平衡和蒸散的研究[J].植物生态学报与地植物学 学报,1992,16(2):187-196.
    [96]康文星.杉木人工林蒸散的研究及乱流扩散法应用的探讨[J].植物生态学报与地植物学学报,1992,16(4):336-345.
    [97]黄承标,李鑫贤.广西龙胜县里骆林场杉木人工林生态系统的水量结构、分配与平衡[J].广西科学,1994,1(1):14-28.
    [98]周国逸.生态系统水热原理及其应用[M].北京:气象出版社,1997.
    [99]周国逸.广东小良试验站降雨径流关系的一个黑箱模型[J].生态学杂志,1995,14(4):67-72.
    [100]李昌哲.林冠对降雨截留过程的研究[J].森林水文及流域竹理治理信息,1990,(1):1-8.
    [101]裴铁璠,刘家冈,韩绍文.树干径流模型[J].应用生态学报,1990,1(4):294-300.
    [102]裴铁璠.辽宁东部山区森林植被变化对降水径流的影响[J].生态学报,1993,(3):56-60.
    [103]裴铁璠,郑远长.林冠分配降水过程模拟与模型Ⅰ.常雨强下穿透降雨、树干径流和林冠截留模型[J].林业科学,1996,32(1):1-10.
    [104]程根伟.四川盆地江河径流特征与森林关系的探讨[J].水土保持学报,1991,5(1):48-52.
    [105]车克钧,傅辉恩,贺红元.祁连山北坡森林涵养水源机理的研究.见周晓峰主编.中国森林生态系统定位研究[M].哈尔滨:东北林业大学出版社,1994.
    [106]车克均,傅辉恩,王金叶.祁连山水源林生态系统结构与功能的研究[J].林业科学,1998,34(5):1-9.
    [107]徐德应,曾庆波.海南岛尖峰岭热带森林蒸散[J].林业科学研究,1985,2(1):34-40.
    [108]周国逸,潘维铸.森林生态系统蒸发散计算方法的研究[J].中南林学院学报,1988,8(1):22-27.
    [109]李昌荣,屠六邦.关于森林对河川年流量的影响及其意义[J].南京林产工业学院学报,1983,26(3):31-42.
    [110]孙阁.森林对河川,径流影响及其研究方法的探讨[J].自然资源研究,1987,(2):67-73.
    [111]周梅,余新晓.兴安落叶松原始林区降水化学输入的特征研究[J].中国农业大学学报,2003,11(2):119-21.
    [112]周梅.典型流域森林采伐对河川径流的影响[J].内蒙古林学院学报,1991,16(2):39-45.
    [113]Koichi T, Shigeru U, Toshihiko H. A forest-structure-based analysis of rain flow into soil in a dense deciduous Betula ermanii forest with understory dwarf bamboo[J]. Landscape and Ecological Engineering,2011,7:101-108
    [114]杨雨行.研究森林变化对河川水沙影响的一种便捷方法—以四川省都江堰市白沙河为例[J].北京林业大学学报,1995,17(1):97-101.
    [115]杨雨行,曾平江.我国森林植被变化对河川径流泥沙的影响[J].北京林业大学学报,1994,16(3):35-41.
    [116]毕华兴,刘立斌,刘斌.黄土高塬沟壑区水土流失综合治理范式[J].中国水土保持科学,201 0,8(4):27-33.
    [117]周光益.海南岛热带山地雨林短期水量平衡及主要养分的地球化学循环研究[J].生态学报,1996,16(1):28-32.
    [118]樊后保,苏兵强.杉木人工林生态系统的生物地球化学循环—养分归还动态[J].应用与环境生物学报,2000,6(2):127-132.
    [119]樊后保.杉木人工林对降水的截留作用[J].福建林学院学报,1998,18(1):23-26.
    [120]樊后保.杉木林截留对降水化学的影响[J].林业科学,2000,36(4):2-8.
    [121]樊后保.杉木人工林生态系统的生物地球化学循环H-氮素沉降动态[J].应用与环境生物学报,2000,6(2):133-137.
    [122]樊后保.杉木人工林的养分归还动态[J].福建林学院学报,1996,16(3):205-208.
    [123]姚华夏,袁作新.森林水文效应的流域数学模拟[J].武汉水利电力学院学报,1988,5(1):27-34.
    [124]姚华夏,袁作新.森林水文效应的数学模拟[M].北京:测绘出版社,1989.
    [125]Staelens J, De Schrijver A, Verheyen K, Verhoest NEC. Rainfall partitioning into throughfall, stemflow, and interception within a single beech (Fagus sylvatica L.) canopy:influence of foliation, rain event characteristics, and meteorology. Hydrol Process,2008,22(1):33-45.
    [126]刘家冈.林冠对降水截留的半理论模型[J].林业科学,2000,36(2):2-5.
    [127]王兵,肖文发,刘世荣.中国森林生态环境监测现状及环境质量[J].世界林业研究,1996,(5):52-60.
    [128]王兵,聂道平.现代森林水文学研究中的数据管理技术[J].土壤侵蚀与水土保持学报,1998,2(2):75-79.
    [129]Davis J A, Greenfield B K, Ichikawa G, Stephenson M. Mercury in sport fish from the Sacramento-San Joaquin Delta region, California, USA. Science Total Environ ment,2008,391(1):66-75.
    [130]温远光,刘世荣.我国主要森林生态类型降水截持规律的数量分析[J].林业科学,1995,31(4):289-298.
    [131]Xiao Q F, Gregory E M. Rainfall interception of three trees in Oakland, California [J]. Urban Ecosystems,2011,30(6):81-96.
    [132]Richard L, Granillo A B. Soil protection by natural vegetation on clear cut forest land in Arkansas [J]. Journal of Soil and Water Conservation,1985,40 (4):379-382.
    [133]Crockford R H, Richardson D P. Partitioning of rainfall into throughfall, stemflow and interception:effect of forest type, ground cover and climate[J]. Hydrological Processes,2000,14:2903-2920.
    [134]Gomez J A, Giraldez J V, Fereres E. Rainfall interception by olive trees in relation to leaf area[J]. Agricultural Water Management,2001,49:65-76.
    [135]Domingo F, Sanchez G, Moro M J,et al. Measurement and modelling of rainfall interception by three semi-arid canopies[J]. Agriculture and Forest Meteorology,1998,91:275-292.
    [136]Levia D F J, Frost E F.A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems[J]. Journal of Hydrology,2003,274:1-29.
    [137]Aboal J R, Morales D, Hernandez M, el al. The measurement and modelling of the variation of stemflow in a laurel forest in Tenerife, Canary Islands[J]. Journal of Hydrology,1999,221:161-175.
    [138]Wilson K B. Hanson P J, Mulholland P J, el al. A comparison of methods for determining forest evapotranspiration and its components:sap-flow, soil water budget, eddy covariance and catchment water balance[J]. Agriculture and Forest Meteorology,2001,106:153-168.
    [139]黄秉维.森林对环境作用的几个问题[J].中国水利,1982,04:366-370.
    [140]Whitehead P G and Robinson M. Experimental basin studies-an international and historical perspective of forest impacts[J]. Hydrology,1993,145: 217-230.
    [141]Rutter A J, Kershaw K A, Robins P C, et al. A predictive model of rainfall interception in forests. Derivation of the Model from observations in a plantation of Corsican pine[J]. Agricultural Meteorology,1971,9:367-384.
    [142]Teklehaimanot Z. Rainfall interception and boundary conductance in relation to tree spacing[J]. Hydrol,1991,123:261-278.
    [143]Valente F. Modelling interception loss for two sparse eucalypt and pine forests in central Portugal using reformulated Rutter and Gash analytical models[J]. J Hydrol,1997,190:141-162.
    [144]Liu S R. Hydrological and Ecological Variations of Chinese Forest Ecosystems [M]. Beijing:China Forestry Press,1996.
    [145]马雪华.森林水文学[M].北京:中国林业出版社,1993.
    [146]裴铁璠,郑远长.林冠分配降雨过程模型.1常雨强下穿透降雨、树干径流和林冠截留模型[J].林业科学,1996,32(1):1-10.
    [147]裴铁璠,范世香,韩绍文,等.林冠分配降雨过程的模拟实验分析[J].应用生态学报,1993,4(3):250-255.
    [148]Czarnowski M S, Olszewski J L. Rainfall interception by a forest canopy[J]. Oikos,1968,19:345-350.
    [149]郭忠升,邵明安.雨水资源、土壤水资源与土壤水分植被承载力[J].自然资源学报,2003,18(5):522-528.
    [150]Tang C. Interception and recharge Processes beneath a Pinus elliotii forest[J]. Hdrological Processes,1996,10:1427-1434.
    [151]Tobon-Marin C, Bouten W, Sevink J. Gross rainfall and its partitioning into throughfall, stemflow and evaporation of intercepted water in four forest ecosystems in western Amazonia[J]. Journal of Hydrology,2000,237:40-57.
    [152]Jetten V G. Interception of tropical rain forest:performance of a canopy water balance model[J]. Hydrological Processes,1996,10:671-685.
    [153]Dunkerley D. Measuring interception loss and canopy storage in dryland vegetation-a brief review and evaluation of available research strategies[J]. Hydrological Process,2000,14:669-678.
    [154]Van Dijk A I J M, Bruijnzeel L A. Modeling rainfall interception by vegetation of variable density using an adapted analytical model. Part 1. Model description[J]. Journal of Hydrology,2001,247:230-238.
    [155]Kimmins J P. Some Statistical Aspects of Samplinhg Throughfall Precipitation in Nutrient Cycling Studies in British Columbian Coastal Forests[J]. Ecology, 1973,54(5):1008-1019.
    [156]战伟庆,张志强,武军,等.华北油松人工林冠层穿透雨空间变异性研究[J].中国水土保持科学,2006,4(3):26-30.
    [157]时忠杰,王彦辉,熊伟,等.单株华北落叶松树冠穿透降雨的空间异质性[J].生态学报,2006,26(9):2877-2556.
    [158]李振新,郑华,欧阳志云,等.岷江冷杉针叶林下穿透雨空间分布特征的研究[J].生态学报,2004,24(5):1015-1021.
    [159]Mahendrappa M K. Impacts of forests on water chemistry[J]. Water, Air and Soil Pollution,1989,2(1):61-72.
    [160]Raich M S, Kimmel H D. Autonomic concomitants of discriminative avoidance and punishment training in the monkey[J].1979,3(4):243-248.
    [161]Wolf H. Wei H. In memoriam Professor Wolfgang Bianca1913-1982[J]. International Journal of Biometeorology,1983,10(2):85-86.
    [162]Aboal J K, Morales D, Hemandez M, el al. The measurement and modeling of the variation of steamflow in a laurel forest in Tenerife, Canary Islands[J]. Journal of Hydrology,1999,221:161-175.
    [163]范世香,厭铁珍,韩绍文.树干径流单因子模拟实验分析[J].生态学杂志,1990,9(5):32-35.
    [164]范世香.裴铁璐,迟振文.树干径流及林冠截留规律分析[J].辽宁林业科技,1992,(1):54-57.
    [165]黄承标,元昌安,韦峰.用平均木法测定杉木林树干茎流的初步尝试[J].广西农业大学学报,1993,12(4):63-68.
    [166]Guevara-Escobar A, Gonzalez-Sosa E, Veliz-Chavez C, Ventura-Ramos E, Ramos-Salinas M. Rainfall interception and distribution patterns of gross precipitation around an isolated Ficus benjamina tree in an urban area. Journal of Hydrology,2007,333(2-4):532-541.
    [167]刘曙光.降雨在林冠中的分割研究透视[J].林业科技通讯,1990,(12):16-18.
    [168]巩合德,张一平,刘玉洪,等.哀牢山常绿阔叶林林冠的截留特征[J].浙江林学院学报,2008,25(4):469-474.
    [169]周邦社,杨新兵.侧柏栎类混交林林冠截留模拟研究[J].河北林业科技,2008,6:12-21.
    [170]郑绍伟,骆宗诗,黎燕琼,等.官司河流域马尾松林林冠截留降水特征研究[J].四川林业科技,2009,30(4):50-52.
    [171]王丙超,刘萍,张毓涛,等.天山中段天山云杉林林冠降雨截留特征研究[J].新疆农业大学学报,2008,31(2):76-80.
    [172]徐小牛,王勤,平田永二.亚热带常绿阔叶林的水文生态特征[J].应用生态学报,2006,17(9):1570-1574.
    [173]肖洋,陈丽华,余新晓.北京密云麻栎人工混交林降水再分配及树干茎流特征[J].东北林业大学学报,2007,35(8):16-18.
    [174]莎仁图雅,田有亮,郭连生.大青山区油松人工林降雨分配特征研究[J].干旱区资源与环境,2009,23(6):157-160.
    [175]罗忠,文仕知.枫香人工林林冠截留对降水水量输入的影响[J].中南林业科技大学学报,2009,29(1):41-44.
    [176]陈永瑞,刘允芬,林耀明,等.江西千烟洲试验区大气降雨及人工林树干茎流特征[J].江西农业大学学报,2004,26(4):522-525.
    [177]张虎,马力.祁连山青海云杉林降水及其再分配[J].甘肃林业科技,2000,25(4):27-30.
    [178]卫正新,李树怀.不同林地林冠截留降雨特征的研究[J].中国水土保持,1997,5:19-21.
    [179]高雁,范世香,程银才.蓄满产流理论在林冠截留降雨中的应用[J].山东农业大学学报(自然科学版),2006,37(2):211-214.
    [180]巩合德,张一平,刘玉洪,等.哀牢山常绿阔叶林林冠的截留特征[J].浙 江林学院学报,2008,25(4):469-474.
    [181]马雪华.森林水文学[M].北京:中国林业出版社,1993.
    [182]金栋梁.森林对水文要素的影响[J].人民长江,1989,(1):28-35.
    [183]张天曾.从永定河东沟西沟河川特征看森林植被的水文作用[J].自然资源,1984,(4):90-98.
    [184]马雪华.岷江上游森林的采伐对河流流量和泥沙悬移质的影响[J].自然资源,1980,(3):78-87.
    [185]Shirish B, Jacobs J M, Bryant M L. The Chemical Composition of Rainfall and Throughfall Five Forest Communities:A Case Study Fort Benning, Georgia [J]. Water Air Soil Pollution.2011,218:323-332
    [186]马雪华.四川米亚罗地区高山冷杉林水文作用的研究[J].林业科学,1987,23(3):253-264。
    [187]刘世荣,温远光.中国森林生态系统水文生态功能规律[M].北京:中国林业出版社,1996.
    [188]何固心.美国森林植被对河川径流量影响的研究[J].地理译报,1986,(1):35-40.
    [189]张炳勋,冯国章.林地拦洪作用及产流特点的分析[J].水文,1985,(2):37-44.
    [190]关君蔚.长江洪灾与森林[M].森林与火灾,北京:中国林业出版社,1982.
    [191]孙阁.森林对河川径流影响及其研究方法的探讨[J]. 自然资源研究,1987,(2):67-71.
    [192]Liu S R, Sun P S, Wen Y G. Comparative analysis of hydrological functions of major forest ecosystems in China[J]. Acta Phytoecologica Sinica,2003, 16(27):16-22.
    [193]刘志韬.山西管涔山林区森林对径流的影响[J].水土保持通报,1981,(4):56-61.
    [194]Nieswand G H, Hordon R M, Shelton T B, et al. Buffer Strips to protect water supply reservoirs[J]. Water Resources Bulletin,1990.26(6):959-965.
    [195]Lee K H, Iscnhart T M,Schultz R C, el al. Multispecies riparian buffers trap sediment and nutrients during rainfall simulations[J]. Journal of Environmental Quality,2000.29:1200-1205.
    [196]Grimaldi C. Behaviour of chemical solutes during a storm in a rainforested headwater catchment[J]. Hydrogeology Processes,2004,18:93-106.
    [197]中野秀章[李云森译].森林水文学[M].北京:中国林业出版社,1983.
    [198]Aboal J R, Morales D, Hernandez M, et al. The measurement and modeling of the variation of stemflow in a laurel forest in Tenerife, Canary Islands[J]. Journal of Hydrology,1999,221:161-175.
    [199]Carlyle-Moses D E, Flores-Laureano J S, Price A G. Throughfall and throughfall spatial variability in Madrean oak forest communities of northeastern Mexico[J]. Journal of Hydrology,2004,297:124-135.
    [200]Riekerk H, Korhnak L V. Rainfall and runoff chemistry of Florida pine flatwoods[J]. Water, Air, and Soil Pollution,1992, (1):59-68.
    [201]Dunin F X. Extrapolation of'point'measurements of evaporation:some issues of scale[J]. Vegetatio,1991, (1):39-47.
    [202]石井正典,郭百平.山地森林生长对蒸发散量的影响[J].山西水土保持科技,1995,(2):36-38.
    [203]高人,周广柱.辽宁东部山区几种主要森林植被类型土壤渗透性能研究[J].农村生态环境,2002,18(4):1-4,14.
    [204]高国栋,陆渝蓉,李怀瑾.我国陆面蒸发量和蒸发耗热量的研究[J].气象学报,1980,15(2):125-130.
    [205]Crockford R F, Richiardson D P. Partitioning of rainfall into throughfall, stemflow and interception:effect of forest type, ground cover and climate[J]. Hydrogeology Processes,2000,14:2903-2920.
    [206]喻荣岗,左长清,杨洁,等.红壤侵蚀区几种水土保持林水文效应研究[J].水土保持通报,2007,27(6):194-198.
    [207]吴钦孝,赵鸿雁.黄土高原森林水文生态效应和林草适宜覆盖指标[J].水土保持通报,2000,20(5):32-34.
    [208]李红云,杨吉华,鲍玉海,等.山东省石灰岩山区灌木林凋落物持水性能的研究[J].水土保持学报,2005,19(1):44-48.
    [209]陈奇伯,解明曙,张洪江.森林枯落物影响地表径流和土壤侵蚀研究动态[J].北京林业大学学报,1994,16(1):88-97.
    [210]庞学勇,包维楷,张咏梅.岷江上游中山区低效林改造对枯落物水文作用 的影响[J].水土保持学报,2005,19(4):119-123.
    [211]王佑民.中国林地枯落物持水保土作用研究概况[J].水土保持学报,2000,14(4):71-80.
    [212]Kelliher F M, Leuning R, Schulze E D. Evaporation and canopy characteristics of coniferous forests and grasslands[J]. Hydrogeology Processes,1993, (2): 153-163.
    [213]吴钦孝.山杨次生林枯枝落叶层蓄积量及其水文作用[J].水土保持学报,1992,6(1):71-76.
    [214]吴钦孝,赵鸿雁.黄土高原森林水文生态效应和林草适宜覆盖指标[J].水土保持通报,2000,20(5):32-34.
    [215]Buck K N, Ross J R M, Flegal A R, Bruland K WA. review of total dissolved copper and its chemical speciation in San Francisco Bay, California[J]. Environment Researsch,2007,105:5-19.
    [216]马雪华,杨茂瑞,王建军.亚热带杉木、马尾松人工林水文功能的研究[J].东北林业大学出版社,1994,16(9):346-353.
    [217]孙立达,朱金兆.水土保持林体系综合效益研究与评价[M].中国科学技术出版社,1995.
    [218]孙艳红,张洪江,程金花,等.缙云山不同林地类型土壤特性及其水源涵养功能[J].水土保持学报,2006,20(2):106-109.
    [219]饶良懿,朱金兆,毕华兴.重庆四面山森林机落物和土壤水文效应[J].北京林业大学学报,2005,27(1):33-37.
    [220]陈东立,余新晓,廖邦洪.中国森林生态系统水源涵养功能分析[J].世界林业研究,2005,8(1):49-54.
    [221]王大纯.水文地质学[M].地质出版社,1995,6:102-103.
    [222]曹云,黄志刚.长江防护林—樟树林对降雨再分配的影响[J].长江流域资源与环境,2007,16(5):603-608.
    [223]王玉杰,王云琦.重庆缙云山典型林分林地土壤入渗特性研究[J].水土保持研究,2006,13(2):193-256.
    [224]王震洪,段昌群,侯永平,等.植物多样性与生态系统土壤保持功能关系及其生态学意义[J].植物生态学报,2006,30(3):392-403.
    [225]魏翔,李占斌.土壤侵蚀对生态系统的影响[J].水土保持研究,2006, 13(1):245-247.
    [226]吴建平,袁正科,袁通志.湘西南沟谷森林土壤水文—物理特性与涵养水源功能研究[J].水土保持研究,2004,11(1):74-76.
    [227]吴钦孝,韩冰,李秧秧.黄土丘陵区小流域土壤水分入渗特征研究[J].中国水土保持科学,2004,2(2):1-5.
    [228]程金花,张洪江,余新晓,等.贡嘎山冷杉纯林地被物及土壤持水特性[J].北京林业大学学报,2002,24(3):45-49.
    [229]王勤,张宗应,徐小牛.安徽大别山库区不同林分类型的土壤特性及其水源涵养功能[J].水土保持学报,2003,17(3):59-62.
    [230]刘畅,满秀玲,刘文勇,等.帽儿山地区主要林分类型土壤水分物理性质研究[J].哈尔滨师范大学自然科学学报,2007,23(1):86-89.
    [231]林波,刘庆,吴彦,等.森林凋落物研究进展[J].生态学杂志,2004,23(1):60-64.
    [232]刘广全,王浩,秦大庸,等.黄河流域秦岭主要林分凋落物的水文生态功能[J].自然资源学报,2002,17(1):55-62.
    [233]周国逸.广东小良试验站降雨径流关系的—个黑箱模型[J].生态学杂志,1995,14(4):67-72.
    [234]Baker M, BandRogers J J. Evaluation of balance models on amixed conilereatershed[J]. Water Resources Research,1983,119(2):123-130.
    [235]Feller M C. Effects of forest herbicide applieations on streamwater chemistry in south western British Columbia[J]. Water terresources bulletin,1989,25(3): 607-616.
    [236]曾梅,曾光明,张龚,等.韶山森林冠层水相氮和硫的动态特征[J].生态学杂志,2006,26(1):1-6.
    [237]Amezaga I, Arias A G, Domingo M, et al. Atmoospheric deposition and canopy interactions for conifer and deciduous forests in northern Spain[J]. Water Air Soil Pollution,1997,97:303-313.
    [238]Fenn M E, Kiefer J W. Throughfall deposition of nitrogen and sulfur in a Jeffrey pine Forest in the San Gabriel Mountains, southern California[J]. Environmental Pollution,1999,104:179-187.
    [239]樊后保,苏兵强,林德喜.杉木人工林生态系统的生物地球化学循环Ⅱ: 氮素沉降动态[J].应用与环境生物学报,2000,6(2):133-137.
    [240]樊后保,苏兵强.杉木人工林生态系统的生物地球化学循环与养分归还动态[J].应用与环境生物学报,2000,6(2):127-132.
    [241]刘菊秀,温达志,周国逸.广东鹤山酸雨地区针叶林与阔叶林降水化学特征[J].中国环境科学,2000,20(3):195-202.
    [242]鲁如坤,史陶钧.金华地区降雨中养分含量的初步研究[J].土壤学报,1979,16(1):81-84.
    [243]堪小勇.亚热带常绿阔叶林涵养水源效能的研究[J].中南林学院学报,1995,15(2):128-135.
    [244]Lindberg S E, Lovett G M, Richter I DD, et al. At mospheric deposition and canopy interactions of major ions in a forest[J]. Science,1986,231:141-145.
    [245]Puckett L J. Estimates of ion sources in deciduous and coniferous through-fall[J]. Atmos Environ,1990,24:545-556.
    [246]鲍文,包维楷,丁德蓉.森林植被对降水水化学的影响[J].生态环境,2004,13(1):112-115.
    [247]周国逸,小仓纪雄.酸雨对重庆几种土壤中元素释放的影响[J].生态学报,1996,16(3):251-257.
    [248]Strand L T, Abrahamsen G, Stuanes A O. Leaching from organic Matter-Rich soil by rain of different qualities[J]. Journal of Environment Quality,2002, 31(2):547-556.
    [249]刘增文.森林生态系统养分循环研究国若干问题的探讨[J].南京农业大学学报(自然秒学版),2002,26(4):27-30.
    [250]Kooijman A M, Bakker C. Species replacement in the bryophyte layer in mires: the role of water type, nutrient supply and interspcific interactions[J]. Journal of Ecology,1995,83(1):1-8.
    [251]Lin T, Hamburg SP, King H B, et al. Through-fall Patterns in a Subtropical Rain Forest of fNortheastern Taiwan[J]. Journal of Environment Quality,2000, 29(4):1196-1193.
    [252]樊后保.杉木林截留对降水化学的影响[J].林业科学,2000,36(4):2-8.
    [253]Potter C S, Ragsdale H L, Swank W T. Atmospheric deposition and foliar leaching in a regenerating southern Appalachian forest canopy[J]. Journal of Ecology,1991,79:97-115.
    [254]中野秀章.森林水文学[M].北京:中国林业出版社,1983.
    [255]田大伦,杨晚华,方海波.第二代杉木幼林中降雨对养分的淋溶作用[J].湖北民族学院学报(自然科学版),1999,17(1):1-5.
    [256]刘煊章,田大伦,周志华.杉木林生态系统净化水质功能的研究[J].林业科学,1995,31(3):193-199.
    [257]陈步峰,周光益,曾庆波,等.热带山地雨林生态系统水文化学循环规律的研究[J].林业科学研究,1997,10(2):111-117.
    [258]Veneklaas E J. Nutrient fluxes in bulk precipitation and through-fall in two montane tropical rain forests, Colombia[J]. The Journal of Ecology,1990, 78(4):974-992.
    [259]Johnson D W, Hanson P J, Todd D E. The effects of through-fall manipulation on soil leaching in a deciduous forest[J]. Journal of Environment Quality, 2002,31(1):204-216.
    [260]Dave M M, Alan G G, Andrew M G. Patterns of canopy interception and through-fall along a topographic sequence for black spruce dominated forest ecosystems in northwestern Ontario[J]. Research Forest,2003,33(6): 1046-1060.
    [261]任青山,王景升,张博,等.藏东南冷杉原始林不同形态水的水质分析[J].东北林业大学学报,2002,30(2):52-54.
    [262]漠江明,方运霆,张德强,等.鼎湖山马尾松林降水再分配对养分动态影响[J].广西植物,2002,22(6):529-533.
    [263]周光益,曾庆波,黄全,等.热带山地雨林林冠对降水的影响分析[J].植物生态学报,1995,19(3):201-207.
    [264]赵鸿雁,吴钦孝,刘国彬.黄土高原人工油松林水文生态效应[J].生态学报,2003,23(2):376-379.
    [265]赵鸿雁,吴钦孝,刘国彬.黄土高原人工油松林枯枝溶叶层的水土保持功能研究[J].林业科学,2003,39(1):168-172.
    [266]李志安,林永标,彭少麟.华南人工林凋落物养分及其转移[J].应用生态学报,2000,11(3):321-326.
    [267]张雪萍,李春艳,张思冲.马陆在森林生态系统物质转换中的功能研究[J]. 生态学报,2001,21(1):75-79.
    [268]罗辑,程根伟,宋孟强,等.贡嘎山峨眉冷杉林凋落物的特征[J].植物生态学报,2003,27(1):59-65.
    [269]周湘莉,田大伦.杉木人工林生态系统重金属元索的循环[J].中南林学院学报,1989,9(增刊):132-137.
    [270]马雪华.降雨在杉木和马尾松人工林养分循环中的作用[J].林业科学研究,1988,1(2):123-131.
    [271]黄忠良,孔国辉,余清发,等.南亚热带季风常绿阔叶林水文功能及其养分动态的研究[J].植物生态学报,2000,24(2):157-161.
    [272]黄承标,梁宏温.广西亚热带主要林型的树干茎流[J].植物资源与环境,1994,3(4):10-17.
    [273]蔡玉林,李飞,李家水,等.红壤丘陵区人工林降水化学研究[J].自然资源学报,2003,18(1):99-104.
    [274]Lawson N M, Mason R P. Concentration of Mercury, Methylmercury, Cadmium, Lead, Arsenic, and Selenium in the Rain and Stream Water of Two Contrasting Watersheds in Western Maryland[J]. Water Research,2001,35: 4039-4052.
    [275]Clark M J. Putting water in its place:a perspective on GIS in hydrology and water management[J]. Hydrological Processes,1998,12(7):823-834.
    [276]David M. Regularity of the complex monge-ampere equation for radially symmetric functions of the unit ball[J]. Mathematische Annalen,1985, (3): 501-511.
    [277]王福利,腾野,田长涛.基于伊春林区水文要素变化趋势论证“大保”工样的必要性[J].黑龙江水利科技,2009,37(2):114.
    [278]Robertson G P, Tiedje J M. Denitrifieation and nitrous outside Production in successiona and old-growth Miehigan forests[J]. Soil Science Society of America,1984. (48):383-389.
    [279]Arthur M A, Fahey T J. Controls on soil solution chemistry in a subalPine forest in North-Central Colorado[J]. soil Science Society of America,1993, 57(4):1122-1130.
    [280]陈放鸣,林小伍.近代森林一环境问题与森林养分循环研究进展(综述) [J].安徽农业大学学报,1994,21(1):67-70.
    [281]Miller H G, Miller J D. Transformations in rainwater chemistry on passing through forested ecosystems, In:Coughtrey P M, Unworth M. Pollutant Transport and Fate in Ecosystems. Blackwell Scientific Publication[J]. Oxford, 1987:171-180.
    [282]乔治w·布朗(美)著(李昌哲,张理宏译).森林与水质[M].中国林业出版社,1994.
    [283]Dunne T, Zhang W and Aubry B. Effects of rainfall, vegetation, and microtopography on infiltration and runoff[J]. Water Resour Reseasch,1991, 27(9):2271-2285.
    [284]Zhang L, Dawes W R. Estimation of soil moisture and ground water recharge using the TOPOG-IRM model [J]. Water Resour Reseasch,1999,35(1): 149-161.
    [285]Norton M M, Fisher T R. The effects of forest on streamwater quality in two coastal plain watersheds of the Chesa Peake Bay[J]. Ecologieal Engineering, 2000,14:337-362.
    [286]马雪华.森林与水质.中国林学会森林水文与流域治理专业委员会编集.全国森林水文学术讨论会文集[M].北京:测绘出版社,1989.
    [287]马雪华.泯江上游森林的采伐对河流流量和泥沙悬移质的影响[J].自然资源,1981,10(3):15-19.
    [288]马雪华.川西高山暗针叶林区的采伐与水土保持[J].林业科学,1963,8(2):36-39.
    [289]刘世海,余新晓,胡春宏,等.密云水库北京集水区人工水源保护林降水化学性质研究[J].水土保持学报,2002,16(1):100-103.
    [290]刘世海,余新晓,于志民.北京密云水库集水区板栗林化学元素性质研究[J].北京林业大学学报,2001,23(2):12-15.
    [291]刘世海,余新晓,于志民.密云水库集水区人工油松水源保护林降水化学性质研究[J].应用生态学报,2001,12(5):697-700.
    [292]满秀玲,范金凤,谭晓京,等.森林和沼泽对溪流水化学特征的影响[J].应用生态学报,2006,17(6):992-996.
    [293]莫江明,方运霆,张德强,等.鼎湖山马尾松林降水再分配对养分动态影 响[J].广西植物,2002,22(6):529-533.
    [294]欧阳学军,周国逸.鼎湖山森林地表水水质分析[J].生态学报,2002,22(9):1373-1379.
    [295]任青山,王景升,张博.藏东南冷杉原始林不同形态水的水质分析[J].东北林业大学学报,2002,30(2):52-54.
    [296]张龚,曾光明,蒋益民,等.湖南韶山大气降水及森林降水离子分布特征[J].环境科学研究,2003,16(3):14-17.
    [297]田大伦,项文化,康文星.湖南第2代杉木幼林的水文学过程及养分动态研究[J].林业科学,2001,37(3):67-71.
    [298]闫文德,田大伦.会同第二代杉木林集水区水质生态效应[J].中南林学院学报,2003,23(2):6-10.
    [299]潘维俦,田大伦,湛小勇,等.亚热带杉木人工林生态系统中的水文学过程和养分动态[J].中南林学院学报,1989(增刊):1-9.
    [300]陈步峰,周光益,曾庆波,等.热带山地雨林生态系统水文化学循环规律的研究[J].林业科学研究,1997,10(2):111-117.
    [301]陈步峰,曾庆波,黄全,等.热带山地阿林生态系统的水分生态效应—冠层淋溶、水化学贮滤[J].生态学报,1998,18(4):364-370.
    [302]郭艳娜.缙云山森林生态系统中地表和地下径流水质的研究[M].西南农业大学,2005.
    [303]Parker G G. Throughfall and stemflow in the forest nutrient cycle[J]. Advances in ecological research,1983,13:57-113.
    [304]李凌浩,林鹏,何建源,等.森林降水化学研究综述[J].水土保持学报,1994,8(1):84-96.
    [305]Zhang M J, Ren J W, Xiao C D, et al. The concentration variation features of sea salt ions and non sea salt ions in a firn core recovered from Princess Elizabeth Land, East Antarctica[J]. Chinese Journal of Polar Science,2004, 15(2):85-90.
    [306]Egunjobi J T. Ecosystem processes in a stand of Ulex europaeus L. H. The cycling of chemical elements in the ecosystem[J]. Journal of ecology,1971, 59:669-678.
    [307]Soulsby C, Reynolds B. Influence of soil hydrological pathways on stream aluminium Chemistry at Llyn Brianne, mid-Wales[J]. Environ-Pollut,1993, 81:51-60.
    [308]Neal C. Modeling the long-term impacts of atmospheric pollution deposition and repeated forestry cycles on stream water chemistry for a holm oak forest in northeastern Spain[J]. Journal of hydrology,1995,168:51-71.
    [309]Pinol J, Avila A, Roda F. The seasonal variation of streamwater chemistry in three forested Mediterranean catchments[J]. Journal of hydrology,1992, 140(1/4):119-141.
    [310]Stottlemyer R, Troendle C A. Nutrient concentration patterns in Streams draining alpine and Subalpin catchments, Fraser Experimental Forest, Colorado[J]. Journal of hydrology,1992,140(1/4):179-208.
    [311]卢俊培.海南岛尖峰岭半落叶林季雨林生态效应的研究Ⅱ一径流水的化学特征[J].热带林业科技,1984,(3):1-9.
    [312]田大伦,周志华.杉木林生态系统水文过程中有机化合物的动态研究[M].北京:中国林业出版社,1993.
    [313]陈步峰,周光益,曾庆波,等.热带山地次生雨林的水化学特征及其与降雨量关系的研究.见:蒋有绪.中国森林生态系统结构与功能规律研究[J].北京:中国林业出版社,1996,348-354.
    [314]卢俊培.海南岛尖峰岭热带林生态系统的水化学特征[J].林业科学研究,1991,4(3):231·237.
    [315]魏晓华,王虹,朱春全.蒙古栋生态系统的养分分析[J].吉林林学院学报,1990,6(1):310-316.
    [316]丁宝永,徐立英,张世英.兴安落叶松人工林营养元素的分析[J].生态学报,1989,(3):71-75.
    [317]周梅.非常规月份、单次降水过程后林木对降水金属养分元素浓度的影响[J].内蒙古林学院学报,1994,16(1):23-27.
    [318]周梅.兴安落叶松原始林区降水输入养分特征分析[J].内蒙古农业大学学报,2000,21(1):48-51.
    [319]Brown A H F. and Iles M A. Water chemical profiles under four tree species at Gisbum, N W England[J]. The journal of the Institute of Chartered Foresters, 1991,64(2):169-187.
    [320]Likens D, Fisher W, Pierce R S. Effects of forest cutting and herbicide treatment on nutrient Budgets in the Hubbard Brook Watershed Eeosystem[J]. Ecological Monographs,1970,40(1):24-47.
    [321]张志强,王礼先.水力侵蚀与植被变化关系研究途径与展望[J].北京林业大学学报,1997,19(增刊1):177-180.
    [322]Bergstrom L, Johansson R. Influence of fertilized short-rotation forest plantation on nitrogen concentrations in groundwater[J]. Soil Use Manage, 1992,8:36-40.
    [323]Edwards P J. Effects of forest fertilization on stream water chemistry in the Appalachians[J]. Water Resources Bulletin,1991,27(2):265-274.
    [324]Feger K H. Solute fluxes and sulfur cycling in forested catchments in S W Germany as influenced by experimental (NH4)2 SO4 treatments[J]. Water, Air and Soil Pollution,1995,79:109-130.
    [325]Notris L A. Chemical brush control and herbicide residues in the forest environment, in Herbicides and vegetation management[M]. Oregon State Univ. Press, Corvallis,1967.
    [326]Varness K J. Effects of dispersed recreational activities on the microbiological quality of forest surface water[J]. Applied Environmental MicroBiology,1978, 36(1):95-104.
    [327]赵文智,王根绪.生态水文学[M].北京:中国海洋出版社,2002.
    [328]Liu S R, Sun P S, Wen Y G. Comparative analysis of hydrological functions of major forest ecosystems in China[J]. Acta Phytoecologica Sinica,2003,27: 16-22.
    [329]Brown A E, Zhang L, McMahon T A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation[J]. Jounal of Hydrology,2005,310:28-61.
    [330]Cammera L H. Scale dependent thresholds in hydrological and erosion response of a semi-arid catchment in southeast Spain[J]. Agriculture, Ecosystems and Environment,2004,104:317-332.
    [331]Shaman J, Stieglitz M, Burns D. Are big basins just the sum of small catchments?[J]. Hydrological Processes,2004,18:3195-3206.
    [332]Chen J M, Chen X Y, Ju W M. Distributed hydrological model for mapping evaapotranspiration using remote sensing inputs[J]. Journal of Hydrology, 2002,264:34-50.
    [333]Sun P S, Liu S R. Large scale ecohydrological model and its integration with GIS[J]. Acta Ecologica Sinica,2003,23:2115-2124.
    [334]Andersen J, Dybkjaer G, Jensen K H. Use of remotely sensed precipitation and leaf area index in a distributed hydrological model[J]. Journal of Hydrology, 2005,305(4):15-39.
    [335]Chirico G B, Grayson G B, Western A W. A downward approach to identifying the structure and parameters of a process-based model for a small experimental catchment[J]. Hydrology Process,2003,17:2239-2258.
    [336]Xu C Y, Singh V P. Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions[J]. Journal of Hydrology,2005,308:105-121.
    [337]Zimmermann U, Schneider H, Lars H W. Water ascent in tall trees:does evolution of land plants rely on a highly metastable state?[J]. New Phytologist, 2004,10(1111):1469-8137.
    [338]Jackson R B, Sperry J S, Dawson T E. Root water up take and transport:using physiological processes in global predictions[J]. Trends in Plant Science,2000, (5):482-488.
    [339]Smith M B, Georgakakos K P, Liang X. Preface, the distributed model intercomparison project(DMIP)[J]. Journal of Hydrology,2004,298:1-3.
    [340]周学安.水源涵养林效益计量评价及工程建设技术对策研究[M].中国林业出版社,1998.
    [341]孔繁文,戴广革,何乃葱,等.森林环境资源核算及补偿政策研究[J].林业经济,1994,(4):34-46.
    [342]周晓峰.森林水文循环的研究[M].哈尔滨:东北林业大学出版社,1991.
    [343]周晓峰,蒋敏元.黑龙江省森林效益的计量、评价及补偿[J].林业科学,1999,35(3):97-102.
    [344]王兵,崔相慧,杨峰伟.从第21届国际林联世界大会看全球“森林与水” 研究进展[J].世界林业研究,2001,14(5):1-7.
    [345]雷孝章,王金锡,彭沛好,等.中国生态林业工程效益评价指标体系[J].自然资源学报,1999,14(2):175-182.
    [346]甘露,夏焕柏,徐海.贵州坡耕地防护林营建模式选择及营建技术[J].农村经济与技术,1998,12(15):12-13.
    [347]刘世荣.中国森林生态系统水文生态功能规律[M].北京:中国林业出版社,1996.
    [348]方精云.北半球中高纬度的森林碳库可能远小于目前的估算[J].植物生态学报,2000,24(5):635-638.
    [349]方精云,费松林,赵坤,等.浙江省水青冈属植物的解剖特征及其分类学意义[J].北京大学学报(自然科学版),2000,36(4):509-516.
    [350]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(5):733-740.
    [351]李文华,何永涛,杨丽韫.森林对径流影响研究的回顾与展望[J].自然资源学报,2001,16(5):398-406.
    [352]张彪,李文华,谢高地,等.森林生态系统的水源涵养功能及其计量方法[J].生态学杂志,2009,28(3):15-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700