用户名: 密码: 验证码:
黄土高原保护性耕作下轮作系统根际土壤质量及其微生物机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原气候干旱,降水偏少而相对集中,植被稀疏,土壤抗蚀性较差,加之长期的不当利用,导致农业生产力和效率低下、植被破坏和水土流失十分严重。因此,从根本上治理黄土高原水土流失、建立良性循环的生态系统以适应人类大规模的生产和经济活动迫在眉睫。免耕和秸秆覆盖等保护性耕作措施能有效减少农田土壤侵蚀、改善耕地质量,从而保障食物安全,是实现农业可持续发展和环境保护双赢的有效途径。然而长期实施免耕和秸秆覆盖措施后,轮作系统根际土壤质量变化及其微生物机制尚不明确。本研究在黄土高原雨养农业区,以2001年建立的实施免耕和秸秆覆盖的玉米-冬小麦-大豆轮作系统为研究对象,测定作物根际土壤营养元素含量、根际土壤微生物区系、活性、群落结构和功能多样性等,以揭示长期免耕和秸秆覆盖对根际土壤质量的改善效果,阐明根际土壤质量改善的微生物学机理,明确两者之间的联系。
     得到如下主要结果和结论:
     1)秸秆覆盖显著增加了玉米-冬小麦-大豆轮作系统作物根际土壤中OC和全N含量,显著提高了玉米和大豆成熟期根际土壤中NH4+和N03-含量。较传统耕作而言,其他保护性耕作措施均能显著提高根际土壤中速效P的含量。除了玉米成熟期外,根际土壤中全P含量在免耕条件下显著增加。免耕和秸秆覆盖对根际土壤中全K含量没有显著影响,但速效K含量在秸秆覆盖条件下显著增加。免耕和秸秆覆盖对作物根际土壤中Ca、Mn、Zn、Fe、Cu含量没有显著影响。这表明,长期实施免耕和秸秆覆盖措施后,玉米-冬小麦-大豆轮作系统中作物根际土壤营养元素含量发生了不同程度的改变,其中OC、全N、全P、矿质N、速效P、速效K等含量增加,而微量元素含量无明显变化。
     2)免耕和秸秆覆盖均显著提高了玉米和冬小麦根际土壤中MBC和MBN含量,大豆根际土壤中MBC和MBN含量在秸秆覆盖条件下显著增加。免耕显著降低了土壤呼吸强度和10cm处的土壤温度。土壤呼吸熵强度表现出明显的季节变化,免耕和秸秆覆盖均能显著降低土壤呼吸熵强度。免耕和秸秆覆盖均能显著提高冬小麦和大豆根际土壤中真菌和放线菌数量。免耕显著提高了根际土壤中过氧化氢酶、脲酶和蔗糖酶活性,秸秆覆盖显著提高了纤维素酶活性。这表明,长期实施免耕和秸秆覆盖措施后,玉米-冬小麦-大豆轮作系统中作物根际土壤微生物活性、3大类微生物数量和土壤酶活性均有所提高。
     3)作物成熟期根际土壤中PLFA,总量普遍高于花期。免耕能显著提高作物根际土壤中PLFA,总量。秸秆覆盖能显著提高冬小麦花期和成熟期的根际土壤真菌/细菌比值,免耕也能显著提高玉米和冬小麦成熟期根际土壤真菌/细菌比值。耕作措施、作物类型以及生育期对G+特征PLFA以及G-/G+的影响没有明显规律性,免耕显著提高作物成熟期G-特征PLFA。这表明,长期实施免耕和秸秆覆盖措施能显著影响玉米-冬小麦-大豆轮作系统中作物根际土壤微生物的群落组成和结构多样性,而且这种影响受作物类型和生育期的调节。
     4)免耕显著提高玉米和冬小麦成熟期根际土壤微生物利用碳源的总能力,且微生物各群落指数也显著增加。秸秆覆盖后大豆成熟期根际土壤微生物利用碳源的总能力显著增加。免耕显著提高了玉米和冬小麦成熟期根际土壤微生物对氨基酸类、聚合物类、羧酸类以及糖类碳源的利用能力。秸秆覆盖后,冬小麦根际土壤微生物对胺/氨基化合物类和糖类碳源的利用能力显著增加,但是羧酸类和聚合物类碳源的利用程度显著下降。大豆根际土壤微生物对胺/氨基化合物类和羧酸类碳源的利用率在秸秆覆盖条件下显著提高,但双亲类化合物利用率显著降低。这表明,长期实施免耕和秸秆覆盖措施能显著影响玉米-冬小麦-大豆轮作系统中作物根际土壤微生物利用单一碳源的能力,而且双亲化合物类、羧酸类和糖类碳源等是区分传统耕作和其他保护性耕作处理下根际土壤微生物功能多样性的主要特异性碳源。
In the Loess Plateau of China, arid climate, low and unbalanced rainfall, thin vegetation cover, highly erodible soil as well as unsuitable and intensive cultivation have resulted in lower agricultural productivity, vegetation deterioration and severe soil erosion. Therefore, it is urgent to find ways to fundamentally control soil erosion and establish some vital and suitable ecological systems in this area. No-tillage and residue retention can effectively reduce soil erosion, improve arable land quality and protect food safety, is an efficient way for the sustainable development of agricultural production and the protection of environment in the Loess Plateau. However, how rhizospheric soil quality changed and why from the viewpoint of microbial level under long-term no-tillage and residue retention managements were still not very clear. In this study, the effects of long-term tillage and crop residue retention on rhizospheric soil quality, soil microbial activity, soil microbial community structure and functional diversity were investigated in a maize(Zea mays L.)-winter wheat (Triticum aestivum L.)-soybean (Glycine max L.) rotation system which was established in2001on the Loess Plateau, Gansu Province, China. The objectives of this research are to reveal the effect of long-term no-tillage and residue retention managements on rhizospheric soil quality, elucidate the microbial mechanism of rhizospheric soil quality change, and uncover the link between rhizospheric soil and rhizospheric soil microbes.
     1) Crop residue retention led to significant increase in the contents of organic carbon and total nitrogen of rhizospheric soil under long-term maize-winter wheat-soybean rotation system, and also in the contents of rhizospheric soil NH4+and NO3-under maize and soybean at maturity. Compared to conventional tillage, conservation tillage significantly increased available phosphorus content in the rhizospheric soil. No-tillage significantly increased total phosphorus content in the rhizospheric soil except that under maize at maturity. There was no significant effect of conservation tillage on total potassium content in the rhizospheric soil, while higher available potassium content was observed with crop residue retention compared to that without retention. Long-term conservation tillage didn't significantly influence the contents of Ca, Mn, Zn, Fe, and Cu in the rhizospheric soil. It suggested that the nutrients in the rhizospheric soil have been modulated by long-term conservation tillage under mazie-winter wheat-soybean rotation system. The contents of organic carbon, total nitrogen, total phosphorus, mineralized nitrogen, available phosphorus and available potassium were significantly greater under conservation tillage than under conventional tillage, while trace element contents didn't significantly change.
     2) No-tillage and crop residue retention both significantly increased the contents of microbial biomass carbon and microbial biomass nitrogen in the rhizospheric soil under maize and winter wheat. MBC and MBN contents under soybean were higher with residue retention than without retention. Soil respiration rate and soil temperature of10cm depth was significantly reduced under no-tillage. No-tillage and crop residue retention both significantly led to the decrease in qCO2under the rotation system. The amounts of fungi and actinomycetes were higher with no-tillage and residue retention under winter wheat and soybean than under conventional tillage. No-tillage significantly increased the activities of catalase, urease and sucrase, and crop residue retention led to significant increase in cellulose activity. It showed that the microbial activity, microbial amount, and soil enzyme activity in the rhizospheric soil were promoted by long-term conservation tillage under maize-winter wheat-soybean rotation system.
     3) No-tillage significantly increased total amount of phospholipid fatty acids in the rhizospheric soil. Crop residue retention led to the increase in the ratio of fungus vs. bacterium under winter wheat, and no-tillage did the same under maize and winter wheat at maturity. PLFA amounts of G+and the ratio of PLFA amounts of G-vs. G+were not significantly affected by tillage management, crop type and crop growth stage, no-tillage significantly increased the PLFA amounts of G-at crops maturity. It suggested that long-term conservation tillage can obviously affect microbial community structural diversity in the rhizsopheric soil under maize-winter wheat-soybean rotation system, and it is regulated by crop type and crop growth stage.
     4) The capability to use carbon substrates of the rhizospheric soil microbes was enhanced significantly by no-tillage and residue retention. No-tillage led to the improvement of the utilisation of amino acids, polymers, carboxylic acids, and carbohydrates by the rhizospheric soil microbes under maize and winter wheat at maturity. Maize residue retention significantly increased the utilisation of amines and carbohydrates, and decreased the utilisation of carboxylic acids and polymers by the rhizospheric soil microbes under winter wheat. The utilisation of amines and carboxylic acids by the rhizospheric soil microbes was enhanced under soybean with winter wheat residue retention, while miscellaneous utilisation was significantly retarded. It showed that microbial community functional diversity in the rhizospheric soil was significantly affected by long-term conservation tillage under maize-winter wheat-soybean rotation system. Miscellaneous, carboxylic acids and carbohydrates were main carbon sources to discriminate microbial community functional diversity in the rhizsopheric soil with conservation or conventional tillage.
引文
[1]Acosta-Martinez, V., Tabatabai, M.A. Enzyme activities in a limed agricultural soil[J]. Biology and Fertility of Soils.2000,31:85-91.
    [2]Ajwa, H.A., Dell, C.J., Rice, C.W. Changes in enzyme activities and microbial biomass of tallgrass prairie soil as related to buring and nitrogen fertilization[J]. Soil Biology and Biochemistry.1999,31:169-111.
    [3]Alam, S.M.K., Matin, M.A., Hossain, M.A. Effect of different tillage systems on some physical and chemical properties of a silt loam soil in rice field[J]. Journal of Biological Sciences. 2002,2(8):524-527.
    [4]Allmaras, R.R., Dowdy. R.H. Conservation tillage systems and their adoption in the United States[J]. Soil and Tillage Research,1985.5(2):197-222.
    [5]Amezketa, E. Soil aggregate stability:a review[J]. Journal of sustainable agriculture.1999, 14:83-151.
    [6]Anderson, T.H. Microbial eco-physiological indicator to asses soil quality[J]. Agriculture, Ecosystem and Environment.2003,98(1):285-293.
    [7]Arshad, M.A. Tillage and soil quality, Tillage practices for sustainable agriculture and environmental quality in different agroecosystems[J]. Soil and Tillage Research.1999,53(1):1-2.
    [8]Balota, E.L., Colozzi-Filho, A., Andrade, D.S., et al. Microbial biomass in soils under different tillage and crop rotation systems[J]. Biology and Fertility of Soils.2003,38:15-20.
    [9]Basu, S., Pati, D.P., Behera, N. Microfungal biomass in some tropical forest soils of Orissa, India[J]. Forest Ecology and Management.1992,55(1-4):333-339.
    [10]Bauhus, J., Khanna, P.K. Carbon and nitrogen turnover in two acid forest soils of southeast Australia as affected by phosphorus addition and drying and rewetting[J]. Biology and fertility of soils.1994,17:212-218.
    [11]Beare, M.H., Cabrera. M.L., Hendrix, P.F., et al. Aggregate-protected and unprotected organic matter pools in conventional and no-tillage soils[J]. Soil Society of America Journal.1994, 58:787-795.
    [12]Bending, G.D,, Turner, M.K., Jones, J.E. Interactions between crop residue and soil organic matter quality and the funeitional diversity of soil microbial communities[J].Soil Biology and Biochemistry.2002,34(8):1073-1082.
    [13]Bending, G.D., Turner, M.K., Jones, J.E. Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities[J]. Soil Biology and Biochemistry.2002,34(8):1073-1082.
    [14]Blevins, R.L., Frye, W.W. Conservation tillage:an ecological approach to soil management[J]. Advances in Agronomy.1993,51:33-78.
    [15]Blevins, R.L., Frye, W.W., Baldwin, P.L., et al. Tillage effects on sediment and soluble nutrient losses from a Maury silt loam Soil[J]. Journal of environmental quality.1990, 19(4):683-686.
    [16]Blevins, R.L., Thomas, G.W., Smith, M.S., et al. Changes in soil properties after 10 years continuous non-tilled and conventionally tilled corn[J]. Soil and Tillage Research.1983, 3(2):135-146.
    [17]Bligh, E.G., Dyer, W.J. A rapid method of total lipid extraction and purification[J]. Canadian journal of biochemistry and physiology.1959,37:911-917.
    [18]Bohme L, Langer U, Bohme F. Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments[J]. Agriculture, ecosystems & environment,2005,109(1):141-152.
    [19]Borneman, J., Skroch, P.W., O'Sullivan, K.M., et al. Molecular microbial diversity of an agricultural soil in Wisconsin[J]. Applied and Environmental.1996,62(6):1935-1943.
    [20]Bossio, D.A., Scow, K.M., Gunapala, N., et al. Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles[J]. Microbial ecology.1998,36(1):1-12.
    [21]Brookes, P.C., Landman, A., Pruden, G., et al. Chloroform fumigation and the release of soil nitrogen:a rapid direct extraction method to measure microbial biomass nitrogen in soil[J]. Soil Biology and Biochemistry.1985,17(6):837-842.
    [22]Ceja-Navarro, J.A., Rivera-Orduna, F.N., Patino-Zuniga, L., et al. Phylogenetic and multivariate analyses to determine the effects of different tillage and residue management practices on soil bacterial communities[J]. Applied and environmental microbiology.2010,76(11): 3685-3691.
    [23]Chen, C.C., Wang, M.K., Chiu, C.Y., et al. Determination of low molecular weight dicarboxylic acids and organic functional groups in rhizosphere and bulk soils of Tsuga and Yushania in a temperate rain forest[J]. Plant and Soil.2001,231:37-44.
    [24]Classen, A.T., Boyle, S.I., Haskins, K.E., et al. Community level physiological profiles of bacteria and fungi:plate type and incubation temperature influences on contrasting soils[J]. FEMS Microbiology Ecology.2003,44(3):319-328.
    [25]Clay, K., Holah, J. Fungal endophyte symbiosis and plant diversity in successional fields[J]. Science.1999,285(5434):1742-1744.
    [26]Cookson, W.R., Murphy, D.V., Roper, M.M. Characterizing the relationships between soil qrganic matter components and microbial function and composition along a tillage disturbance gradient[J]. Soil Biology and Biochemistry.2008,40(3):63-777.
    [27]Dighton, J. Is it possible to develop a microbial test system to evaluate pollution effects on soil nutrient cycling? In:Ecological Risk Assessment of Contamination in Soil[M]. London: Chapman & Hall.1997.
    [28]Doran, J.W., Parkin, T.B. Defining and assessing soil quality. In:Doran, J.W., Coleman, D.C., Bezdicek, D.F., Stewart, B.A. (ed.) Defining soil quality for a sustainable environment[M]. Wisconsin:WI.1994.
    [29]Drijber, R.A., Doran, J.W., Parkhurst, A.M., et al. Changes in soil microbial community structure with tillage under long-term wheat-fallow management[J]. Soil Biology and Biochemistry.2000,32:1419-1430.
    [30]Ferreras, L.A. Effect of no-tillage on some soil physical properties of a structural degraded1 Petrocalcic Paleudoll of the southern "Pampa" of Argentina[J]. Soil and Tillage Research.2000, 54:31-39.
    [31]Franzluebbers, A.J., Hons, F.M., Zuberer, D.A. Tillage and crop effects on seasonal soil carbon and nitrogen dynamics[J]. Soil Science Society of America Journal.1995, 59(6):1618-1624.
    [32]Franzluebbers, A.J., Schmoberg, H.H., Endale, D.M. Surface-soil responses to paraplowing of long-term no-tillage cropland in the Southern Piedomont USA[J]. Soil and Tillage Research. 2007,96(1-2):303-315.
    [33]Frey, S.D., Elliott, E.T., Paustian, K., et al. Fungal translocation as a mechanism for soil nitrogen inputs to surface residue decomposition in a no-tillage agroecosystem[J]. Soil Biology and Biochemistry.2000,32:689-698.
    [34]Fuentes, M., Govaerts, B., Lenc, F.D. Fourteen years of applying zero and conventional tillage, crop rotation and residue management systems and its effect on physical and chemical soil quality[J]. European Journal of Agronomy.2009,30:228-237.
    [35]Garland, J.L. Analytical approaches to the characterization of samples pf microbial communities using patterns of potential C source utilization[J]. Soil Biology and Biochemistry. 1996,28(2):213-221.
    [36]Garland, J.L., Mills, A.L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization[J]. Applied and Environmental Microbiology.1991,57(8):2351-2359.
    [37]Gelsomino, A., Keijzer-Wolters, A.C., Ccacco, G., et al. Assessment of bacterial community structure in soil by Polymerase chain reaction and denaturing gradient gel electrophoresis[J]. Journal of Microbiological Methods.1999,38(1):1-15.
    [38]Grayston, S.J., Wang, S., Campbell, C.D., et al. Selective influence of plant species on microbial diversity in the rhizosphere[J]Soil biology and biochemistry.1998,30(3):369-378.
    [39]Hinsinger, P., Bengough, A.G., Vetterlein, D., et al. Rhizosphere:biophysics, biogeochemistry and ecological relevance[J]. Plant and Soil.2009,321:117-152.
    [40]Insam, H. Are the soil microbial biomass and basal respiration governed by the climatic regime?[J]. Soil Biology and Biochemistry.1990,22(4):525-532.
    [41]Islam, K.R., Weil, R.R. Soil quality indicator properties in mid-Atlantic soils as influenced by conservation management[J]. Journal of Soil and Water Conservation.2000,55:69-78.
    [42]Jenkinson, D.S., Ladd, J.N. Microbial biomass in soil:Measurement and turnover[J]. Soil biochemistry.1981,5:415-471.
    [43]Jia, B., Zhou, G., Wang, F., et al. Partitioning root and microbial contributions to soil respiration in Leymus chinenis populations[J].Soil Biology and Biochemistry.2006, 38(4):653-660.
    [44]Johnsen, K., Jacobsen, C.S., Torsvik, V., et al. Pesticide effects on bacterial diversity in agricultural soils:a review[J]. Biology and Fertility of Soils.2001,33:443-453.
    [45]Jungk, A. Soil-root interactions in the rhizosphere affecting plant availability of phosphorus[J]. Journal of Plant Nutrition.1987,10:1197-1204.
    [46]Kieif, T.L., Ringelberg, D.B., White, D.C. Changes in Ester-inked phospholipid fatty acid profiles of subsurface bacteria during starvation and desiccation in a porous medium[J]. Applied and Environmental Microbiology.1994,60(9):3292-3299.
    [47]Konopka, A., Oliver, L., Turco, J.R.F. The use of carbon substrate utilization patterns in environmental and ecological microbiology[J]. Microbial Ecology.1998,35(2):103-115.
    [48]Lal, R. No-tillage effects on soil properties under different crops in western Nigenia[J]. Soil Science Society of America Journal.1976,40(5):762-768.
    [49]Latour, X., Corberand, T., Laguerre, G., et al. The composition of fluorescent pseudomonad populations associated with roots is influenced by plant and soil type[J]. Applied and Environmental Microbiology.1996,62(7):2449-2456.
    [50]Lechevalier, M.P. Lipids in bacterial taxonomy. In:O'Leary, W.M. (ed.) Practical handbook of microbiology[M]. Boca Raton:CRC.1989.
    [51]Lemke, M.J., Brown, B.J., Leff, L.G. The response of three bacteria populations in a stream[J]. Microbial Ecology.1997,34:224-231.
    [52]Li, D., Liu, M., Cheng, Y., et al. Methane emissions from double-rice cropping system under conventional and no tillage in southeast China[J]. Soil and Tillage Research.2011,113(2):77-81.
    [53]Lipiec, J., Kus, J., Owiriska-Jurkiewicz, A., et al. Soil porosity and water infiltration as influenced by tillage methods[J]. Soil and Tillage Research.2006,8(2):210-220.
    [54]Liu, W.T., Marsh, T.L., Cheng, H., et al. Characterization of microbial diversity by determining terminal restriction fragement length polymorphisms of genes encoding 16SrRNA[J]. Applied and Environmrntal Microbiology.1997,63(11):4516-4522.
    [55]Loranger-Merciris, G., Barthes, L., Gastine, A., et al. Rapid effects of plant species diversity and identity on soil microbial communities in experimental grassland ecosystems[J]. Soil Biology and Biochemistry.2006,38(8):2336-2343.
    [56]Lupwayi, N.Z., Arshad, M.A., Rice, W.A., et al. Bacterial diversity in water-stable aggregates of soils under conventional and zero tillage management[J]. Applied Soil Ecology. 2001,16(3):251-261.
    [57]Lupwayi, N.Z., Rice, W.A., Clayton, G.W. Soil microbial biomass and carbon dioxide flux under wheat as influenced by tillage and crop rotation[J]. Canadian Journal of Soil Science.1999, 79(2):273-280.
    [58]Malhi, S.S., Grant, C.A., Johnston, A.M., et al. Nitrogen fertilization management for no-till cereal production in the Canadian Great Plains:a review[J]. Soil and Tillage Research.2001, 60(3-4):101-122.
    [59]Maloney, P.E., Van Bruggen, A.H.C., Hu, S. Bacterial community structure in relation to the carbon environments in lettuce and tomato Rhizospheres and in bulk soil[J]. Microbial Ecology. 1997,34(2):109-117.
    [60]Mariangela, H., Julio, C.F.O., svaldino, B. Soil microbial activity and crop sustainability in a long-term experiment with three soil-tillage and two crop-rotation systems[J]. Applied Soil Ecology.2009,42:288-296.
    [61]Marschner, P., Kandeler, E., Marschner, B. Structure and function of the soil microbial community in a long-term fertilizer experiment[J]. Soil Biology and Biochemistry.2003, 35(3):453-461.
    [62]Marschner, P., Yang, C.H., Lieberei, R., et al. Soil and plant specific effects on bacterial community composition in the rhizosphere[J].Soil Biology and Biochemistry.2001, 33(11):1437-1445.
    [63]Melero, S., Lopez-Garrido, R., Murillo, J.M., et al. Conservation tillage:Short- and long-term effects on soil carbon fractions and enzymatic activities under Mediterranean conditions[J]. Soil and Tillage Research.2009,104(2):292-298.
    [64]Messiga, A.J., Ziadi, N., Angers, D.A., et al. Tillage practices of a clay loam soil affect soil aggregation and associated C and P concentrations[J]. Geoderma.2011,64(3-4):215-231.
    [65]Moussa-Machraoui, S.B., Errouissi, F., Ben-Hammouda, M., et al. Comparative effects of conventional and no tillage management on some soil properties under Mediterranean semiarid conditions in northwestern Tunisia[J]. Soil and Tillage Research.2010,106(2):247-253.
    [66]Muarray, A.H. lason, G.R., Stewart, C. Effect of simple phenofic compounds of heather (Calluna vulgaris) on rumen microbial activity in Vitro[J]. Journal of Chemical Ecology.1996, 22(8):1493-1504.
    [67]Nayyar, A., Hamel, C., Lafond, G., et al. Soil microbial quality associated with yield reduction in continuous-pea[J]. Applied Soil Ecology.2009,43(1):115-121.
    [68]Nusslein, K., Tiedje, J.M. Soil bacterial community shift correlated with change from forest to pasture vegetation in a tropical soil[J]. Applied and Environmental Microbiology.1999, 65(8):3622-3626.
    [69]Odum, E.P. Trends expected in stressed ecosystems[J]. Bioscience.1985,35(7):419-422.
    [70]Pankhurst, C.E., Hawke, B.G., McDonald, H.J., et al. Evaluation of soil biological properties as potential bioindicators of soil health[J]. Australian Journal of Experimental Agriculture.1995, 35(7):1015-1028.
    [71]Peaccok, A.D., Mullen, M.D., Ringelberg, D.B., et al. Soil microbial community responses to dairy manure or ammonium nitrate applications[J]. Soil Biology and Biochemistry.2001, 33(7):1011-1019.
    [72]Peacock, A.D., Mullen, M.D., Ringelberg, D.B., et al. Soil microbial community responses to dairy manure or ammonium nitrate applications[J]. Soil Biology and Biochemistry.2001, 33(7-8):1011-1019.
    [73]Phillips, S.H., Young, H.M. No-tillage farming[M]. Milwaukee:Reiman.1973.
    [74]Powlson, D.S., Hirsch, P.R., Brookes, P.C. The role of soil microorganisms in soil organic matter conservation in the tropics[J]. Nutrient Cycling in Agroecosystems.2001,61(1-2):41-51.
    [75]Prosser, J.I. Molecular and functional diversity in soil micro-organisms[J]. Plant and Soil. 2002,244(1-2):9-17.
    [76]Raich, J.W., Tufekcioglu, A. Vegetation and soil respiration:Correlations and controls[J]. Biogeochemistry.2000,48(1):71-90.
    [77]Rasmussen, K.J. Impact of ploughless soil tillage on yield and soil quality:A Scandinavian review[J]. Soil and Tillage Research.1999,53(1):3-14.
    [78]Raynaud, X. Soil properties are key determinants for the development of exudate gradients in a rhizosphere simulation model[J]. Soil Biology and Biochemistry.2010,42(2):210-219.
    [79]Reicosky, D.C., Dugas, W.A., Torbert, H.A. Tillage induced soil carbon dioxide loss from different cropping systems[J]. Soil and Tillage Research.1997,41(1-2):105-118.
    [80]Rheinheimer, D.S., Anghinoni, I. Distribution of inorganic phosphorus fraction in soil management systems[J]. Pesquisa Agropecuaria Brasileira.2001,36(1):151-160.
    [81]Riley, H.C.F. Soil mineral-N and N-fertilizer requirements of spring cereals in two long-term tillage trials on loam soil in southeast Norway[J]. Soil and Tillage Research.1998,48(4):265-274.
    [82]Roekstrom, J., Kaumbutho, P., Mwalley, J., et al. Conservation farming strategies in East and Southern Africa:Yields and rain water Productivity from on-farm action researeh[J]. Soil and Tillage Research.2009,103(1):23-32.
    [83]Roldan, A., Caravaca, F., Hernandez. M.T., et al. No-tillage, crop residue additions, and legume cover cropping effects on soil quality characteristics under maize in Patzcuaro watershed (Mexico)[J]. Soil and Tillage Research.2003,72:65-73.
    [84]Schwab, E.B., Reeves, D.W., Burmester, C.H., et al. Conservation tillag esystems for cotton in the Tennessee Valley[J]. Soil Science Society of America Journal.2002,66(2):569-577.
    [85]Six, J., Frey, S.D. Thiet, R.K. et al. Bacterial and fungal contributions to carbon sequestration in agroecosystems[J]. Soil Science Society of America Journal.2006,70(2):555-569.
    [86]Spedding, T.A., Hamel, C., Mehugs, G.R., et al. Soil microbial dynamics maize-growing soil under different tillage and residue management systems[J]. Soil Biology and Biochemistry.2004, 36(3):499-512.
    [87]Steenwerth, K.L., Jackson, L.E., Calderon, F.J., et al. Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California[J]. Soil Biology and Biochemistry.2002,34(11):1599-1611.
    [88]Tilman, D., Knops, J., Wedin, D., et al. The influence of functional diversity and composition on ecosystem processes[J].Science.1997,227(5330):1300-1302.
    [89]Treonis, A.M., Austin, E.E., Buyer, J.S., et al. Effects of organic amendment and tillage on soil microorganisms and microfauna[J]. Applied Soil Ecology.2010,46(1):103-110.
    [90]Tunlid, A., White, D.C. Biochemical analysis of biomass community structure, nutritional status and metabolic activity of microbial communities in soil[J]. Soil Biochemistry.1992, 7:229-262.
    [91]Turner, M.G. Landscape ecology:the effect of pattern on process[J]. Annual Reviews of Ecology and Systematics.1989,20:171-197.
    [92]Unger, P.W. Conservation tillage systems[J]. Advances in Soil Science.1990,13:27-67.
    [93]Ussiri, D.A.N., Lal, R., Jarecki, M.K. Nitrous oxide and methane emissions from long-term tillage under a continuous corn cropping system in Ohio[J]. Soil and Tillage Research.2009, 104(2):247-255.
    [94]Vance, E.D., Brookes, P.C., Jenkinson, D.S. An Extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry.1987,19(6):703-707.
    [95]Varco, J.J., Frye, W.W., Smith, M.S., et al. Tillage effects on legume decomposition and transformation of legume and fertilizer nitrogen-15[J]. Soil Science Society of America Journal. 1993,57(3):750-756.
    [96]Waid. J.S. Does soil biodiversity depend upon metabiotic activity and influences?[J]. Applied Soil Ecology.1999,13(2):151-158.
    [97]Wardle, D.A. Impact of disturbance on detritus food-webs in agroecosystems of contrasting tillage and weed management practices[J]. Advances in Ecological Research.1995,26:105-185.
    [98]Wardle, D.A., Communities and Ecosystems:linking the aboveground and belowground components[M].-New Jersey:Princeton university press.2013.
    [99]Warembourg, F.R., Roumet, C., Lafont, F. Differences in rhizosphere carbon partitioning among plant species of different families[J]. Plant and Soil.2003,256:347-357.
    [100]West, L.T., Miller, W.P., Langdale, G.W., et al. Cropping system effects on interrill soil loss in the Georgia Piedmont[J]. Soil Science Society of America Journal.1991,55:460-466.
    [101]White, D.C., Bobbie, R.J., Herron, J.S., et al. Biochemical measurements of microbial mass and activity from environmental samples. In:Costerton, J.W., Colwell, R.R. (ed.) Native Aquatic Bacteria:Enumeration, Activity and Ecology:a Symposium[M]. Philadelphia:American Society for Testing and Materials.1979.
    [102]Wielgosz, E., Szember, A. The effect of selected plants on the number and activity of soil microorganisms[J]. Annales Universitatis Mariae Curie-Sklodowska. Section E Agricultura. 2006,61:107-119.
    [103]Wu, J., Brookes, P.C. The proportional mineralisation of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil[J]. Soil Biology and Biochemistry. 2005,37(3):507-515.
    [104]Yan, F., McBratney, A.B., Copeland, L. Functional substrate biodiversity of cultivated and uncultivated A horizons of vertisols in NW New South Wales[J]. Geogerma.2000, 96(4):321-343.
    [105]Yao, H.Y., He, Z.L., Huang, C.Y. Phospholipid fatty acid profiles of Chinese red soil with varying fertility levels and land use histories[J]. Pedosphere.2001,11:97-103.
    [106]Zelles, L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil:a review[J]. Biology and Fertility of Soils.1999, 29(2):111-129.
    [107]Zotarelli, L., Alves, B.J.R., Urquiaga, S., et al. Impact of tillage and crop rotation on light fraction and intra-aggregate soil organic matter in two Oxisols[J]. Soil and Tillage Research. 2007,95(1-2):196-206.
    [108]白震,张明,宋斗研,张旭东,等.不同施肥对农田黑土微生物群落的影响[J].生态学报.2008,28(7):3244-3253.
    [109]蔡典雄,王小彬,高绪科.关于持续性保持耕作体系得探讨[J].土壤学进展.1993,21(1):1-8.
    [110]常春丽,刘丽平,张立峰,等.保护性耕作的发展研究现状及评述[J].中国农学通报.2008,24(2):167-172.
    [111]常旭红.保护性耕作技术的效应和应用前景分析[J].耕作与栽培.2004,1:1-3.
    [112]陈灏,唐小树,林洁.不经培养的农田土壤微生物种群构成及系统分类的初步研究[J].微生物学报.2002,24(4):475-483.
    [1]3] 陈印军,张燕卿,徐斌,等.调整治沙方略抑制沙尘暴危害[J].水利规划设计.2002,3(4):7-9.
    [114]崔凤娟,李立军,刘景辉,等.免耕留茬覆盖对土壤呼吸和土壤酶活性及养分的影响[J].中国农学通报.2011,27(21):147-153.
    [115]樊丽琴,南志标,沈禹颖,等.保护性耕作对黄土高原冬小麦田土壤微生物量碳的影响[J].草原与草坪.2005,4:51-56.
    [116]盖京苹,刘润进.土壤因子对野生植物AM真菌的影响.应用生态学报.2003,14(3):470-472.
    [117]高焕文,李洪文,李问盈.保护性耕作的发展[J].农业机械学报.2008,39(9):43-48.
    [118]高明,周保同,魏朝富,等.不同耕作方式对稻田土壤动物、微生物及酶活性的影响研究[J].应用生态学报.2004,15(7):1177-1181.
    [119]高秀君,张仁陟,杨招弟.不同耕作方式对旱地土壤酶活性动态的影响[J].土壤通报.2008,39(5):1012-1016.
    [120]高云超,朱文珊,陈文新.秸秆覆盖免耕土壤真菌群落结构与生态特征研究[J].生态学报.2001,21(10):1704-1710.
    [121]巩杰,黄高宝,陈利项,等.旱作麦田秸秆覆盖的生态综合效应研究[J].干旱地区农业研究.2003,21(3):69-73.
    [122]顾爱星,张艳,石书兵,等.秸秆覆盖法对土壤微生物区系的影响[J].新疆农业大学学报.2005,28(4):64-68.
    [123]关跃辉.保护性耕作研究现状与发展趋势[J].内蒙古农业科技.2008,1:78-80.
    [124]官情,王俊,宋淑亚,等.黄土旱塬区不同覆盖措施对冬小麦农田土壤呼吸的影响[J].应用生态学报.2011,22(6):1471-1476.
    [125]郭朝晖,黄子蔚.根际微域营养研究进展(一)[J].土壤通报.1999,30(1):46-49.
    [126]郭军玲,吴士文,金辉,等.农田十壤微量元素含量的空间变异特征和影响因素[J].水土保持学报.2010,24(1):145-149.
    [127]郭清毅,黄高宝.保护性耕作对旱地麦-豆双序列轮作农田土壤水分及利用效率的影响[J].水土保持学报.2005,19(3):165-169.
    [128]郭清毅.保护性耕作对冬小麦光合特性及光合产物生产与分配的影响研究[硕士论文].兰州:甘肃农业大学.2007.
    [129]何玉梅,张仁陟,张丽华,等.不同耕作措施对土壤真菌群落结构与生态特征的影响[J].生态学报.2007,27(1):113-119.
    [130]贺永华,沈东升,朱荫湄.根系分泌物及其根际效应[J].科技通报.2006,22(6):761-766.
    [131]黄高宝,郭清毅,张仁陟,等.保护性耕作条件下旱地农田麦-豆双序列轮作体系的水分动态及产量效应[J].生态学报.2006,26(4):1176-1185.
    [132]贾国梅,张宝林,刘成,等.三峡库区不同植被覆盖对土壤碳的影响[J].生态环境.2008,17(5):2037-2040.
    [133]贾世玉.玉米-小麦--大豆轮作系统土壤有机氮矿化特征对免耕与秸秆覆盖的响应[硕士论文].兰州:兰州大学.2012.
    [134]姜勇,梁文举,闻大中.免耕对农田土壤生物学特性的影响[J].土壤通报.2004,35(3):347-351.
    [135]晋凡生,张宝林.免耕覆盖玉米秸秆对旱塬地十壤环境的影响[J].中国生态农业学报.2000,8(3):47-50.
    [136]李春勃,范丙全.麦秸覆盖旱地棉田少耕培肥效果[J].生态农业研究.1995,3(3):52-55.
    [137]李桂芳,王义甫,陈源.发酵肥与秸秆还田对对土壤呼吸、固氮与反硝化作用的影响[J].微生物学杂志.1996,16(2):14-18.
    [138]李秀英,赵秉强,李絮花,等.不同施肥制度对十壤微生物的影响及其与土壤肥力的关系[J].中国农业科学.2005,38(8):1591-1599.
    [139]李友军,付国占,张灿军,等.保护性耕作理论与技术[M].北京:中国农业出版社.2008.
    [140]李友军,黄明,吴金芝,等.不同耕作方式对豫西旱区坡耕地水肥利用与流失的影响[J].水土保持学报.2006,20(2):42-45.
    [141]梁尧,韩晓增,乔发云,等.冬小麦-玉米-大豆轮作下黑土农田土壤呼吸与碳平衡[J].中国生态农业学报.2012,20(4):395-401.
    [142]林启美,吴玉光,刘焕龙.熏蒸法测定土壤微生物量碳的改进[J].生态学杂志.1999,18(2):63-66.
    [143]刘世平,庄恒阳,陆建飞,等.免耕法对土壤结构影响的研究[J].土壤学报.1998,35(1):33-37.
    [144]陆雅海,张福锁.根际微生物研究进展[J].土壤.2006,38(2):113-121.
    [145]罗彩云,沈禹颖,南志标,等.水土保持耕作下陇东玉米-冬小麦-大豆轮作系统产量、土壤易氧化有机碳动态[J].水土保持学报.2005,19(4):84-88.
    [146]骆世明.农业生态学[M].北京:中国农业出版.2001.
    [147]孟庆香,刘国彬,杨勤科.黄土高原土壤侵蚀时空动态分析[J].水土保持研究.2008,15(3):20-22.
    [148]农业部、国家发展与改革委员会.保护性耕作工程建设规划(2009-2015年)[EB/OL][D].2009.
    [149]农业部农机化管理司.保护性耕作技术手册[M].北京:农业部.2002.
    [150]强学彩,袁红莉,高旺盛.秸秆还田量对土壤CO2释放和土壤微生物量的影响[J].应用生态学报.2004,15(3):469-472.
    [151]任继周.农耕文化圈与畜牧文化圈在黄土高原上的嬗替[A].百名院士科技系列报告集(中册)[C].北京:新华出版社.1997.
    [152]任天志Grego, S.持续农业中的土壤生物指标研究[J].中国农业科学.2000,33(1):68-75.
    [153]沙涛,程立忠,王国华,等.秸秆还田对植烟土壤中微生物结构和数量的影响[J].中国烟草科学.2000,3:40-42.
    [154]沈德龙,李俊,姜昕.我国生物有机肥的发展现状和展望[J].中国农技推广.2009,23(9): 35-37.
    [155]沈其荣,王岩,史瑞和.士壤微生物量和土壤固定态铵的变化及水稻对残留N的利用[J].土壤学报.2000,37(3):330-338.
    [156]司纪升,王法宏,李升东,等.早地保护性耕作对土壤理化性状和冬小麦生理特性的影响[J].山东农业科学.2008,7:9-12.
    [157]隋跃宇,张兴义,焦晓光,等.长期不同施肥制度对农田黑土有机质和氮素的影响[J].水土保持学报.2005,19(6):190-192.
    [158]隋跃宁,张兴义,焦晓光.不同施肥制度对玉米生育期土壤微生物量的影响[J].中国生态农业学报.2007,15(3):52-54.
    [159]孙波,赵其国,张桃林,等.土壤质量与持续环境-Ⅲ:土壤质量评价的生物学指标[J].土壤.1997,29(5):225-234.
    [160]王昌全,魏成明,李廷强,等.不同免耕方式对作物产量和土壤理化性状的影响[J].四川农业大学学报.2001,19(2):152-155.
    [161]王改玲,郝明德,徐继光,等.保护性耕作对黄土高原南部地区冬小麦产量及土壤 理化性质的影响[J].植物营养与肥料学报.2011,17(3):539-544.
    [162]王慧敏,隋新华,李健强,等.樱桃根癌土壤杆菌及其对土愚杆菌素84敏感性的研究[J].微生物学报.1998,38(5):381-385.
    [163]王笳,王树楼,丁玉川,等.旱地玉米免耕整秸秆覆盖土壤养分、结构和生物研究[J].山西农业科学.1994,22(3):17-19.
    [164]王礼先.中国水利百科全书-水土保持分册[M].北京:中国水利水电出版社.2004.
    [165]王明明,李俊成,沈禹颖.保护性耕作下黄土高原作物轮作系统土壤健康评价[J].草业科学.2011,28:882-886.
    [166]王淑彬,黄国勤,李年龙,等.稻田水早轮作(第3年度)的土壤微生物效应[J].江西农业大学学报(自然科学版).2002,24(3):320-323.
    [167]王晓燕,高焕文,李洪文,等.保护性耕作对农田地表径流与土壤水蚀影响的试验研究[J].农业工程学报.2000,16(3):66-69.
    [168]王新建,张仁险,毕冬梅,等.保护性耕作对土壤有机碳组分的影响[J].水土保持学报.2009,23(2):115-121.
    [169]王芸,韩宾,史忠强,等.保护性耕作对土壤微生物特性及酶活性的影响[J].水土保持学报.2006,20(4):10-12.
    [170]吴建军,蒋艳梅,吴愉萍,等.重金属复合污染对水稻土壤微生物生物量和群落结构的影响[J].土壤学报.2008,45:1102-1109.
    [171]吴敬民,董百舒.秸秆还田效果及其在土壤培肥中的地位[J].士壤通报.1991,25(5):211-215.
    [172]吴愉萍.基于磷脂脂肪酸(PLFA)分析技术的土壤微生物群落结构多样性的研究[博士论文].杭州:浙江大学.2009.
    [173]谢瑞芝,李少昆,李小君,等.中国保护性耕作研究分析——保护性耕作与作物生产[J].中国农业科学.2007,40(9):1914-1924.
    [174]徐丽君,唐华俊,杨桂霞,等.不同苜蓿品种人工草地土壤呼吸及对土气温度反应[J].西北植物学报.2010,30(9):1882-1886.
    [175]严洁,邓良基,黄剑.保护性耕作对土壤理化性质和作物产量的影响[J].中国农机化.2005,2:31-34.
    [176]杨改河.旱区农业理论与实践[M].西安:世界图书出版司西安公司.1993.
    [177]杨晶,沈禹颖,南志标,等.保护性耕作对黄土高原玉米-冬小麦-大豆轮作系统产量及表层土壤碳管理指数的影响[J].草业学报.2009,19:75-82.
    [178]杨玉爱.微量元素研究及应用[M].湖北:湖北科技出版社.1986.
    [179]杨招弟,蔡立群,张仁陟,等.不同耕作方式对早地土壤酶活性的影响[J].土壤通报.2008,39(3):514-517.
    [180]杨志臣,吕贻忠,张凤荣,等.秸秆还田和腐熟有机肥对水稻十培肥效果对比分析[J].农业工程学报.2008,24(3):214-218.
    [181]于爱忠,黄高宝,柴强.不同耕作措施对西北绿洲灌区冬小麦农田土壤呼吸的影响[J].草业学报.2012,21(1):273-278.
    [182]袁家福.麦田秸秆覆盖效应及增产作用[J].生态农业研究.1996,4(3):61-65.
    [183]张彬,白震,解宏图,等.保护性耕作对黑土微生物群落的影响[J].中国生态农业学报.2010,18(1):83-88.
    [184]张凤云,张恩和,景锐,等.河西绿洲灌区留茬覆盖免耕保护性耕作的增产节水效 应[J].草业学报.2007,16(2):94-98.
    [185]张海涵,唐明,陈辉,等.不同生态条件下油松(Pinus tabulaeformis)菌根根际土壤微生物群落[J].生态学报.2007,27(12):5463-5470.
    [186]张海林,高旺盛,陈阜,等.保护性耕作研究现状、发展趋势及对策[J].中国农业大学学报.2005,10(1):16-20.
    [187]张海燕,肖延华,张旭东,等.土壤微生物量作为土壤肥力指标的探讨[J].土壤通报.2006,37(3):422-425.
    [188]张藕珠.推广保护性耕作技术促进农业可持续发展[J].农业技术与装备.20]0,1:23-25.
    [189]张四海,曹志平,张国,等.保护性耕作对农田土壤有机碳库的影响[J].态环境学报.2012,21(2):199-205.
    [190]张薇,魏海雷,洪高文,等.土壤微生物多样性及其环境影响因子研究进展[J].生态学杂志.2005,24(1):48-52.
    [191]张雯,侯立白,张斌,等.辽西易旱区不同耕作方式对土壤物理性能的影响[J].干旱区资源与环境.2006,20(3):149-153.
    [192]张锡洲,李廷轩,余海英,等.水旱轮作条件下长期自然免耕对土壤理化性质的影响[J].水土保持学报.2006,20(6):145-147.
    []93] 张喜荣,蔡艳蓉,赵晶,等.黄土高原水土流失造成的危害及其综合治理措施[J].安徽农业科学.2010,38(28):1576-1578.
    [194]张星杰,刘景辉,李立军,等.保护性耕作对旱作玉米土壤微生物和酶活性的影响[J].玉米科学.2008,16(001):91-95.
    [195]郑华,欧阳志云,赵同谦,等.不同森林恢复类型对土壤生物学特性的影响[J].应用与环境生物学报.2006,12(1):36-43.
    [196]郑丽娜,王先之,沈禹颖.保护性耕作对黄土高原塬区作物轮作系统磷动态的影响[J].草业学报.2011,20(4):19-26.
    [197]钟文辉,蔡祖聪.土壤管理措施及环境因素对土壤微生物多样性影响研究进展[J].生物多样性.2004b,12(4):456-465.
    [198]钟文辉,蔡祖聪.土壤微生物多样性研究方法[J].应用生态学报.2004a,15(5):899-904.
    [199]周建斌,陈竹君,李生秀.土壤微生物量氮含量、矿化特性及其供氮作用[J].生态学报.2001,21(10):1718-1725.
    [200]周礼恺.十壤酶学[M].北京:科学出版社.1989.
    [201]朱炳耀,黄建华,黄永耀,等.连续免耕对中稻产量及土壤理化性质的影响[J].福建农业学报.1999,14(S1):159-163.
    [202]朱丽霞,章家恩,刘文高,等.根系分泌物与根际微生物相互作用研究综述[J].生态环境.2003,12(1):102-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700