用户名: 密码: 验证码:
菌丝际土壤有机磷周转的微生物调控机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
AM真菌与细菌都是微生物中的重要功能组群,在土壤磷循环中发挥着至关重要的作用,而且两者之间的相互作用也有利于土壤磷的周转和植物磷养分的吸收,但其互作机理及其对土壤磷周转与利用的生态功能的研究还很薄弱。本论文以AM真菌与解磷细菌两种功能微生物互作机制为切入点,利用分室隔网培养体系、T-RFLP、13C-DNA-SIP、454高通量测序等微生物分子生态学技术手段,分别在生理和分子水平上研究AM真菌根外菌丝及其与细菌互作对土壤有机磷矿化与周转的调控,主要结果如下:
     1、铵态氮诱导的菌丝际酸化促进玉米对有机磷的吸收。与硝态氮相比,铵态氮处理显著降低了菌丝际土壤的pH,增强了土壤实际的磷酸酶活性,进而加速了土壤有机磷的矿化,促进植株对有机磷的吸收。
     2、菌丝际解磷细菌对根外菌丝分泌物的利用和参与土壤有机磷的周转。与单接种细菌和菌根真菌相比,双接种处理显著减少了菌丝际土壤中有机磷的含量,增加了微生物量磷的含量,AM真菌与解磷细菌互作对植物磷的吸收量没有显著贡献,双接种还抑制了AM真菌在菌丝室中的生长。利用13C-DNA-SIP技术、T-RFLP和克隆文库的分析发现,菌丝际定殖的草酸杆菌科(Oxalobacteraceae)、链霉菌科(Streptomycetaceae)和假单胞菌科(Pseudomonadaceae)的细菌被13C标记,其中包括试验中加入的已知解磷功能的细菌(?)seudomonas alcaligenes。这说明菌丝际解磷功能细菌利用了通过菌丝分泌的植物光合产物,参与了土壤难溶性有机磷的活化和周转;解磷细菌活化出的磷大部分被其自身所利用,与AM真菌形成对磷资源的竞争并进而抑制了AM真菌的生长,使解磷细菌对植株磷养分的贡献没有达到显著水平。
     3、供应不同形态磷酸盐显著改变菌丝际细菌群落结构。以韭葱为宿主时F. mosseae菌丝际的细菌群落结构组成,在不同施磷处理之间存在显著差异。与不施磷处理相比,无机磷处理增加了厚壁菌门(Firmicutes)的相对丰度,对蓝藻门(Cyanobacteria)则没有影响,而有机磷的施入反而降低了厚壁菌门(Firmicutes)的相对丰度,增加了蓝藻门(Cyanobacteria)的相对丰度。然而,蒺藜苜蓿和黑麦草为宿主植物时,菌丝际细菌的群落结构组成并没有受到磷形态的影响。这一结果说明宿主植物与磷形态在F. mosseae的生长和分泌物的数量方面存在交互作用。
     4、宿主植物种类对菌丝际细菌群落结构组成没有显著影响。接种Funneliformis mosseae时,菌丝际细菌群落结构组成显著不同于非菌丝际土壤的;以韭葱、蒺藜苜蓿、黑麦草三种植物为宿主的菌丝际细菌群落结构组成却很相似。说明菌丝际细菌群落的结构组成直接受到AM真菌根外菌丝分泌物的影响,宿主植物种类可能并不改变菌丝分泌物的成分。
Arbuscular mycorrhizal (AM) fungi and bacteria are significant functional groups in the soil microflora, and their interactions play an important role in the soil phosphorus cycle. Interactions between AM fungi and bacteria are beneficial for soil P turnover and enhance P availability to plants. However, the underlying mechanisms by which these associations influence soil phosphorus turnover, and their ecological function, are not very well understood. In the present study, the interaction of two functional microorganisms (AM fungi and phosphate solubilizing bacteria) and its effects on organic phosphorus mineralization and turnover were studied using a compartmented cultivation system and molecular microbial ecology techniques (T-RFLP,13C-DNA-SIP,454high-throughput sequencing) at both physiological and molecular levels. The main results are listed below point by point:
     1. Ammonium-induced acidification in the presence of AM fungal hyphae in the hyphosphere improved maize uptake of P from phytin. NH4+treatment in the combined presence of phytin and AM fungal mycelium led to a decrease in hyphosphere pH, enhanced phosphatase activity in the hyphosphere and accelerated mineralization of phytin compared to the NO3-treatment, and improved maize uptake of P from phytin.
     2. Phosphate solubilizing bacteria (PSB) are involved in the mineralization and turnover of phytate in the hyphosphere, and these organisms assimilated carbon from13C-labeled maize. Co-inoculation of AM fungi and PSB into the hyphosphere chamber caused a marked decline in organic P concentration and an increase in microbial biomass phosphorus concentration in hyphosphere soil, compared to inoculation with AM fungi or PSB alone. The dual inoculation did not contribute to P uptake for maize, and hyphal growth of AM fungi was significantly inhibited under these conditions. Comparison between T-RFLP fingerprints and clone library indicated that Oxalobacteraceae, Streptomycetaceae and Pseudomonadaceae (including the inoculated PSB Pseudomonas alcaligenes strain) were labeled with13C derived from maize assimilates. These results suggest that PSB can utilize the photosynthate from plants via the mycelia of AM fungi, and are involved in soil organic phosphorus mineralization and turnover. The results suggest that PSB competed for available P with the AM hyphae in the hyphosphere, and that mycelial growth was suppressed because phytin was mineralized by PSB primarily for direct assimilation, and not for uptake by AMF and consequent promotion of both mycelial and plant growth..
     3. The composition of the bacterial community associated with extraradical Funneliformis mossaea mycelia was significantly changed by different forms of phosphorus supplied in the hyphosphere.16S T-RFLP analysis combined with NPMANOVA showed that different phosphorus forms significantly affected the bacterial community in the leek hyphosphere. The predominant phyla in those communities were Firmicutes and Cyanobacteria, as determined by454sequencing. Inorganic P treatment increased the relative abundance of Firmicutes, compared with the control with no added P, but no difference was seen for Cyanobacteria. However, the relative abundances of Firmicutes and Cyanobacteria were respectively decreased and increased after organic P supplementation. The bacterial community composition in the hyphospheres of Medicago truncatula and Lolium rigidum were not affected by the P forms. The results indicated the interactive effects of host plant and P form in determining F. mosseae growth and quantity of hyphal exudates.
     4. The bacterial community composition in the bulk soil was significantly different from that found in the F. mosseae hyphosphere. However, use of different plant species(Medicago truncatula, Allium porrum and Lolium rigidum) did not change the bacterial community composition associated with extraradical F. mosseae mycelia. These results suggest that the bacterial community composition in the hyphosphere is directly affected by mycelial exudates, but that host plant species do not significantly influence the composition of these exudates.
引文
Aarle I.M.V., Rouhier H., Saito M. (2002) Phosphatase activities of arbuscular mycorrhizal intraradical and extraradical mycelium, and their relation to phosphorus availability. Mycological Research 106:1224-1229.
    Abdo Z., Schuette U.M.E., Bent S.J., Williams C.J., Forney L.J., Joyce P. (2006) Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes. Enviromental Microbiology 8:929-938.
    Achat D.L., Morel C., Bakker M.R., Augusto L., Pellerin S., Gallet-Budynek A., Gonzalez M. (2010) Assessing turnover of microbial biomass phosphorus:Combination of an isotopic dilution method with a mass balance model. Soil Biology & Biochemistry 42:2231-2240.
    Alamgir M., McNeill A., Tang C., Marschner P. (2012) Changes in soil P pools during legume residue decomposition. Soil Biology & Biochemistry 49:70-77.
    Allen M.F. (2007) Mycorrhizal fungi:highways for water and nutrients in arid soils. Vadose Zone Journal 6:291-297.
    Andrade G., Linderman R.G, Bethlenfalvay G.J. (1998) Bacterial associations with the mycorrhizosphere and hyphosphere of the arbuscular mycorrhizal fungus Glomus mosseae. Plant and Soil 202:79-87.
    Artursson V., Finlay R.D., Jansson J.K. (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environmental Microbiology 8:1-10.
    Artursson V., Jansson J.K. (2003) Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae. Applied and Environmental Microbiology 69:6208-6215.
    Bago B., Vierheilig H., Piche Y., Azcon-Aguilar C. (1996) Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenic culture. New Phytologist 133:273-280.
    Barea J.M., Toro M., Orozco M.O., Campos E., Azcon R. (2002) The application of isotopic (32P and 15N) dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops. Nutrient Cycling in Agroecosystems 63:35-42.
    Barret M., Morrissey J.P., O'Gara F. (2011) Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biology and Fertility of Soils 47:729-743.
    Bearden B.N., Petersen L. (2000) Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of a vertisol. Plant and Soil 218:173-183.
    Benedetto A., Magurno F., Bonfante P., Lanfranco L. (2005) Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae. Mycorrhiza 15:620-627.
    Bharadwaj D.P., Alstrom S., Lundquist P.-O. (2012) Interactions among Glomns irregulare, arbuscular mycorrhizal spore-associated bacteria, and plant pathogens under in vitro conditions. Mycorrhiza 22:437-447.
    Biro B., KoVes-Pechy K., Voros I., Takacs T., Eggenberger P., Strasser R.J. (2000) Interrelations between Azospirillum and Rhizobium nitrogen-fixers and arbuscular mycorrhizal fungi in the rhizosphere of alfalfa in sterile, AMF-free or normal soil conditions. Applied Soil Ecology 15:159-168.
    Blagodatskaya E., Kuzyakov Y. (2008) Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure:critical review. Biology and Fertility of Soils 45:115-131.
    Bledsoe C.S., Zasoski R.J. (1983) Effects of ammonium and nitrate on growth and nitrogen uptake by mycorrhizal Douglas-fir seedlings. Plant and Soil 71:445-454.
    Brookers P.C., Powlson D.S., Jenkinson D.S. (1984) Phosphorus in the soil microbial biomass. Soil Biology & Biochemistry 16:169-175.
    Brookes P.C., Powlson D.S., Jenkinson D.S. (1982) Measurement of microbial biomass phosphorus in soil. Soil Biology & Biochemistry 14:319-329.
    Bucher M. (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytologist 173:11-26.
    Butterly C.R., Bunemann E.K., McNeill A.M., Baldock J.A., Marschner P. (2009) Carbon pulses but not phosphorus pulses are related to decreases in microbial biomass during repeated drying and rewetting of soils. Soil Biology & Biochemistry 41:1406-1416.
    Caris C., Hordt W., Hawkins H.-J., Romheld V., George E. (1998) Studies of iron transport by arbuscular mycorrhizal hyphae from soil to peanut and sorghum plants. Mycorrhiza 8:35-39.
    Carreira J.A., Garci'a-Ruiz R., Lie'tor J., Harrison A.F. (2000) Changes in soil phosphatase activity and P transformation rates induced by application of N-and S-containing acid-mist to a forest canopy. Soil Biology & Biochemistry 32:1857-1865.
    Celi L., Lamacchia S., Marsan F.A., Barberis E. (1999) Interaction of inositol hexaphosphate on clays:Adsorption and charging phenomena. Soil Science 164:574-585.
    Chen G.C., He Z.L. (2002) Microbial biomass phosphorus turnover in variable-charge soils in China. Communications in Soil Science and Plant Analysis 33:2101-2117.
    Cheng L., Booker F.L., Tu C., Burkey K.O., Zhou L., Shew H.D., Rufty T.W., Hu S. (2012) Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 337:1084-1087.
    Cheng W. (2009) Rhizosphere priming effect:Its functional relationships with microbial turnover, evapotranspiration, and C-N budgets. Soil Biology & Biochemistry 41:1795-1801.
    Collos Y., Mornet E. (1993) Automated procedure for determination of dissolved organic nitrogen and phosphorus in aquatic environments. Marine Biology 116:685-688.
    Cordell D., Drangert J.-O., White S. (2009) The story of phosphorus:Global food security and food for thought. Global Environmental Change 19:292-305.
    Culman S.W., Bukowski R., Gauch H.G, Cadillo-Quiroz H., Buckley D.H. (2009) T-REX:software for the processing and analysis of T-RFLP data. BMC Bioinformatics 10:171-181.
    Dalal R.C. (1977) Soil organic phosphorus. Advances in Agronomy 29:83-113.
    Danhorn T., Hentzer M., Givskov M., Parsek M.R., Fuqua C. (2004) Phosphorus limitation enhances biofilm formation of the plant pathogen Agrobacterium tumefaciens through the PhoR-PhoB regulatory system. Journal of Bacteriology 186:4492-4501.
    Degens B.P., Spading GP., Abbott L.K. (1996) Increasing the length of hyphae in a sandy soil increases the amount of water-stable aggregates. Applied Soil Ecology 3:149-159.
    Ding X., Fu L., Liu C., Chen F., Hoffland E., Shen J., Zhang F., Feng G (2011) Positive feedback between acidification and organic phosphate mineralization in the rhizosphere of maize (Zea mays L.). Plant and Soil 349:13-24.
    Faber B.A., Zasoski R.J., Munns D.N., Shackel K. (1991) A method for measuring hyphal nutrient and water uptake in mycorrhizal plants. Canadian Journal of Botany 69:87-94.
    Feng G, Song Y.C., Li X.L., Christie P. (2003) Contribution of arbuscular mycorrhizal fungi to utilization of organic sources of phosphorus by red clover in a calcareous soil. Applied Soil Ecology 22:139-148.
    Feng G, Su Y., Li X., Wang H., Zhang F., Tang C., Rengel Z. (2002) Histochemical visualization of phosphatase released by arbuscular mycorrhizal fungi in soil. Journal of Plant Nutrition 25:969-980.
    Finlay R.D., Frostegard A., Sonnerfeldt A.-M. (1992) Utilization of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and in symbiosis with Pinus contorta Dougl. ex Loud. New Phytologist 120:105-115.
    Fogel R. (1988) Interactions among soil biota in coniferous ecosystems. Agriculture, Ecosystems & Environment 24:69-85.
    Fransson A.M., Jones D.L. (2007) Phosphatase activity does not limit the microbial use of low molecular weight organic-P substrates in soil. Soil Biology & Biochemistry 39:1213-1217.
    Frey-Klett P., Garbaye J., Tarkka M. (2007) The mycorrhiza helper bacteria revisited. New Phytologist 176:22-36.
    Garbaye J. (1994) Helper bacteria:a new dimension to the mycorrhizal symbiosis. New Phytologist 128:197-210.
    Garbeva P., Silby M.W., Raaijmakers J.M., Levy S.B., Boer W.d. (2011) Transcriptional and antagonistic responses of Pseudomonas fluorescens PfO-1 to phylogenetically different bacterial competitors. The ISME Journal 5:973-985.
    George E., Haussler K., Kothari S.K., Li X.L., Marschner H. (1992) Contribution of mycorrhizal hyphae to nutrient and water uptake of plants. Mycorrhizas in Ecosystems,3rd European Symposium on Mycorrhizas:42-47.
    George T.S., Gregory P.J., Hocking P., Richardson A.E. (2008) Variation in root-associated phosphatase activities in wheat contributes to the utilization of organic P substrates in vitro, but does not explain differences in the P-nutrition of plants when grown in soils. Environmental and Experimental Botany 64:239-249.
    George T.S., Gregory P.J., Robinson J.S., Buresh R.J. (2002a) Changes in phosphorus concentrations and pH in the rhizosphere of some agroforestry and crop species. Plant and Soil 246:65-73.
    George T.S., Gregory P.J., Wood M., Read D., Buresh R.J. (2002b) Phosphatase activity and organic acids in the rhizosphere of potential agroforestry species and maize. Soil Biology & Biochemistry 34:1487-1494.
    George T.S., Simpson R.J., Gregory P.J., Richardson A.E. (2007) Differential interaction of Aspergillus niger and Peniophora lycii phytases with soil particles affects the hydrolysis of inositol phosphates. Soil Biology & Biochemistry 39:793-803.
    Giaveno C., Celi L., Richardson A.E., Simpson R.J., Barberis E. (2010) Interaction of phytases with minerals and availability of substrate affect the hydrolysis of inositol phosphates. Soil Biology & Biochemistry 42:491-498.
    Gilbert N. (2009) The disappearing nutrient. Nature 461:716-718.
    Gollotte A., Tuinen D.v., Atkinson D. (2004) Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza 14:111-117.
    Grayston S.J., Wang S., Campbell C.D., Edwards A.C. (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biology & Biochemistry 30:369-378.
    Grigera M.S., Drijber R.A., Wienhold B.J. (2007) Increased abundance of arbuscular mycorrhizal fungi in soil coincides with the reproductive stages of maize. Soil Biology & Biochemistry 39:1401-1409.
    Guo J.H., Liu X.J., Zhang Y., Shen J.L., Han W.X., Zhang W.F., Christie P., Goulding K.W.T., Vitousek P.M., Zhang F.S. (2010) Significant acidification in major Chinese croplands. Science 327:1008-1010.
    Gyaneshwar P., Kumar G.N., Parekh L.J., Poole P.S. (2002) Role of soil microorganisms in improving P nutrition of plants. Plant and Soil 245:83-93.
    Hallett P.D., Feeney D.S., Bengough A.G, Rillig M.C., Scrimgeour C.M., Young I.M. (2009) Disentangling the impact of AM fungi versus roots on soil structure and water transport. Plant and Soil 314:183-196.
    Hanson W.C. (1950) The photometric determination of phosphorus in fertilizers using the phosphovanado-molybdate complex. Journal of the Science of Food and Agriculture 1:172-173.
    Harrison M.J., Buuren M.L.v. (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626-629.
    Hartmann A., Schmid M., Tuinen D.v., Berg G (2009) Plant-driven selection of microbes. Plant and Soil 321:235-257.
    Hawkins H.-J., Johansen A., George E. (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant and Soil 226:275-285.
    Hayes J.E., Richardson A.E., Simpson R.J. (1999) Phytase and acid phosphatase activities in extracts from roots of temperate pasture grass and legume seedlings. Australian Journal of Plant Physiology 26:801-809.
    Hayes J.E., Richardson A.E., Simpson R.J. (2000) Components of organic phosphorus in soil extracts that are hydrolysed by phytase and acid phosphatase. Biology and Fertility of Soils 32:279-286.
    Herbien S.A., Neal J.L. (1990) Soil pH and phosphatase activity. Communications in Soil Science and Plant Analysis 21:439-456.
    Herman D.J., Firestone M.K., Nuccio E., Hodge A. (2012) Interactions between an arbuscular mycorrhizal fungus and a soil microbial community mediating litter decomposition. FEMS Microbiology Ecology 80:236-247.
    Hinsinger P. (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes:a review. Plant and Soil 237:173-195.
    Hinsinger P., Gobran G.R., Gregory P.J., Wenzel W.W. (2005) Rhizosphere geometry and heterogeneity arising from rootmediated physical and chemical processes. New Phytologist 168:293-303.
    Hinsinger P., Plassard C., Tang C., Jaillard B. (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints:A review. Plant and Soil 248:43-59.
    Hoberg E., Marschner P., Lieberei R. (2005) Organic acid exudation and pH changes by Gordonia sp. and Pseudomonas fluorescens grown with P adsorbed to goethite. Microbiological Research 160:177-187.
    Hodge A., Campbell C.D., Fitter A.H. (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297-299.
    Hodge A., Fitter A.H. (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences 107:13754-13759.
    Hong Y.F., Liu C.Y., Cheng K.J., Hour A.L., Chan M.T., Tseng T.H., Chen K.Y., Shaw J.F., Yu S.M. (2008) The sweet potato sporamin promoter confers high-level phytase expression and improves organic phosphorus acquisition and tuber yield of transgenic potato. Plant Molecular Biology 67:347-361.
    Hsieh Y.-J., Wanner B.L. (2010) Global regulation by the seven-component Pi signaling system. Current Opinion in Microbiology 13:198-203.
    Jakobsen I., Abbott L.K., Robson A.D. (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L.1. Spread of hyphae and phosphorus inflow into roots. New Phytologist 120:371-380.
    Jakobsen I., Rosendahl L. (1990) Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytologist 115:77-83.
    Jin H., Liu J., Liu J., Huang X. (2012) Forms of nitrogen uptake, translocation, and transfer via arbuscular mycorrhizal fungi:A review. Science China Life Sciences 55:474-482.
    Johansen A., Jakobsen I., Jensen E.S. (1992) Hyphal transport of 15N-labelled nitrogen by a vesicular-arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N. New Phytologist 122:281-288.
    Johansen A., Jakobsen I., Jensen E.S. (1994) Hyphal N transport by a vesicular-arbuscular mycorrhizal fungus associated with cucumber grown at three nitrogen levels. Plant and Soil 160:1-9.
    Johansson J.F., Paul L.R., Finlay R.D. (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiology Ecology 48:1-13.
    Johnson D., Leake J.R., Ostle N., Ineson P., Read D.J. (2002) In situ 13CO2 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytologist 153:327-334.
    Joner E.J., Aarle I.M.V., Vosatka M. (2000) Phosphatase activity of extra-radical arbuscular mycorrhizal hyphae:A review. Plant and Soil 226:199-210.
    Joner E.J., Jakobsen I. (1995a) Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter. Soil Biology & Biochemistry 27:1153-1159.
    Joner E.J., Jakobsen I. (1995b) Uptake of 32P from labelled organic matter by mycorrhizal and non-mycorrhizal subterranean clover (Trifolium subterraneum L.). Plant and Soil 172:221-227.
    Joner E.J., Johansen A. (2000) Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi. Mycological Research 104:81-86.
    Joner E.J., Magid J., Gahoonia T.S., Jakobsen I. (1995) P depletion and activity of phosphatase in the rhizosphere of mycorrhizal and non-mycorrhizal cucumber (cucumis sativus L.). Soil Biology & Biochemistry 27:1145-1151.
    Jorquera M.A., Crowley D.E., Marschner P., Greiner R., Fernandez M.T., Romero D., Menezes-Blackburn D., Mora M.d.l.L. (2011) Identification of β-propeller phytase-encoding genes in culturable Paenibacillus and Bacillus spp. from the rhizosphere of pasture plants on volcanic soils. FEMS Microbiology Ecology 75:163-172.
    Jorquera M.A., Saavedra N., Maruyama F., Richardson A.E., Crowley D.E., Catrilaf R.d.C., Henriquez E.J., Mora M.d.l.L. (2013) Phytate addition to soil induces changes in the abundance and expression of Bacillus β-propeller phytase genes in the rhizosphere. FEMS Microbiology Ecology 83:352-360.
    Kataoka R., Futai K. (2009) A new mycorrhizal helper bacterium, Ralstonia species, in the ectomycorrhizal symbiosis between Pinus thunbergii and Suillus granulatus. Biology and Fertility of Soils 45:315-320.
    Khalvati M.A., Hu Y., Mozafar A., Schmidhalter U. (2005) Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biology 7:706-712.
    Kiers E.T., Duhamel M., Beesetty Y., Mensah J.A., Franken O., Verbruggen E., Fellbaum C.R., Kowalchuk G.A., Hart M.M., Bago A., Palmer T.M., West S.A., Vandenkoornhuyse P., Jansa J., Bu□cking H. (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880-882.
    Kim K., Jordan D., Krishnan H. (1997) Rahnella aquatilis, a bacterium isolated from soybean rhizosphere, can solubilize hydroxyapatite. FEMS Microbiology Letters 153:273-277.
    Koide R.T., Kabir Z. (2000) Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytologist 148:511-517.
    Kothari S.K., Marschner H., Romheld V. (1991a) Contribution of the VA mycorrhizal hyphae in acquisition of phosphorus and zinc by maize grown in a calcareous soil. Plant and Soil 131:177-185.
    Kothari S.K., Marschner H., Romheld V. (1991b) Effect of a vesicular-arbuscular mycorrhizal fungus and rhizosphere micro-organisms on manganese reduction in the rhizosphere and manganese concentrations in maize (Zea mays L.). New Phytologist 117:649-655.
    Kouno K., Wu J., Brookes P.C. (2002) Turnover of biomass C and P in soil following incorporation of glucose or ryegrass. Soil Biology & Biochemistry 34:617-622.
    Kowalchuk GA. (2012) Bad news for soil carbon sequestration? Science 337:1049-1050.
    Kuang R., Chan K.-H., Yeung E., Lim B.L. (2009) Molecular and biochemical characterization of AtPAP15, a purple acid phosphatase with phytase activity, in arabidopsis. Plant Physiology 151:199-209.
    Kuzyakov Y. (2002) Review:Factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science 165:382-396.
    Lambers H., Mougel C., Jaillard B., Hinsinger P. (2009) Plant-microbe-soil interactions in the rhizosphere:an evolutionary perspective. Plant and Soil 321:83-115.
    Lambers H., Shane M.W., Cramer M.D., Pearse S.J., Veneklaas E.J. (2006) Root structure and functioning for efficient acquisition of phosphorus:matching morphological and physiological traits. Annals of Botany 98:693-713.
    Lecomte J., St-Arnaud M., Hijri M. (2011) Isolation and identification of soil bacteria growing at the expense of arbuscular mycorrhizal fungi. FEMS Microbiology Letters 317:43-51.
    Leigh J., Fitter A.H., Hodge A. (2011) Growth and symbiotic effectiveness of an arbuscular mycorrhizal fungus in organic matter in competition with soil bacteria. FEMS Microbiology Ecology 76:428-438.
    Li T., Hu Y., Hao Z., Li H., Wang Y, Chen B. (2013a) First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices. New Phytologist 197:617-630.
    Li X., Cao Y. (1990) Effects of VA-mycorrhiza on P-and Zn uptake by corn plant from soil and fertilizer transactions.14th International Congress of Soil Science, Kyoto Japan 111:230-231.
    Li X., George E., Marschner H. (1991a) Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant and Soil 136:41-48.
    Li X., George E., Marschner H. (1991b) Phosphorus depletion and pH decrease at the root-soil and hyphae-soil interfaces of VA mycorrhizal white clover fertilized with ammonium. New Phytologist 119:397-404.
    Li X., Marschner H., George E. (1991c) Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root-to-shoot transport in white clover. Plant and Soil 136:49-57.
    Li Z., Zhao A., Wang X., Jin X., Li J., Yu M. (2013b) Cloning, overexpression, and functional characterization of a phytase from the genus Bacillus. Journal of Molecular Microbiology and Biotechnology 23:193-202.
    Linderman R.G. (1988) Mycorrhizal interactions with the rhizosphere microflora:the mycorrhizosphere effect. Phytopathology 78:366-371.
    Liu K. (2008) Effects of input management on community composition of arbuscular mycorrhizal fungi and phosphorus uptake in wheat/maize cropping system in north China plain (Master thesis). China Agricultural University, Beijing, China.
    Liu Q., J.Parsons A., Xue H., S.Jones C., Rasmussen S. (2013) Functional characterisation and transcript analysis of an alkaline phosphatase from the arbuscular mycorrhizal fungus Funneliformis mosseae. Fungal Genetics and Biology 54:52-59.
    Maldonado-Mendoza I.E., Dewbre GR., Harrison M.J. (2001) A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Molecular Plant-Microbe Interactions 14:1140-1148.
    Malik M.A., Marschner P., Khan K.S. (2012) Addition of organic and inorganic P sources to soil-Effects on P pools and microorganisms. Soil Biology & Biochemistry 49:106-113.
    Mamatha G, Bagyaraj D.J., Jaganath S. (2002) Inoculation of field-established mulberry and papaya with arbuscular mycorrhizal fungi and a mycorrhiza helper bacterium. Mycorrhiza 12:313-316.
    Mansfeld-Giese K., Larsen J., Bodker L. (2002) Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. FEMS Microbiology Ecology 41:133-140.
    Mark GL., Dow J.M., Kiely P.D., Higgins H., Haynes J., Baysse C., Abbas A., Foley T., Franks A., Morrissey J., O'Gara F. (2005) Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions. Proceedings of the National Academy of Sciences 102:17454-17459.
    Marschner H. (1995) Mineral nutrition of higher plants. Academic Press, London.
    Marschner P. (2008) The role of rhizosphere microorganisms in relation to P uptake by plants, in:P. J. White and J. P. Hammond (Eds.), The Ecophysiology of Plant-Phosphorus Interactions, Springer Netherlands, pp.165-176.
    Marschner P., Baumann K. (2003) Changes in bacterial community structure induced by mycorrhizal colonisation in split-root maize. Plant and Soil 251:279-289.
    Marschner P., Crowley D., Rengel Z. (2011) Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis-model and research methods. Soil Biology & Biochemistry 43:883-894.
    Marschner P., Crowley D., Yang C.H. (2004) Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant and Soil 261:199-208.
    Marschner P., Crowley D.E., Lieberei R. (2001a) Arbuscular mycorrhizal infection changes the bacterial 16 S rDNA community composition in the rhizosphere of maize. Mycorrhiza 11:297-302.
    Marschner P., Timonen S. (2005) Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere. Applied Soil Ecology 28:23-36.
    Marschner P., Yang C.-H., Lieberei R., Crowley D.E. (2001b) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biology & Biochemistry 33:1437-1445.
    Matilla M.A., Espinosa-Urgel M., Rodriguez-Herva J.J., Ramos J.L., Ramos-Gonzalez M.I. (2007) Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere. Genome Biology 8:R179.1-13.
    Meyer J.R., Linderman R.G (1986a) Response of subterranean clover to dual inoculation with vesicular-arbuscular mycorrhizal fungi and a plant growth-promoting bacterium, Pseudomonas putida. Soil Biology & Biochemistry 18:185-190.
    Meyer J.R., Linderman R.G (1986b) Selective influence on populations of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biology & Biochemistry 18:191-196.
    Miethling R., Wieland G., Backhaus H., Tebbe C.C. (2000) Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microbial Ecology 41:43-56.
    Monds R.D., Newell P.D., Schwartzman J.A., O'Toole GA. (2006) Conservation of the Pho regulon in Pseudomonas fluorescens Pf0-1. Applied and Environmental Microbiology 72:1901-1924.
    Nagy R., Drissner D., Amrhein N., Jakobsen I., Bucher M. (2009) Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytologist 184:950-959.
    Nuccio E.E., Hodge A., Pett-Ridge J., Herman D.J., Weber P.K., Firestone M.K. (2013) An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environmental Microbiology 15:1870-1881.
    Oberson A., Friesen D.K., Rao I.M., Buhler S., Frossard E. (2001) Phosphorus transformations in an Oxisol under contrasting land-use systems:the role of the soil microbial biomass. Plant and Soil 237:197-210.
    Oberson A., Joner E.J. (2005) Microbial turnover of phosphorus in soil, in:B. L. Turner, et al. (Eds.), Organic Phosphorus in the Environment, CABI Publishing, Cambridge, pp.133-164.
    Oehl F., Frossard E., Fliessbach A., Dubois D., Oberson A. (2004) Basal organic phosphorus mineralization in soils under different farming systems. Soil Biology & Biochemistry 36:667-675.
    Ognalaga M., Frossard E., Thomas F. (1994) Glucose-1-phosphate and myo-inositol hexaphosphate adsorption mechanisms on goethite. Soil Science Society of America Journal 58:332-337.
    Olsson P.A., Burleigh S.H., Aarle I.M.v. (2005) The influence of external nitrogen on carbon allocation to Glomus intraradices in monoxenic arbuscular mycorrhiza. New Phytologist 168:677-686.
    Olsson P.A., Johnson N.C. (2005) Tracking carbon from the atmosphere to the rhizosphere. Ecology Letters 8:1264-1270.
    Pearson J.N., Jakobsen I. (1993) Symbiotic exchange of carbon and phosphorus between cucumber and three arbuscular mycorrhizal fungi. New Phytologist 124:481-488.
    Peng S., Guo T., Liu G (2013) The effects of arbuscular mycorrhizal hyphal networks on soil aggregations of purple soil in southwest China. Soil Biology & Biochemistry 57:411-417.
    Pivato B., Mazurier S., Lemanceau P., Siblot S., Berta G, Mougel C., Tuinen D.v. (2007) Medicago species affect the community composition of arbuscular mycorrhizal fungi associated with roots. New Phytologist 176:197-210.
    Rambelli A. (1973) The rhizosphere of mycorrhizae, in:G L. Marks and T. T. Koslowski (Eds.), Ectomycorrhizae, Academic Press, New York, USA. pp.299-343.
    Ravnskov S., Jakobsen I. (1999) Effects of Pseudomonas fluorescens DF57 on growth and P uptake of two arbuscular mycorrhizal fungi in symbiosis with cucumber. Mycorrhiza 8:329-334.
    Reynolds H.L., Vogelsang K.M., Hartley A.E., Bever J.D., Schultz P.A. (2006) Variable responses of old-field perennials to arbuscular mycorrhizal fungi and phosphorus source. Oecologia 147:348-358.
    Richardson A.E. (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Australian Journal of Plant Physiology 28:897-906.
    Richardson A.E., Barea J.-M., McNeill A.M., Prigent-Combaret C. (2009a) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil 321:305-339.
    Richardson A.E., Hadobas P.A.,.Hayes J.E. (2000) Acid phosphomonoesterase and phytase activities of wheat (Triticum aestivum L.) roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture. Plant, Cell and Environment 23:397-405.
    Richardson A.E., Hocking P.J., Simpson R.J., George T.S. (2009b) Plant mechanisms to optimise access to soil phosphorus. Crop & Pasture Science 60:124-143.
    Richardson A.E., Lynch J.P., Ryan P.R., Delhaize E., Smith F.A., Smith S.E., Harvey P.R., Ryan M.H., Veneklaas E.J., Lambers H., Oberson A., Culvenor R.A., Simpson R.J. (2011) Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant and Soil 349:121-156.
    Richardson A.E., Simpson R.J. (2011) Soil microorganisms mediating phosphorus availability. Plant Physiology 156:989-996.
    Rillig M.C. (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Canadian Journal of Soil Science 84:355-363.
    Rillig M.C., Mardatin N.F., Leifheit E.F., Antunes P.M. (2010) Mycelium of arbuscular mycorrhizal fungi increases soil water repellency and is sufficient to maintain water-stable soil aggregates. Soil Biology & Biochemistry 42:1189-1191.
    Rillig M.C., Mummey D.L. (2006) Mycorrhizas and soil structure. New Phytologist 171:41-53.
    Rodriguez H., Fraga R. (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances 17:319-339.
    Rousk J., Baath E., Goransson H., Fransson A.-M. (2007) Assessing plant-microbial competition for 33P using uptake into phospholipids. Applied Soil Ecology 36:233-237.
    Ruiz-Lozano J.M., Azcon R. (1995) Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiologia Plantarum 95:472-478.
    Scheublin T.R., Sanders I.R., Keel C., van der Meer J.R. (2010) Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. ISME Journal 4:752-763.
    Schrey S.D., Salo V., Raudaskoski M., Hampp R., Nehls U., Tarkka M.T. (2007) Interaction with mycorrhiza helper bacterium Streptomyces sp. AcH 505 modifies organisation of actin cytoskeleton in the ectomycorrhizal fungus Amanita muscaria (fly agaric). Current Genetics 52:77-85.
    Shang C., Huang P.M., Stewart J.W.B. (1990) Kinetics of adsorption of organic and inorganic phosphates by short-range ordered precipitate of aluminum. Canadian Journal of Soil Science 70:461-470.
    Shang C., Stewart J.W.B., Huang P.M. (1992) pH effect on kinetics of adsorption of organic and inorganic phosphates by short-range ordered aluminum and iron precipitates. Geoderma 53:1-14.
    Singh B., Satyanarayana T. (2011) Microbial phytases in phosphorus acquisition and plant growth promotion. Physiology and Molecular Biology of Plants 17:93-103.
    Singh P.K., Singh M., Tripathi B.N. (2013) Glomalin:an arbuscular mycorrhizal fungal soil protein. Protoplasma 250:663-669.
    Smil V. (2000) Phosphorus in the environment:natural flows and human interferences. Annual Review of Energy and the Environment 25:53-88.
    Smith C.J., Danilowicz B.S., Clear A.K., Costello F.J., Wilson B., Meijer W.G. (2005) T-Align, a web-based tool for comparison of multiple terminal restriction fragment length polymorphism profiles. FEMS Microbiology Ecology 54:375-380.
    Smith F.A., Smith S.E. (2011) What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants? Plant and Soil 348:63-79.
    Smith S.E., Jakobsen I., Gr(?)nlund M., Smith F.A. (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition:interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology 156:1050-1057.
    Smith S.E., Read D. (2008) Mycorrhizal Symbiosis (Third Edition). Academic Press, New York.
    Smith S.E., Smith F.A., Jakobsen I. (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses:the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytologist 162:511-524.
    Soderberg K.H., Olsson P.A., Baath E. (2002) Structure and activity of the bacterial community in the rhizosphere of different plant species and the effect of arbuscular mycorrhizal colonisation. FEMS Microbiology Ecology 40:223-231.
    Sogut M.S., Gokce A., Ozturk Y., Mandaci S., Cayir E., Karasu D., Pinar O., Ozturk H.U., Ozturk N.C., Denizci A.A., Ozturk D.C. (2013) Cloning, overexpression and characterization of the Bacillus phytase encoding gene, YMNphyA, in E. coli, European Biotechnology Congress, Current Opinion in Biotechnology, Bratislava, Slovakia, pp. S95.
    Stevenson F.J. (1986) Cycles of soil carbon, nitrogen, phosphorus, sulfur, micronutrients, Wiley, New York.
    Tang J., Leung A., Leung C., Lim B.L. (2006) Hydrolysis of precipitated phytate by three distinct families of phytases. Soil Biology & Biochemistry 38:1316-1324.
    Tarafdar J.C., Marschner H. (1994) Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biology & Biochemistry 26:387-395.
    Tisdall J.M., Smith S.E., Rengasamy P. (1997) Aggregation of soil by fungal hyphae. Australian Journal of Soil Research 35:55-60.
    Tisserant E., Kohler A., Dozolme-Seddas P., Balestrini R., Benabdellah K., Colard A., D. Croll, Silva C.D., Gomez S.K., Koul R., Ferrol N., Fiorilli V., Formey D., Franken P., Helber N., Hijri M., Lanfranco L., Lindquist E., Liu Y., Malbreil M., Morin E., Poulain J., Shapiro H., Tuinen D.v., Waschke A., Azco'n-Aguilar C., Be'card G, Bonfante P., Harrison M.J., Ku'ster H., Lammers P., Paszkowski U., Requena N., Rensing S.A., Roux C., Sanders I.R., Shachar-Hill Y, Tuskan G, Young J.P.W., Gianinazzi-Pearson V., Martin F. (2012) The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytologist 193:755-769.
    Tobar R., Azcon R., Barea J.M. (1994) Improved nitrogen uptake and transport from 15N-labelled nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions. New Phytologist 126:119-122.
    Toljander J.F., Artursson V., Paul L.R., Jansson J.K., Finlay R.D. (2006) Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiology Letters 254:34-40.
    Toljander J.F., Lindahl B.D., Paul L.R., Elfstrand M., Finlay R.D. (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiology Ecology 61:295-304.
    Toussaint J.-P., St-Arnaud M., Charest C. (2004) Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system. Canadian Journal of Microbiology 50:251-260.
    Trouvelot A., Kough J.L., Gianinazzi-Pearson V. (1986) Mesure du taux de mycorhization VA d'un systeme radiculaire. Recherche de methodes d'estimation ayant une signification fonctionnelle, in:V. Gianinazzi-Pearson and S. Gianinazzi (Eds.), Physiological and Genetical Aspects of Mycorrhizae, INRA Press, Paris, pp.217-221.
    Turner B.L. (2008) Resource partitioning for soil phosphorus:a hypothesis. Journal of Ecology 96:698-702.
    Turner B.L. (2010) Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils. Applied and Environmental Microbiology 76:6485-6493.
    Turner B.L., Cade-Menun B.J., Condron L.M., Newman S. (2005) Extraction of soil organic phosphorus. Talanta 66:294-306.
    Turner B.L., Haygarth P.M. (2005) Phosphatase activity in temperate pasture soils:potential regulation of labile organic phosphorus turnover by phosphodiesterase activity. Science of the Total Environment 344:27-36.
    Vance C.P., Uhde-Stone C., Allan D.L. (2003) Phosphorus acquisition and use:critical adaptations by plants for securing a nonrenewable resource. New Phytologist 157:423-447.
    Vershinina O.A., Znamenskaya L.V. (2002) The Pho regulons of bacteria. Microbiology 71:497-511.
    Villegas J., Fortin J.A. (2001) Phosphorus solubilization and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NH4+as nitrogen source. Canadian Journal of Botany 79:865-870.
    Villegas J., Fortin J.A. (2002) Phosphorus solubilization and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NO3- as nitrogen source. Canadian Journal of Botany 80:571-576.
    Villegas J., Williams R.D., Nantais L., Archambault J., Fortin J.A. (1996) Effects of N source on pH and nutrient exchange of extramatrical mycelium in a mycorrhizal Ri T-DNA transformed root system. Mycorrhiza 6:247-251.
    Vuuren D.P.V., Bouwman A.F., Beusen A.H.W. (2010) Phosphorus demand for the 1970-2100 period:A scenario analysis of resource depletion. Global Environmental Change 20:428-439.
    Wang F., Jiang R., Kertesz M.A., Zhang F., Feng G (2013) Arbuscular mycorrhizal fungal hyphae mediating acidification can promote phytate mineralization in the hyphosphere of maize (Zea mays L.). Soil Biology & Biochemistry 65:69-74.
    Wright S.F., Upadhyaya A. (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil 198:97-107.
    Yao Q., Li X., Feng G., Christie P. (2001) Mobilization of sparingly soluble inorganic phosphates by the external mycelium of an abuscular mycorrhizal fungus. Plant and Soil 230:279-285.
    Yeates C., Gillings M.R. (1998) Rapid purification of DNA from soil for molecular biodiversity analysis. Letters in Applied Microbiology 27:49-53.
    Zhang F., Shen J., Li L., Liu X. (2004) An overview of rhizosphere processes related with plant nutrition in major cropping systems in China. Plant and Soil 260:89-99.
    Zhang L., Fan J., Ding X., He X., Zhang F., Feng G (2014) Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biology & Biochemistry 74:177-183.
    Zysko A., Sanguin H., Hayes A., Wardleworth L., Zeef L.A.H., Sim A., Paterson E., Singh B.K., Kertesz M.A. (2012) Transcriptional response of Pseudomonas aeruginosa to a phosphate-deficient Lolium perenne rhizosphere. Plant and Soil 359:25-44.
    陈磊,王盛锋,刘荣乐,汪洪.(2012)不同磷供应水平下小麦根系形态及根际过程的变化特征.植物营养与肥料学报18:324-331.
    冯海艳,冯固,王敬国,李晓林.(2003)植物磷营养状况对丛枝菌根真菌生长及代谢活性的调控.菌物系统22:589-598.
    刘旭明.(2005)固氮芽孢杆菌的分离鉴定以及固氮巨大芽孢杆菌(Bacillus megaterium) (C4在玉米、水稻、小麦上的定殖研究.中国农业大学硕士学位论文,北京.
    孙真.(2012)拉恩氏水生菌(Rahnella aquatilis) HX2在玉米根系的定殖研究.中国农业大学硕士学位论文,北京.
    鲁如坤,时正元,顾益初.(1995)土壤积累态磷研究Ⅱ.磷肥的表现积累利用率.土壤27:286-289

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700