用户名: 密码: 验证码:
基于化学诱导的油菜(Brassica napus L.)修复镉污染土壤的根际过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤重金属污染潜伏期长,危害呈慢性积累,不易被人们察觉,而且一旦污染环境,就不易从环境中去除,因此重金属常被列为人们优先考虑去除的污染物之一。土壤重金属污染的植物修复技术是广谱的原位处理技术,以其廉价、绿色、清洁等特点而备受人们的青睐。为了有效地利用植物修复技术,可以通过两条途径保证植物将重金属超量富集在地上部位。一条是广泛从自然界现有资源中筛选野生超积累植物,但超积累植物区域性分布较强、生长缓慢、周年生物量小、且移植本地时,其生态位低于本土植物,处于竞争劣势。另一条就是利用物理、化学、生物学、农艺学等技术诱导超积累植物和本地优势植物,其中化学诱导植物修复中最活跃、最有效的技术,因而越来越受到人们的广泛重视。
     目前,很多研究着重于重金属在土壤-植物体系中的归趋,而对根际微生态圈中重金属的化学行为和植物修复机理尚显薄弱。与此同时,大多数研究表明,十字花科植物对重金属有较强的富集吸收作用,且周年生物收获量大,甘蓝型油菜(Brassica napus L.)是我国主要农作物之一,其吸收重金属能力强,绝大部分分布在植物易收割移走的部位,因此具有较强的修复重金属污染能力。
     针对重庆市紫色土农地重金属污染的特点,本研究选取污染严重的Cd为代表重金属,以甘蓝型油菜为修复植物材料,通过土壤根箱试验、吸附—解吸试验、土壤盆栽试验和溶液培试验,研究了油菜根际土壤Cd的吸附—解吸过程以及根际土壤Cd的分布与形态转化特征,探讨了外源氮、螯合剂、有机酸等几类化学物质对油菜吸收Cd的诱导,为深入了解紫色土Cd的根际环境化学过程及其化学诱导修复技术提供科学依据。
     吸附—解吸试验表明,油菜根际土壤与非根际土壤之间存在着明显差异,虽然两者对Cd~(2+)的吸附量均随着加入Cd~(2+)浓度的增加而增加,但根际土对Cd~(2+)的吸附能力高于非根际土。根际和非根际土壤对Cd~(2+)的吸附等温线与Langmuir和Freundlich方程都有较好的拟合性。根际和非根际土壤Cd~(2+)最大吸附量分别为112.3 mg kg~(-1)和105.4 mg kg~(-1),相比于非根际土,根际土吸附的Cd~(2+)更难解吸,解吸率更低。
     吸附—解吸试验还表明,pH和有机酸影响土壤Cd~(2+)的吸附—解吸过程。Cd~(2+)的解吸曲线随介质pH的增加呈“S”型曲线变化,分为最大解吸阶段(pH≤2.0)、解吸率快速降低阶段(pH2.0~5.0)以及沉淀和最小解吸阶段(pH5.0~9.0)。在pH≤2.0时解吸率最大,解吸量超过80%;在pH2.0~5.0时,随着pH增加,Cd~(2+)的解吸率从85%降到18.9%左右;在pH>5.0时,Cd~(2+)的解吸率基本平稳,为沉淀和最小解吸阶段。根系分泌物有机酸种类和浓度也显著影响着土壤中Cd~(2+)的解吸行为。随着柠檬酸、醋酸、苹果酸和酒石酸的浓度从10~(-4)增加到0.1 mol L~(-1),土壤解吸的Cd~(2+)有先降低后增加的趋势。低浓度(≤10~(-3) mol L~(-1))的有机酸抑制Cd~(2+)的解吸,高浓度柠檬酸、醋酸、苹果酸(≥10~(-3) mol L~(-1))和酒石酸(≥10~(-2) mol L~(-1))等有机酸促进Cd~(2+)的解吸。当解吸液中存在0.1 mol L~(-1)的柠檬酸、醋酸、苹果酸、水杨酸的时候,土壤吸附的Cd~(2+)大部分被解吸了。在本研究中,柠檬酸或醋酸在高浓度时显著提高了Cd~(2+)的解吸,其次为水杨酸、苹果酸和酒石酸。
     根箱培养试验表明,油菜根际Cd的形态可能是因为根系分泌作用导致的DOC、Eh和pH变化而发生显著的变化。油菜生长大约40 d左右,根际交换态Cd呈现先增加后下降的趋势,碳酸盐结合态Cd呈现了相似的变化趋势,只是碳酸盐结合态Cd的变化速度较交换态Cd慢。碳酸盐结合态Cd在油菜生长35 d达到最大,55 d后开始净损失。氧化物结合态Cd在开始增加。而有机物结合态在生长初期下降。油菜富集的Cd与生物量呈正相关关系。油菜体内累积的Cd超过了土壤交换态Cd的量,显示出低生物有效性Cd向高生物有效性Cd的转变。
     土壤盆栽试验表明,不同形态的氮对油菜地上部Cd的积累有显著的影响,施用铵态氮肥可以显著提高油菜地上部Cd含量,而施用硝态氮肥则对地上部Cd含量没有明显的影响。铵态氮肥能显著降低油菜根际pH,使得油菜根际残渣态、碳酸盐态和铁锰结合态Cd强烈活化,促使这三种形态Cd向交换态转换,从而增加了Cd的生物有效性。
     溶液培养试验表明,添加EDDS和EDTA后,油菜对培养液中重金属Cd的吸收和转运的影响。EDDS和EDTA存在下油菜根系Cd含量减少,地上部Cd含量与对照相比显著增加。EDDS和EDTA能增强油菜Cd从根系到地上部的转运,EDTA对Cd向油菜地上部转运的能力显著大于EDDS。这与EDTA可显著增强木质部液Cd浓度有关。
     外源有机酸可活化土壤Cd,强化植物修复效果,活化能力与有机酸类型有关。对Cd活化能力的强弱顺序为:柠檬酸>胡敏酸>草酸>苹果酸>富里酸>酒石酸>水杨酸>水。与对照相比,柠檬酸和胡敏酸对油菜地上部Cd含量有一定的促进作用,也增加了油菜地上部Cd含量。
     本文仅从根际过程及其化学诱导等方面探索了土壤重金属植物修复技术,但应用过程的实际修复效率受到诸多因素的影响,如以重金属为代表的有机—无机复合污染、根际有机污染物的非生物氧化过程、根际微生物群落结构变化、化学诱导的土壤和地下水的环境风险等,有待今后进一步的研究。
Soil heavy metal contamination impacts have long incubation period and hardly were discerned at the early stage due to slow toxic accumulation process.It is however difficult to be removed once environment receives contamination.How to remove pollutants from the habitat or render them harmless hence has been the priority in environment contamination clean-up research field. Phytoremediation,which acts as a potential strategy to remediate contaminated soils in the use of plants to remove pollutants,is now becoming an established technology for environmental clean up and protection,and increasing acquires concern due to its cheap,green and clean.In general,there are currently two means to employ Phytoremediation.One is to screen wild hyperaccumulation plants from available natural resources,which rather often gets some problems like the hyperaccumulation plants slow growth,small harvests and weak competition to native plants. Another is to utilize physical,chemical,biological,agronomical technologies to induce hyperaccumulation and native dominant plants.Among of these technologies,chemical induction as its distinctive advantages has got wide application.
     Currently,most researches focus on the fate of heavy metal under soil-plant ecology system, and heavy metal chemical behavior of Rhizosphere eco-system as well as Phytoremediation process are nonetheless rarely covered.Meanwhile many researches have showed that cruciferous vegetables are of strong heavy metal accumulation sorption and also liable for good annual harvest.Brassica napus L.as one of chinese main crops and cruciferous vegetables,mostly distributed in plants cutting parts can provide strong pollutants remediation.
     Chongqing agricultural land purple soils for many years have got heavy metal contamination and the cadmium(Cd) contamination is typically serious.In this study,Cd was chosen as heavy metal representative and Brassica napus L.was adopted as Phytoremediation material.Rhizobox cultivation,sorption-desorption behavior examination,soil plot planting and nutrient solution experiments were employed to investigate the sorption-desorption process of Cd in the Rhizosphere soil of rape and its distribution as well as forms transformation.The inductions of elevated nitrogen, chelating agents,organic acid and other chemical constitutes on rape sorption of Cd were also given detailed discussion.
     The main results were described as follows:
     Sorption-desorption behavior of Cd~(2+) in the Rhizosphere and bulk soil of rape was studied by the batch method.The results indicated that there were obvious difference between sorption capacity of Rhizosphere soil and that of bulk soil although both sorption capacities increased with the Cd~(2+) concentration growth.The sorption capacity of Rhizosphere soil to Cd~(2+) was higher than that of bulk soil.Isothermal curves of Cd~(2+) sorption by Rhizosphere and bulk soil fitted Langmuir,Freundlich equations well.The biggest sorption capacity of Rhizosphere soil and bulk soil to Cd~(2+) was 112.3 mg kg~(-1),105.4 mg kg~(-1) respectively.Compared with bulk soil,the desorption of Rhizosphere soil to Cd~(2+) was more difficult.
     The results also showed that pH and organic acid prohibited sorption-desorption of soil Cd~(2+).With the growth of pH,the desorption of Cd~(2+) exhibited S curve,which consisted of biggest desorption phase(pH≤2.0),desorption rapid decrease phase(pH2.0~5.0) and precipitation & least desorption phase(pH5.0~9.0).Desorption of Cd~(2+) reached peak at pH≤2.0(Desorption capacity surpassed 80%) and it decreased sharply from nearly 90.0%to 20.0%within pH 2.0~5.0 in acidic purple soils,and then decrease diminished at pH>5.0.Meanwhile the results found that the types and concentration of root exudates organic acids also affected the sorption-desorption behavior of soil Cd~(2+).With the concentrations of citric acid,salicylic acid,acetic acid increased from 10~(-4) to 0.1 mol L~(-1),desorption of soil Cd~(2+) showed U curve trend.Organic acid at relatively low concentrations (≤10~(-3) mol L~(-1)) slightly inhibited Cd~(2+) desorption,but enhanced Cd~(2+) desorption at higher concentrations with citric acid,salicylic acid,acetic acid(≥10~(-3) mol L~(-1)) and tartaric acid(≥10~(-2) mol L~(-1)).Citric acid,salicylic at higher concentrations(≥10~(-1) mol L~(-1) had the greatest improvement of Cd~(2+) desorption,followed by malic acid,acetic acid and the smallest was tartaric acid.
     Chemical forms of cadmium in the Rhizosphere and bulk soil of Brassica napus L.were investigated using rhizobox cultivation.The results showed that the continuous changes in cadmium fraction within the Brassica napus L.Rhizosphere might derive from DOC,Eh and pH variance.The amount of exchangeable cadmium increased before dropping below the initial level after 40 days or so.Carbonate associated cadmium followed a similar trend of change,but with a slower pace than the exchangeable cadmium.The increase in carbonate-associated cadmium reached the top,but with the net loss occurring after 55 days.There were also initial increase in oxide bound cadmium as well as decrease in the organic matter associated cadmium.The accumulation of cadmium in the Brassica napus L.was found to be positive correlation with biomass.The amount of accumulated cadmium absorbed in the plant material exceeded the initial quantity of the exchangeable cadmium in the soil, revealing a transformation from less bioavailable to more bioavailable fractions.During cultivation, decreases in redox potential and increase in pH,dissolved organic carbon(DOC),in Brassica napus L.Rhizosphere were observed.The change in cadmium speciation may result from root-induced change in DOC,redox potential in the Rhizosphere.
     Soil plot planting results showed that the N form has a deep impact on the Cd in shoots of Brassica napus L..The ammonium-fed oilseed Brassica napus L.could significantly increase the content of Cd in shoots.However,the nitrate-fed oilseed Brassica napus L.could not increase the content of Cd in shoots of oilseed Brassica napus L.The rhizophere pH was significantly decreased with ammonium-based fertilizers.This changed the form of Cadmium bound to iron and manganese, cadmium bound to carbonates and Cd residual to exchange Cd.It enhanced the bioavaility of Cadmium.
     Nutrient solution experiments investigated the influence of the EDDS and EDTA on uptake and transport of Cd by Brassica napus L..The results showed that Cd were decreased in roots and increased significantly in shoots in the presence of EDDS and EDTA.The transportation of Cd from roots to shoots was enhanced in the presence of EDDS and EDTA and the results of Cd transportation indicated that EDTA was more effective than EDDS.It might be related to the fact that the concentration of Cd can be enhanced by EDTA via the xylem.
     Nutrient solution experiments also found that organic acids could mobilize soil Cd,the sequences of mobilizing ability of organic acids were followed,citric acid>humic acid>oxalic acid>malic acid>fulvic acid>tartaric acid>salicylic acid>water.Compared with control,citric acid and humic acid both contributed to Cd content increase in shoot.
     In this dissertation,the author investigated Rhizosphere processes and mechanism involved in hytoremedition of cadmium contaminated purple soil.In addition,the results can provide scientific support for better understanding the chemical behavior of heavy metals in the hytoremedition. However,Soil contamination remediations involve many other complex factors,like organic and inorganic compound contamination,Rhizosphere organic pollutants abiotic oxidation,Rhizosphere microbial communities change,chemical induced soil and underwater risk,still further work should be employed in future research.
引文
[1]陈怀满.植物系统中的重金属污染.北京:科学出版社,1996.
    [2]王济,王世杰,欧阳自远.贵阳市表层土壤中镉的环境地球化学基线研究.环境科学,2007,28(6):1345-1347.
    [3]Pence N S,Larsen P B,Ebbs S D.The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator.Proceedings of the National.Academy of Science,2000,97:4956-4960.
    [4]方晰,田大伦,康文星.湘潭锰矿矿渣废弃地植被修复盆栽试验.中南林业科技大学学报(自然科学版),2007,27(2):14-20.
    [5]孙永强,李富平,崔少东.应用生物修复技术治理矿区生态环境.矿业快报,2006,441(3):39-42.
    [6]张志远.植被修复是水保生态建设的有效途径.科技情报开发与经济,2006,16(1):9-15.
    [7]孙波,骆永明.超积累植物吸收重金属机理的研究进展.土壤,1999,3:113-119.
    [8]李廷强,朱恩,杨肖娥,等.超积累植物东南景天根际土壤酶活性研究.水土保持学报,2007,21(3):112-117.
    [9]彭少麟.中国亚热带地区的植被修复及其在缓和碳循环压力中的重要性.首届北京生态建设国际论坛.2005:179-188.
    [10]Tessier A,Campbell P G C,Bisson M.Sequential extraction procedure for the speciation of particulate trace metals.Analytical Chemistry.1979,51(7),844-850.
    [11]Isabel Cacadora,Carlos Valeb and Fernando Catarinoa.Accumulation of Zn,Pb,Cu,Cr and Ni in sediments between roots of the Tagus Estuany salt marshes,Portugal.Estuarine,Coastal and Shelf Science,1996,42:393-403.
    [12]林琦,郑春荣,陈怀满.根际环境中镉的形态转化.土壤学报,1998,35(4):461-467.
    [13]Chen N-C,Chen H-M.Chemical behavior of cadmium in wheat rhizosphere.Pedosphere J Plant Nutr,1987,10:1185-1195.
    [14]Mench M.Metal binding properties of high molecular weight soluble exudates from maize roots.Biol Ferti Soils,1987,3:165-169
    [15]Mench M.Metal binding with root exudates of low molecular weght.Journal of Soil Science,1988,39:527-527.
    [16]刘本同,王志明.矿山边坡植被森林化恢复目标和方法探讨——以浙江矿山边坡植被修复为例.浙江林业科技,2005,25(4):45-47.
    [17]Janert P,Schumacher T E,Boe A,et al.Rhizosphere acidification and cadmium uptake by strawberry clover.Journal of Environmental Quality,2002,31:627-633.
    [18]Loosemore N,Straezek A,Hinsinger P,et al.Zinc mobilization from a contaminated soil by three genotypes of tobacco as affected by soil and rhizosphere pH.Plant and soil,2004,260(1/2):19-32.
    [19]Silber A,Ben Yones L,Dori I.Rhizosphere pH as a result of nitrogen levels and NH_4~+/NO_3~-ratio and its effect on zinc availability and on growth of rice flower(Ozothamnus diosmifolius).Plant and Soil,2004,262:205-213.
    [20]Pinel F,Leclere-Cessac E,Staunton S.Relative contributions of soil chemistry,plant physiology and rhizosphere induced changes in speciation on Ni accumulation in plant shoots.Plant and Soil,2003,255:619-629.
    [21]张磊,宋凤斌,崔良,等.根际效应下镉在土壤中的吸附与解吸.农业环境科学学报,2007,26(4):1427-1431.
    [22]Wang X L,Xu J M,Xie Z M.Effect of heavy metal contamination on soil biological indicators of environmental quality.Journal of Zhejiang University(Agric Life Sci).2002,28(2):190-194.
    [23]陈立新,宋志韬,纪查.红松人工林腐殖质组成及其结合形态研究.中国水土保持学报,2007,5(3):39-44.
    [24]Hinsinger P.How do plant roots acquire mineral nutrients Chemical process in the rhizosphere.Adv.Agron,1998,24,225-265.
    [25]Hinsinger P.Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes:a review.Plant and Soil.2001,237:173-195.
    [26]Marschner H.Mineral Nutrition of Higher Plants.Academic Press,London,UK(1995),pp.313-396.
    [27]Hinsinger P.Bioavailability of trace elements as related to root-induced chemical changes in the rhizosphere.In Trace Elements in the Rhizosphere.Eds.G R Gobran,W W Wenzel and E Lombi.2001,pp 25-41.CRC Press LCC,Boca Raton,FL.
    [28].Marschner,R(o|¨)mheld.Strategies of plants for acquisition of iron.Plant & Soil,1994,165:261-274.
    [29]张小冰.根系分泌物及其作用.生物学教学,2004,29(11):6-7..
    [30]魏复盛,陈静生,吴燕玉,等.中国土壤背景值研究.环境科学,1991,12(4):12-19.
    [31]许嘉林,杨居荣.陆地生态系统中的重金属.北京:中国环境科学出版社,995.24-36.
    [32]董克虞,杨春惠,林春野.北京市污水农业利用区划的研究.北京:中国环境科学出版社,1994,51-125.
    [33]王英利,姜雅文.马家沟污灌区农作物受Pb,Cd,As污染概况与讨论.齐齐哈尔师范学院学报(自然科学版),1990,10(3):36-40.
    [34]赵丽芳,黄鹏武,张作选,等.乐清市菜地土壤养分及重金属污染状况调查研究.浙江农业科学,2001,(3):124-126.
    [35]陈玉成,赵中金,孙彭寿,等.重庆市土壤—蔬菜系统中重金属的分布特征及其化学调控研究.农业环境科学学报,2003,22(1):44-47.
    [36]陈同斌.中国可持续发展信息网,2003年10月16日.
    [37]李海华,刘建武,李树人,等.土壤—植物系统中重金属污染及作物富集研究进展.河南农业大学学报,2000,34(1):30-34.
    [38]Haritonidis,S.,Malea,P.Bioaccumulation of metals by the green alga in Ulva.rigida from Thermaikos Gulf,Greece.Environ.Pollut.1999,104,365-372.
    [39]王新,吴燕玉.重金属在土壤一水稻系统中的行为特性.生态学杂志.1997,16(4):10-14.
    [40]Zhu L,Ren X,Yu S.Use of cetyltrimethylammonium bromide-bentonite to remove organic contaminants of varying polar character from water,Environmental Science Technology,1998,32:3374-3378.
    [41]Qian J H,Zayed A,Zhu Y L.Phytoaccumulation of trace elements by wetland plants:Uptake and accumulation of ten trace elements by twelve plant species.J.Environ.Qual.,1999,28:1448-1455.
    [42]鲁如坤,熊札明,时正元.关于土壤一作物生态系统中镉的研究.土壤,1992,24(3):129-137.
    [43]孙凡,钟章成.重庆缙云四川太头茶长绿阔叶林重金属元素的累积与生物循环.中国环境科学,1998,18(2):111-116.
    [44]Cambrell R.P.Trace and Toxic Metals in Wetland:A Review.Journal of Environment Quality,1994.
    [45]王建林,刘芷宇.水稻根际中铁的形态转化.土壤学报,1992,29(4):358-363.
    [46]徐卫红,熊治廷,王宏信.超蓄集植物根际效应及其重金属吸收机理研究进展.见:段昌群.生态科学进展(第一卷).北京:高等教育出版社,2004,355-370.
    [47]李宗利,薛澄泽.污灌土壤中Pb,Cd形态的研究.农业环境保护,1994,13(4):152-157.
    [48]Nigam R,Srivastava S,Prakash S,,et al.Cadmium mobilization and plant availability the impact of organic acids commonly exudated from roots.Plant and Soil,2001,230:107-113.
    [49]Shuman L M,Dudka S,Das K.Cadmium forms and plant availability in compost-amended soil.Communications.Soil Science and Plant Analysis,2002,33(516):737-748.
    [50]杨肖娥,龙新宪,倪吾钟.超级累植物吸收重金属的生理及分子机制.植物营养与肥料学报,2002,8(1):8-15.
    [51]Papassiopi N,Tambouris S,Kontopoulos A.Removal of heavy metals from calcareous contaminated soils by EDTA leaching.Water Air and Soil Pollution,1999,109(1):1-18.
    [52]史锟,徐虹,田艳芬.酸和有机质对土壤镉影响的研究.垦殖与稻作,2003,2:30-33.
    [53]Darrah P R.The rhizosphere and plant nutrition:a quantitative appoach.Plant and Soil,1993,155/156:1-20.
    [54]Haynes R J.Active ion uptake and maintenance of cationanion balance:a critical examination of their role in regulating rhizosphere pH.Plant and Soil,1990,126,247-264.
    [55]Nye P H.Changes of pH across the rhizosphere induced by roots.Plant and Soil,1981,61:7-26.
    [56]Muranyi A,Seeling B,Ladewig E and Jungk.A Acidification in the rhizosphere of rape seedlings and in bulk soil by nitrification and ammonium uptake.Z.Pflanzenern(a|¨)hrung Bodenkunde,1994,157:61-65.
    [57]Tichy R J,Fajtl S,Kuzel,et al.Use of elemental sulfur to enhance a cadmium solubilization and its vegetative removal from containated.soil.Nutr.Cycl.Agroecosyst.1997,46:249-255.
    [58]Xian X F.Gholamhoss In Shokohifard.Effect of pH on chemical forms and plant availability of cadmium,zinc,and lead in polluted soils.Water,Air,& Soil Pollut.,1989,45:256-273.
    [59]Eriksson J E.The influence of pH soil type and time on adsorption and uptake by plants of Cd added to the soil.Water Air Soil Pollut,1989,48:317-335.
    [60]Masscheleyn P H,Dlaune R D,Patrick W H.Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil.Environ Sci Technol.1991,25:1414-1418.
    [61]郑绍建.土壤-植物系统中镉的环境化学行为及其控制[博士学位论文].南京:南京农业大学,1991.
    [62]夏增禄.中国土壤环境容量研究.气象出版社,1986.
    [63]Soon Y K.Solibity and sorption of cadmium in soils amended with sewage sludge.Journal Soil Science,1981,32:85-95.
    [64]杨仁斌,曾清如,周细红.植物根系分泌物对铅锌尾矿污染土壤中重金属的活化效应.农业环境保护,2000,19(3):152-155.
    [65]R(o|¨)mkens P F A M,Bouwman L A,Boon G T.Effect of plant growth on copper solubility and speciation in soil solution samples.Environ Pollut.,1999,106(2):315-321.
    [66]Kirk G J D,Bajita J B.Root induced iron oxidation,pH changes and zinc solubilization in the rhizosphere of lowland rice.New Phytol,1995,131(1):129-137.
    [67]Shuman L M,Wang J.Effect of rice variety on zinc,cadmium,iron,and Manganese content in rhizosphere and non-rhizosphere soil fractions.Communications in soil science and plant analysis,1997,28:23-36
    [68]Mench M J,Fargues S.Metal uptake by iron-efficient and inefficent oats.Plant and Soil,1994,165(2):227-233.
    [69]Xian X F.Effect of chemical forms of cadmium,zinc and lead in polluted soils on their uptake.Plant and Soil,1989,113:257-264.
    [70]廖敏.pH对Cd在土水系统中的迁移和形态的影响.环境科学学报,1999,19(1):81-86.
    [71]顾宗涤,谢思琴,吴留松.土壤中铜、砷、铅的微生物效应及其临界值.土壤学报.1987, 24(4):318-324.
    [72]Trolldenier G.Visualisation of oxidizing power of rice roots and possible participation of bacteria in iron deposition.Zeitschrift fuer Pflanzenemaehrung und Bodenkunde,1988,151(2):117-121.
    [73]Gambrell R P.The effects of pH,redox and salinity on metal release from a contaminated sediment.Water Air Pollut.,1991,57:359-367.
    [74]Bingham F T,Garrison S,Strong J E.The effect of sulfate on the availability of cadmium.Soil Science.1986,141:172-177.
    [75]沈阿林,李学坦,吴受容.土壤中的分子有机酸在物质循环中的作用.植物营养与肥料学报,1997,3(4):363-370.
    [76]李洪军.有机酸对土壤中铜镉活性及其植物效应的影响[硕士学位论文].保定:河北农业大学,2003.
    [77]谢晓梅,翁棣.有机酸对红壤等温吸附镉的影响.浙江大学学报,2003,29(2):210-214.
    [78]黄艺,李婷,费颖恒.外生菌根真菌对油松幼苗根际土壤重金属赋存的影响.生态与农村环境学报,2007,23(3):70-76.
    [79]林琦,陈英旭,陈怀满,等.根系分泌物与重金属的化学行为研究.植物营养与肥料学.2003,9(4):425-431.
    [80]Stanhope K G,Young S D,Hutchinson J J.Use of isotopic dilution techniques to assess the mobilization of nonlabile Cd by chelating agents in phytoremediation.Environ Sci Tech.,2000,19(3):152-155.
    [81]谢修鸿,付保荣,李法云.低分子有机酸和镉对小麦幼苗生化作用及生长的影响.辽宁大学学报,2003,30(3):270-274.
    [82]陈英旭,林琦,陆方.有机酸对铅、镉植株危害的解毒作用研究.环境科学学报,2000,20(4):467-472.
    [83]Bingham F T,Garrison S,Strong J E.The effect of chloride on the availability of cadmium.Journal of Environmental Quality,1984,13:71-74.
    [84]Sparrow L A,Saladini A A,Jonstone J.Field studies of Cd in potatoes(Solanum tuberosum L.):Ⅲ.Response of cv.Russet Burbank to sources of banded potassium.Australian Journal of Agricultural Research,1994,45:243-249.
    [85]LI Y-M,Chancy R L,SCHNEITER A A.Effect of soil chloride level on cadmium concentration in sunflower kernels.Plant and Soil,1994,167:275-280.
    [86]NORVELL W A,WU J,HOPKINS D G,et al.Association of cadmium in durum wheat grain with soil chloride and chelate-extractable soil cadmium.Soil Science Society of America Journal,2000,64:2162-2168.
    [87]Ebbs S D,Lasat M M,Brady D J,et al.Phytoextraction of cadmium and zinc from a contaminated soil.Journal of Environmental Quality,1997,26(5):1424-1430.
    [88]Lynch J M,Whipps J M.Substrate flow in the rhizosphere.Plant and Soil.1990,129:1-10.
    [89]Krishnamurti G S R,Huang P M,Van Rees K C J.Studies on soil rhizosphere:speciaton and availability of Cd.Chemical Speciation and Bioavailability,1996,8(1-2):23-28.
    [90]Lorenz S E,Hamon R E,Holm P E,et al.Cadmium and zinc in plants and soil solutions from contaminated soils.Plant and Soil,1997,189(1):21-31.
    [91]Cieslinski G.K,C J.Van Rees,A MSzmigielska.Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation.Plant and Soil.1998,203(1):109-117.
    [92]郜红建,蒋新,常江,等.根分泌物在污染土壤生物修复中的作用.生态学杂志.2004,23(4):135-139.
    [93]林琦,陈怀满.根际环境中铅的形态转化.应用生态学报.2002,13(9):1145-1149.
    [94]White M C,Chaney R L,Decker A M.Metal complexation in xylem fluid.Ⅲ Electrophoretic evidence.Plant Physiol.1981,67,311-315.
    [95]Senden M H M N,Wolterbeek H T.Effect of citric acid on the transport of cadmium through Xylem vessels of excised tomato stem-leaf systems.Acta Bio.Neet,1990,39,297-303.
    [96]Jones D L,Darrah P R,Kochian V L.Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake.Plant and Soil,1996,180:57-66.
    [97]吴启堂.根系分泌物对镉生物有效性的影响.土壤,1993,25(5):257-259.
    [98]Morel J L,Mench M,Guckert A.Measurement of Pb~(2+),Cu~(2+) and Cd~(2+) binding with mucilage exudates from maize(Zea mays L)roots.Biology and Fertility of Soils.1986,2:29-34.
    [99]苏德纯,黄焕忠,张福锁.印度芥菜对土壤中难溶态镉、铅的吸收差异.土壤与环境,2002,11(2),125-128.
    [100]施卫明.根系分泌物与养分有效性.土壤,1993,25(5):252-256.
    [101]李光林,魏世强,青长乐.镉在腐殖酸上的吸附与解吸特性研究.农业环境科学学报,2003,22(1):34-37.
    [102]余贵芬,蒋新,和文样.腐殖酸对红壤中铅镉赋存存形态及活性的影响.环境科学学报,2002,22(4):508-513.
    [103]周东美,郑春荣,陈怀满.镉与柠檬酸,EDTA在几种典型土壤中交互作用的研究.土壤学报,2002,39(1):29-35.
    [104]Hansen AM,Leckie J O,Mandelli E F,et al.Study of copper(Ⅱ) association with dissolved organic matter in surface waters of three Mexican coastal lagoons.Environ Sci Tech.,1990,24(5): 683-688.
    [105]Kumar P B A N,Dushenkov V,Motto H.,et al.Phytoextraction:The use of plants to remove heavy metals from soils.Environ Sci.Technol.1995,29(5):1232-1238.
    [106]Blaylock M J,Salt D E,Dushenkov S.,et al.Enhanced accumulation of lead in Indian Mustard by soil-applied chelating agents.Environmental science & technology.1997,31:860-865.
    [107]蒋先军,骆永明,赵其国.镉污染土壤植物修复的EDTA调控机理.土壤学报,2003,40(2):205-209.
    [108]张敬锁,李花粉,衣纯真.有机酸对活化土壤中镉和小麦吸收镉的影响.土壤学报,1999,36(1):61-66.
    [109]李玉红,宗良纲,黄耀.螯合剂在污染土壤植物修复中的应用.土壤与环境.2002,11(3):303-306.
    [110]李玉红.外源有机酸对土壤中重金属(Pb、Cd)形态及植物有效性影响的研究[博士学位论文].南京:南京农业大学,2003.
    [111]Stanhope K G,Young S D,Hutchinson J J,et al.Use of Isotopic dilution techniques to assess the mobilization of nonlabile Cd by chelating agents in phytoremediation.Environmental Science &Technology,2000,34:4123-4127
    [112]王晶,张旭东,李彬.腐殖酸对土壤中Cd形态的影响及利用研究.土壤通报,2002,33(3):185-187.
    [113]余贵芬,蒋新,吴泓涛.镉铅在粘土上的吸附及受腐殖酸的影响.环境科学,2002,23(5):109-112.
    [114]黄现民,史衍玺,王玉军.污泥中重金属在棕壤和褐土上的淋洗特性的研究.农业环境保护,2002,21(1):19-22.
    [115]吴龙华,骆永明,张海波.有机络合强化植物修复的环境风险研究(Ⅱ)不同质地对EDTA淋溶土壤中重金属的动态作用.土壤,2001,33(4):190-196.
    [116]余贵芬,青长乐,牟树森.腐殖酸结合汞的研究现状.农业环境保护,2000,19(4):255-257.
    [117]林琦,陈英旭,陈怀满.有机酸对Pb、Cd的土壤化学行为和植株效应的影响.应用生态学报,2001,12(4):619-622.
    [118]王宏镔,王焕校,文传浩,等.镉处理下不同小麦品种几种解毒机制探讨.环境科学学报.2002,22(4):523-523.
    [119]陈愚,任久长,蔡晓明.镉对沉水植物硝酸还原酶和超氧化物歧化酶活性的影响.环境科学学报,1998,18(5):313-317.
    [120]廖敏,黄昌勇.镉在有机酸存在时对红壤中微生物生物量的影响.应用生态学报,2002,13(3):300-302.
    [121]廖敏,黄昌勇.黑麦草生长过程中有机酸对镉毒性的影响.应用生态学报,2002,13(1): 109-112.
    [122]廖敏.施加石灰降低不同母质土壤中镉毒性机理研究.农业环境保护,1998,(3):101-103.
    [123]Oliver D P,Tiller K G,Alston A M.Effects of soil pH and applied cadmium concentration in wheat grain.Australian.Journal of Soil Research,1998,36(4):571-583.
    [124]Emst W H O.Bioavailability of heavy metals and decontamination of soil by plants.Applied Geochemistry,1996,11:163-167.
    [125]Zhu D,Schwab A P,Banks M K.Heavy metal leaching from mine tailings as affected by plant.Environ.Qual.,1999,28:1727-1732.
    [126]Wu L H,Luo Y M,Lu R H,et al.The amendment research of copper contamined soil by organic methed 11.the organic activation effect of the copper in the soil besides the roots.Acto Pedologica Sinica.,2000,3(2):67-70.
    [127]Huang J W,Chen J J,Berti W R,et al.Phytoremediation of lead-contaminated soil:role of synthetic chelates in lead phytoextraction.Environ Sci Technol.,1997,31:800-805.
    [128]Luo Y M.Proceedings of Extended Abstracts of 5th International Conference on the Biogeochemistry of Trace Elements.1999,2:882-884.
    [129]Anderson C W N,Brooks R R,Stewart R B,et al.Harvesting a crop of gold in plants.Nature,1998,395:553-554.
    [130]Salt D E,Blaylock M,Kumar N P B A,et al.Phytoremediation:A novel strategy for removal of toxic metals from the environmentusingplants.Biol Technol.,1995,13:468-478.
    [131]Chaney R L,Li Y M,Brown S L.Improving metal hyperaccumulator wild plants to develop commercial systems:appoaches and progress.In:Terry N,Batluelos G(eds.),Phytortmediation of Contaminated Soil and Water.CRC Press LLC.Florida.1999,129-157.
    [132]Wang D Y.Effects of humic acid on transport and transformation of mercury in a soil-plant system.Water soil pollute,1997,95(4):35-43.
    [133]陈同斌,陈志军.水溶性有机质对土壤中镉吸收行为的影响.应用生态学报,2002,13(2):183-186.
    [134]Stevenson F J.Nature of divalent transition metal complexes of humic acid as revealed by a modified potentiometric titration method.Soil Sci.,1977,123(1):10-17.
    [135]Li Z B,Shuman L M.Mobility of Zn,Cd and Pb in soils as affected by poultry litter extract Ⅱ.Redistribution among soil factions.Environ Pollute,1997,95(2):227-234.
    [136]Horiguchi T.Mechanism of manganese toxicity and tolerance of plants Ⅱ Deposition of oxidized manganese in plant tissues.Soil Science and Plant Nutrition,1987,33(4):595-606.
    [137]王建林,刘芷宇.重金属在根际中的化学行为Ⅱ.土壤中吸附态铜解吸的根际效应.应用生态学报,1999,1(4):338-343.
    [138]Wang Tiangen,Peverly John H.Iron oxidation states on root surfaces of a wetland plant (Phragmites australis).Soil Science Society of America Journal,1999,63(1):247-252.
    [139]马义兵,鄢来斌,张福锁.根际土壤化学研究进展.土壤,1993,25(5):231-233.
    [140]高太忠,李景印.土壤重金属污染研究与治理现状.土壤与环境,1999,8(2):137-140.
    [141]熊礼明,鲁如坤.镉在水稻体内的分布及其影响因素.土壤,1992,24(3):138-145.
    [142]徐星凯,陈新.有机物料对滨海盐渍土重金属根际效应的影响Ⅰ.土壤内源Zn形态分布.应用生态学报,1998,9(3):247-253.
    [143]夏汉平.土壤—植物系统中的镉研究进展.应用与环境生物学报,1997,3(3):289-298.
    [144]陈玉成,青长乐,蒲富永,等.高背景区中无公害蔬菜的降污生产技术体系.农业环境与发展,2000,17:57-61.
    [145]苏年华,张金彪.福建省土壤重金属污染及其评价.福建农业大学学报.1997,23(4):434-439.
    [146]郭笃发.环境中铅和镉的来源及其对人和动物的危害.环境科学进展.1994,2(3):71-76.
    [147]王激清,张宝悦,苏德纯.修复镉污染土壤的油菜品种的筛选及吸收累积特征研究—高积累镉油菜品种的筛选.河北北方学院学报(自然科学版),2005,21(1):58-61.
    [148]熊毅.土壤胶体(第二册),北京:科学出版社,1985.
    [149]Uren,N.C,Reisenauer H.M.The role of root exudates in nutrient acquisition.Advances in plant nutrition.1988,3:79-114.
    [150]施卫明,刘芷宇.土壤中铁的根际效应及其吸收机理.植物生理学通讯.1990,2:1-7.
    [151]Wu Z H,Gu Z M,Wang X Y,et al.Effects of organic acids on adsorption of lead onto montmorillonite,goethite and humic acid.Environ.Pollut.,2003,121:469-475.
    [152]Reddy,C.N,Patrick,W.H.J.Effect of redox potential and pH on the uptake of cadmium and lead by rice plants.J.Environ.Qual.1977,6,259-262.
    [153]徐仁扣,肖双成,李九玉.低分子量有机酸对两种可变电荷土壤吸附铜的影响.农业环境科学学报,2004,23(2):304-307.
    [154]Krishnamurti G.S.R.,Cieslinski G,Huang P.M,et al.Kinetics of Cadmium Release from Soils as Influenced by Organic Acids:Implication in Cadmium Availability.Journal of Environmental Quality,1997,26:271-277.
    [155]Chino M,Goto S,Youssef R,et al.Behaviour of mieronutrients in the rhizosphere.1999,Proceedings of Extended Abstracts of 5th International Conference on the Biogeochemistry of Trace Elements,Vienna,Austria,180-181.
    [156]McGraph,Shen Z G,Zhao F J.Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils.Plant Soil,1997,188.153-159.
    [157]Zoysa A K N,Loganathan P,Hedley M J.A technique for studying rhizosphere processes in tree crops:soil phosphorus depiction around camellia(Camellia japonica L.)roots.Plant Soil.1997,190:253-256.
    [158]Godo G H,Reisenauer H M.Plant Effects on Soil Manganese Availability.Soil Science Society of America Journal.1980,44:993-995.
    [159]Whitney M,Cameron F K.The chemistry of soils as related to soil production.Soil Bulletin.2003,22,USDA Bureau of Soils,Washington.
    [160]Ye Y,Tam N F Y,Wong YS,et al.Growth and physiological responses of two mangrove species (Bruguiera gymnorrhiza and Kandelia candel)to waterlogging.Environ.Exp.Bot.2003,49:209-221.
    [161]Kasawneh F E.Solution iron activity and plant growth..Soil Sci.Soc.Am.Proc.1971,35:426-436.
    [162]Cabrera M,Nghiem Y,Miller J H.A second mutator locus in Escherichia coli that generates G:C→T:A transversions.J.Bacteriol.1988.170:5405-5407.
    [163]Marschner H,R(o|¨)mheld V.Root-induced changes in the availability of micronutrients in the rhizosphere.Plant Roots,The Hidden Half,2ed,Marcel Dekker,NY,1996.
    [164]Philippe H.Bioavailability of trace elements as related to root-induced chemical changes in the rhizosphere.Proceedings of Extended.Abstracts of 5th International Conference on the Biogeochemistry of Trace Elements,Vienna,Austria,1999,152-153.
    [165]Grzebisz W,Kocialkowski W Z,Chudzinski B.Copper geochemistry and availability in cultivated soils contaminated by a copper smelter.Journal of Geochemical Exploration.1997,58:301-307.
    [166]刘云惠,魏显有.土壤中铅镉的化学形态和有效态的提取与分离研究.河北农业大学学报.1998,21(4):44-47.
    [167]陈怀满,郑春荣.关于土壤环境容量研究的商榷.土壤学报.1992,29(2):219-225.
    [168]McBride,M.B.Environmental Chemistry of Soils.Oxford University Press,Inc.,New York.1999,Pp363.
    [169]Linehan,D.J.,Sinclair,A.H.,Mitchell,M.C.Mobilization of Cu,Mn and Zn in the soil solution of barley rhizospheres.Plant and Soil,1985,86:147-149.
    [170]涂从.土壤镍各形态的生物可利用性研究.环境科学学报.1997,17(2):179-186.
    [171]蒋廷惠,胡霭堂,秦怀英.土壤锌、铜、铁、锰形态区分方法的选择.环境科学学报,1990,10(3):280-286.
    [172]韩凤祥,胡霭堂,秦怀英.不同土壤环境中镉的形态分配及活性研究.环境化学,1990,9(1):49-53.
    [173]Fenn L B,Assadian N.Can rhizosphere chemical changes enhance heavy metal absorption by plants growing in calcareous soil.Proceedings of Extended Abstracts of 5th International Conference on the Biogeochemistry of Trace Elements,Vienna,Austria,154-155.
    [174]Zemberyová M,Barteková J,Hagarová I.The utilization of Modified BCR three-step sequential extraction procedure for the fractionation of Cd,Cr,Cu,Ni,Pb and Zn in soil reference materials of various origin.TALANTA 70,(2006),973-978.
    [175]Sparks DL.Ion activities:an historical and theoretical overview.Soil Science Society of America Journal.1983,48:514-518.
    [176]王凯荣,龚惠群,王久荣.栽培植物的耐镉性与镉污染土壤的农业利用.农业环境保护,2000,19(4):196-199.
    [177]Hamon R E,Lorenz S E,Holm P E.,et al.Changes in trace metal species and other components of the rhizosphere during growth of radish.Cell and Environ.1995,18:749-756
    [178]王激清,刘波,苏德纯.超积累镉油菜品种的筛选.河北农业大学学报.2003,26(1):13-16.
    [179]徐明岗,张青,曾希柏.改良剂对黄泥土镉锌复合污染修复效应与机理研究.环境科学,2007(28):1361-1366.
    [180]Tu C,Zheng C R,Chen H M.Effect of applying chemical fertilizers on forms of lead and cadmium in red soil.Chemosphere,2000,41,133-138.
    [181]王激清,茹淑华,苏德纯.氮肥形态和螯合剂对印度芥菜和高积累Cd油菜吸收Cd的影响.农业环境科学学报.2004,23(4):625-629.
    [182]Patrizia Zaccheo,Laura Crippa,Valeria Di Muzio Pasta.Ammonium nutrition as a strategy for cadmium mobilisation in the rhizosphere of sunflower.Plant and Soil.2006,283:43-56.
    [183]Bloom A J,Meyerhoff P A,Taylor A R and Rost T L.Root development and absorption of ammonium and nitrate from the rhizosphere.Journal of Plant Growth Regulation.2003,21:416-431.
    [184]Salt D E,Smith R D,Raskin I.Phytoremediation.Ann.Rev.Plant Phys.1998,49:643-668.
    [185]Lasat,M.Phytoextraction of toxic metals:A review of biological mechanisms.J.Environ.Qual.2002,31:109-120.
    [186]Shen,Z.,Li,X.,Wang,C.,et al.H.Lead phytoextraction from contaminated soil with high biomass plant species.J.Environ.Qual.2002,31,1893-1900.
    [187]Luo,C.,Shen,Z.,Lia,X.Enhanced phytoextraction of Cu,Pb,Zn and Cd with EDTA and EDDS.Chemosphere.2005,59:1-11.
    [188]Tanton T W,Crody S H.The distribution of lead chelate in the transpirational stream of higher plants.Pestic.Sci.,1971,2,211-213.
    [189]Wallace A,Wallace G A.Some of the problems concerning iron nutrition of plants after four decades of synthetic chelating agents.J Plant Nutr.,1992,15;1487-1508.
    [190]Shin-ichi Nakamura,Chieko Akiyama,Takashi Sasaki,et al.Effect of cadmium on the chemical composition of xylem exudate from oilseed rape plants(Brassica napus L.).Soil Science and Plant Nutrition.2008,54,115-127.
    [191]Susan Tandy,Rainer Schulin,Bernd Nowack..The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers.2006,62,1454-1463.
    [192]Vassal A D,Kapuinik Y,Raskin I,Salt D E.The role of EDTA in lead transport and accumulation by Indian mustard.Plant Physiol.1998,117,447-453.
    [193]Lai H Y,Chen Z S.Effects of EDTA on solubility of cadmium,zinc,and lead and their uptake by rainbow pink and vetiver grass.Chemosphere,2004,55:421-430.
    [194]Luo C L,Sben Z G,Li X D,et al.Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS.Chemospbere.2006,63:1773-1784.
    [195]López-Millán A F,Morales F,Abadia A,et al.Effects of iron deficiency on the composition of the leaf apoplastic fluid and xylem sap in sugar beet.Implication for iron and carbon transport.Plant Physiol.,2000,124:873-884.
    [196]Jackson A P,Alloway B J.The transfer of cadmium from agricultural soils to the human food chain.Boca Raton:Lewis Publishers.1992.
    [197]Zhang G P,Fukami M,Sekimoto H.Genotypic differences in effects of cadmium on growth and nutrient compositions in wheat.Journal of plant nutrition.2000,23(9):1337-1350.
    [198]Sposito G.The Chemistry of Soils.Oxford University Press.1989.
    [199]Renella G,Mench M,Leliec D V D.Hydrolase activity,microbial biomass and community structure in long-term Cd-contaminated soils.Soil Biology and Biochemistry.2004,36(3):443-451.
    [200]刘继芳,蒋以超,王桔.锌络合物的稳定性与其对植物有效性的关系.土壤学报,1993,30:146-152.
    [201]Checkai R.T.;Corey R.B.;Helmke P.A..Effects of ionic and complexed metal concentrations on plant uptake of cadmium and micronutrient metals from solution.Plant and Soil.1987,99:335-345.
    [202]沈振国,刘友良.重金属超量积累植物研究进展.植物生理学通讯.1998,34(2):133-139.
    [203]Stevenson F J.Origin and distribution of nitrogen in soil.American Society of Agronomy.1982,22:1-42.
    [204]Senden M H,Van P A,Assenfm,et al.Cadmium-citric acid xylem cellwall interactions in tomato plants.Plant Cell Environ,1990,10(15):71-79.
    [205]郑绍建,胡霭堂,蒋廷惠,等.污染土壤中Cd活性提取剂的选择.农业环境保护.1995,14(2):49-53.
    [206]魏世强,木志坚,青长乐.几种有机物对紫色土镉的溶出效应与吸附—解吸行为影响的研究.土壤学报,2003,40(1):110-117.
    [207]范洪黎,王旭,周卫.添加有机酸对土壤镉形态转化及苋菜镉积累的影响.植物营养与肥料学报.2008,14(1):132-138.
    [208]Wang J,B.P.Evangelou,M.T.Nielsen.,et al.Computer-simulated evaluation of possible mechanisms for quenching heavy metal ion activity in plant vacuoles.I.Cadmium.Plant Physiology,1991,97:1154-1160
    [209]Peterson P J,Alloway B J.Cadmium in soils and vegetation.In thechemistry.Web b M(ed.).Biochemistry and biology of cadmium.Amsterdam:Elsevier,North Holland Biomedical Press,1979:45-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700