用户名: 密码: 验证码:
宁夏河东沙地不同密度柠条灌丛草地水分与群落特征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宁夏盐池县受干旱风沙的影响,加上超载过牧,草场退化严重。1986年在柳扬堡乡建立了退化草场植被恢复与风蚀沙化防治技术示范区,带状种植了柠条(Caragana intermedia),进行退化草场改良。我们于2002年和2003年进行了水分定位观测,通过研究柠条种植密度对土壤水分的影响,从水分和植被两方面作了系统的比较,确立了适宜的柠条密度,为在退化草地改良过程中,大面积营造柠条灌木提供了科学理论依据。主要研究内容和结论如下:(1)不同密度柠条草地土壤水分状况及其动态变化规律:土壤水分年际变化较大,土壤含水量季节动态主要决定于年内降水的季节性变化。0~100cm各土层,1665丛/hm~2草地土壤含水量最高,2490丛/hm~2柠条草地土壤含水量次之。而且,它们的土壤含水量均在土壤有效水范围内,可以被植物吸收利用。(2)不同密度柠条对土壤理化特性的影响:2490丛/hm~2柠条草地土壤的紧实度和2.0~0.2mm粗砂粒含最低,0.2~0.02mm的细砂粒含量最高,1665丛/hm~2次之。2490丛/hm~2柠条草地毛管孔隙度最大,土壤物理特性得到了改善。2490丛/hm~2和1665丛/hm~2氮、磷、钾和有机质含量均较高。(3)不同密度柠条草地土壤水分特征曲线和水分参数研究:土壤含水量和土壤吸力之间存在着幂函数关系。2490丛/hm~2柠条草地,0~20cm土层的土壤水扩散率D(θ)较大,1665丛/hm~2柠条草地20~60cm土层土壤水扩散率最高。(4)不同密度柠条草地土壤的持水性:1665丛/hm~2柠条草地持水性最好,2490丛/hm~2密度柠条草地居中。草地上层(0~40cm)土壤的持水性均比下层土壤(40~60cm)差。(5)不同密度柠条草地土壤蓄水量:2490丛/hm~2和1665丛/hm~2柠条草地蓄水量高于其他草地。(6)不同密度柠条草地土壤入渗特性:2490丛/hm~2和1665丛/hm~2柠条草地入渗速率、前30min累积入渗量高于其他草地。稳渗率以2490丛/hm~2和3330丛/hm~2柠条草地较大。达稳渗的时间以2490丛/hm~2和3330丛/hm~2柠条草地较短。总之,以1665丛/hm~2和2490丛/hm~2柠条草地的入渗性能比自然恢复草地和3330丛/hm~2柠条草地要好。(7)不同密度柠条草地蒸散特征和草地群落主要植物蒸腾特征:①主要植物种柠条、沙蒿、白草、赖草的蒸腾速率、气孔导度日变化规律均为“双峰”型曲线,都出现了明显的午间蒸腾午休现象。②蒸散季节变化规律表现出在春季和初夏蒸散失水量并不太大,在7~9月份,土壤的水分条件较好,土壤供水能力强,气温较高,这时植物生长旺盛,蒸散加快。③蒸散量以2490丛/hm~2柠条草地最大,其次是33300丛/hm~2和1665丛/hm~2柠条草地,自然恢复草地蒸散量最小。但2490丛/hm~2和1665丛/hm~2柠条草地水分利用率最大。(8)不同密度柠条草地植被群落特征:①2490丛/hm~2和1665丛/hm~2密度柠条草地地上总生物量、柠条林间草地地下生物量、柠条根地下生物量、根幅、主根长以2490丛/hm~2和1665丛/hm~2密度较大②2490丛/hm~2柠条林间草地盖度在6~8月份、10月份一直较大,明显地高于其它草地。9月份,2490丛/hm~2柠条草地盖度稍低于自然恢复草地。③1665丛/hm~2和2490丛/hm~2柠条草地物种丰富度、植物多样性指数和均匀度较高。1665丛/hm~2生态优势度最低,反映其由多物种组成,群落结构稳定。
     2490丛/hm~2和1665丛/hm~2柠条灌丛草地,增大了植被盖度和生物产量。虽然草地蒸散量失水增大,但并没有引起土壤水分亏缺。因此,宁夏盐池干旱风沙区退化草场治理过程中,补种2490丛/hm~2和1665丛/hm~2柠条,达到了最优调控和充分利用水土资源,提高草地生产力的目的。
Natural grasslands in Yanchi county of Ningxia were eroded and degraded by wind and over-grazing. The demonstration region of vegetation restoration and desertification control of degenerate grasslands was established in 1986. Caragana Intermedia shrubbery was planted in rows to meliorate degenerate grasslands. The research on the soil water and vegetation restoration was conducted from 2002 to 2003 so as to make out the impact of planting density of C. intermedia on soil water and vegetation. The result showed that:
    (1) Dynamic changes of soil water content of C. intermedia grasslands of different density: Annual changes of soil water was greater and seasonal change was consistent with precipitation . At 0-100cm soil depth, soil water content of grasslands with C. intermedia of 1665 clusters /hm2 was the highest, and 2490 clusters / hm2 was second.
    (2) Impact of planting density of C. intermedia on soil physical and chemical character: the soil tight degree and the content of 2.0-0.2 mm Sand granule of C. intermedia grassland of 2490 clusters / hm2 were the lowest and its content of 0.2-0.02 silver sand was the highest, and C. intermedia grassland of 1665 clusters /hm2 was second. Capillary porosity of C. intermedia grassland 2490 clusters / hm was highest. In addition, contents of nitrogen, phosphor, potassium and organic matter of C. intermedia grassland of 2490 clusters / hm2 were the highest.
    (3) Soil water curve of C. intermedia grasslands of different density and its parameters inosculation: relation between soil water content and suction is power. At 0~20cm soil depth, diffusivity of C. intermedia grasslands of 2490 clusters / hm2 was the highest, and at 20~60cm depth, that of C. intermedia grasslands of 1665 A/hm2 was highest.
    (4) Water conservation of C. intermedia grasslands of different density : water conservation of C. intermedia grasslands of 1665 clusters / hm2 was the best and 2490 clusters / hm2 was second. In addition, at 0~40cm soil depth, water conservation was not better than that at 40-60 cm to all grasslands.
    (5) Water reserves of C. intermedia grasslands of different density: water reserves of C. intermedia grasslands of 2490 clusters / hm2 and 1665clusters / hm2 were better than other grasslands.
    (6) Water seepage of C. intermedia grasslands of different density: water seepage rate and cumulate seepage content in 30mins of C. intermedia grasslands of 2490 clusters / hm2 and 1665JA /hm were higher than other grasslands, moreover, stable seepage rate of C. intermedia grassland of 2490 clusters / hm2 was the highest and time of reaching stable seepage was shorter .
    (7) Evapotranspiration of C. intermedia grasslands of different density and transpiration of main plant species in community: Daily changes of transpiration rate and stomatal conductance of C.intermedia, Aneurolepidium dasystachys , Artemisia desertorums and Pennisetum centrasiaticum were douple peak curve, it was showed that transpiration sloped at noon. It was showed that evapotranspiration in spring and early summer was small, however, that was the bigger from July to September, because of high air temperature and soil water content. Evapotranspiration of c. intermedia
    
    
    grasslands of 2490 clusters / hm2 and 1665 A/hm2 were the bigger, but their water use efficiency were the highest.
    (8) Vegetation community character of C. intermedia grasslands of different density: total overground biomass, underground biomasses of C. intermedia grasslands of 2490 clusters / hm2 and 1665 cluster/hm2 were the biggest, moreover, their total root dry weight, root breadths and taproot length were the highest. In addition, coverage of C. intermedia grassland of 2490 clusters / hm2 was the biggest from June to October besides September. Species richness, diversity index, community evenness of C. intermedia grasslands of 2490 clusters / hm2 and 1665 clusters / hm2 were higher, and ecological dominant of C. intermedia grasslands of 1665cluster/hm2 was the highest. It was showed that their species composition rich and
引文
1 常杰,祝廷成,羊草群落水分状况的初步研究.植物生态学与地植物学学报,1989,13(3):219~229.
    2 常学礼等.生态脆弱带的尺度与等级特征.中国沙漠,1999,19(2):115~119.
    3 陈丽华,余新晓.森林流域蒸发散的计算.水土保持学报,1992,6(3)
    4 陈丽华,竹内信治.黄土地区人工降雨条件下土壤入渗的研究.见:水土保持科学研究与发展.北京:中国林业出版社,1993
    5 陈隆亨,李福兴.中国风沙土.北京:科学出版社,1998,36~58
    6 陈有君等.大针茅草原地上最高生物量与土壤贮水量的相关分析.中国草地,1994,(1):29~34.
    7 陈有君等.内蒙古浑善达克沙地水分状况的分析.干旱区资源与环境,2000,14(1):80~85.
    8 陈佐忠等.内蒙古锡林河流域羊草草原与大针茅草原地下生物量与降水量关系模型探讨.草原生态系统研究,1988,(2):20~24
    9 程俊贤.新黄土包气带的降水入渗特征和蓄水动态.水文地质工程地质,1982(5)
    10 董学军.中国毛乌素沙地土壤——植物——大气系统中植物水分关系的定性及定量解释:[硕士学位论文].北京:中国科学院植物研究所,1991
    11 杜广才.半干旱草原天然草场需水规律与需水量的研究.中国草地,1991,42(1);46~49.
    12 范荣生,张炳勋.黄土地区流域产流计算.西北农学院学报,1980(11)
    13 冯金朝,陈荷生,康跃虎等.腾格里沙漠沙坡头地区人工植被蒸散耗水与水量平衡的研究.植物学报,1995,37(10):815~821
    14 冯金朝等.腾格里沙漠沙坡头地区人工植被蒸散耗水与水量平衡的研究.植物学报,1995,37(10):815~821
    15 冯起,高前兆.沙地水分的研究进展.中国沙漠,1993,13(2):9~13.
    16 冯起,高前兆.禹城沙地水分动态规律及其影响因子.中国沙漠,1995,15(2):153~175.
    17 冯起.半湿润沙地水分状况及动态规律研究.半干旱地区农业研究,1995,13(1):26~30.
    18 付华 等.河西走廊盐渍区碱茅草地水盐动态及影响因素的研究.草业科学,1997,14(2):1~4,8。
    19 付华等.腾格里沙漠东南缘飞播区白沙蒿植被密度与土壤水分关系的研究.中国沙漠,2001,21(3):265~269.
    20 傅抢璞.土壤蒸发的计算.气象学报,1981
    21 龚元石,李子忠,李春友.利用时域反射仪测定的土壤水分估算农田蒸散量.应用气象
    
    学报、1998,9(1):72~78.
    22 龚元石,李子忠,李春友.利用时域反射仪测定作物需水量和作物系数。中国农业大学学报.1998,3(5):61~67
    23 龚元石,廖超子.测定土壤含水量的新技术——时域反射仪.见:石元春等主编,节水农业应用基础研究进展,北京:中国农业出版社,1995,48~55
    24 郭克贞,何京丽.牧草抗旱机理与节水灌溉技术研究.灌溉排水,1995,14(3):20~23.
    25 郭连生等.几种阔叶树种的耐旱性生理指标的研究.林业科学,1989,25(5):389-394
    26 韩德儒,杨文斌.人工拧条固沙林长期水量平衡分析.干旱区资源与环境,1996,12(1):32~35
    27 韩德儒等.人工柠条固沙林长期水量平衡分析.干旱区资源与环境,1995,9(1):78~85
    28 韩仕峰,茅庭玉.几种多年生豆科牧草的水土保持效益.草业科学,1993,10(2):6-10
    29 贺庆棠.森林对环境能量和水分收支的影响.北京林学院学报,1984
    30 侯喜禄等.黄土丘陵区森林保持水土效益及其机理的研究.水土保持研究,1996,3(2):98~103.
    31 侯喜禄等.黄土丘陵区湾塌地乔灌林土壤水分动态监测.水土保持研究,1996,3(2):57~65.
    32 黄昌勇.土壤学.北京:中国农业出版社,2000
    33 黄德华,陈佐忠,张鸿芳.内蒙古锡林河中游不同类型草原根系生物量的比较研究.植物学集刊,1987,(2):67-82
    34 贾黎明.杨树刺槐混交林生长及树种间营养关系的研究:[博士学位论文].北京:北京林业大学.1996
    35 贾树海等,1997,草场退化与恢复改良过程中土壤物理性质和水分状况初探,草原生态系统研究,中国科学院内蒙古草原生态定位研究站编,北京:科学出版社,(5):111~116
    36 蒋定生,黄国俊.地面坡度对降水入渗影响的模拟试验.水土保持通报,1984(4)
    37 康绍忠,梁银丽,蔡焕杰等.旱区水——土——作物关系及其最优调检原理.北京:中国农业出版社,1998
    38 康绍忠,刘晓明,熊运章.土壤——植物——大气连续体水分传输理论及其应用.北京:水利电力出版社,1994
    39 雷志栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社,1998
    40 李博,曾四弟,郝广勇.植物生态与地植物学丛刊,1964,2(1):70~80
    41 李长兴.陕北黄土高原降雨入渗特性的实验研究.水文,1986(4)
    42 李凤民,张振万.宁夏盐池长芒草草原和苜蓿人工草地水分利用研究.植物生态学与地植物学学报,1991,15(4):319-329
    43 李凤民.植物群落水分生态研究中若干问题探讨.西北大学学报,1990,20(1):73~78
    
    
    44 李刚,陆兆熊,等.王家沟流域降雨入渗规律实验研究.见:晋西黄土高原土壤侵蚀管理与地理信息系统应用研究.北京:科学出版社,1992
    45 李洪建等.不同利用方式下,土壤水分循环规律的比较研究.水土保持学报,1996,16(2):24~28.
    46 李吉跃.太行山区主要造林树种耐旱特性的研究(Ⅱ)——一般水分生理生态特性.北京林业大学学报,1991,13(增刊1):10-24
    47 李吉跃.太行山区主要造林树种耐旱特性的研究(Ⅳ)——定量化研究模式及耐旱性综合评价.北京林业大学学报,1991,13(增刊2):265-278
    48 李品芳,李保国.毛乌素沙地水分蒸发和草地蒸散特征的比较研究.水利学报,2000,14(3):17~20
    49 李绍良.草原生态系统中土壤水分运动的研究,一、典型土壤的水分物理性质及植物生育期土壤水分状况.草原生态系统研究.1982,(2):183~196
    50 李绍良.草原土壤水分状况与植物生物量关系的初步研究.草原生态系统研究,1985,(1):195~201
    51 李香真等.小叶锦鸡儿灌丛引起的植物生物量和土壤化学元素含量的空间变异.草业学报,2002,11:(11).
    52 李新,周宏飞.干旱区农田蒸散量的日间变化分析.干旱区资源与环境,2000,重4(3),82~87
    53 李新荣,张景光,刘立超等.我国干旱沙漠地区人工植被与环境演变过程中植物多样性的研究.植物生态学报,2000,24(3):257-261
    54 李新荣,马风云.龙立群等.沙坡头地区固沙植被土壤水分动态研究.中国沙漠,2001,21(3):217-221
    55 李新荣,石庆辉,张景光等.沙坡头地区人工植被演变过程中植物多样性变化的研究.中国沙漠,1998,18(增刊4):23-29
    56 李韵珠等.土壤水分和养分利用效率几种定义的比较.土壤通报,2000,31(4):151~155.
    57 李自珍等.干旱区植物水分生态位适宜度的数学模型及其过程数值模拟试验研究.中国沙漠,2001,21(3):281~285。
    58 李自珍等.沙区防护林管理的最优控制模型与持续发展对策.中国沙漠,1997,17(增刊3):29~36,
    59 刘昌明,丁沪宁.土壤——作物——大气系统水分运动实验研究.北京:气象出版社,1996
    60 刘昌明,任鸿遵.水量转换——实验与计算分析.北京:科学出版社.1985
    61 刘昌明,魏中义.华北平原农业水文条件与水姿源.北京:科学出版社.1989
    62 刘昌明,孙睿.水循环的生态学方面:土壤——植被——大气系统水分能量平衡研究进展.水科学进展,1999,10(3):251~259
    63 刘明国,何富广,王世英。辽西地区草本植物改土防蚀效益的研究.土壤通报,1998,29(5):198-200
    
    
    64 刘寿东,戴艳洁.内蒙古草地土壤水分动态监测预测模式的研究,内蒙古气象,1998,(3):33~37.
    65 罗远培,李韵珠.根系系统与作物水氮资源利用效率.北京:中国农业科技出版社,1996
    66 马绍嘉,李刚,等.晋西黄土丘陵沟壑区入渗规律研究.见:黄河流域地表物质迁移规律与地貌塑造研究.北京:地质出版社,1992
    67 牛四平,王福堂,等.土壤渗透规律研究.见:晋西黄土高原土壤侵蚀管理与地理信息系统应用研究.北京:科学出版社,1992
    68 裴步祥.蒸发和蒸散的测定与计算.北京:气象出版社,1984
    69 曲耀光等.中国干旱区水文及水资源利用.北京:科学出版社,1992
    70 邵明安,黄明斌.土——根系统水动力学.西安:陕西科学技术出版社,2000
    71 邵明安,李开元,钟良平.根据土壤水分特征曲线推水土壤的导水参数.中国科学院水利部西北水土保持研究所集刊,1991,13:26~32
    72 邵明安,杨文治,李玉山.黄土区土壤水分有效性的动力学模式.科学通报,1987,32(18):1421~1423
    73 邵明安,杨文治,李玉山.黄土区土壤水分有效性研究.水利学报,1987,(8):8~44
    74 邵明安.不同方法测定土壤基质势的差别及准确性的初步研究.土壤通报,1985,16(5):223~226
    75 邵明安.非饱和土壤导水系数的推求Ⅰ:理论.中国科学院水土保持研究所集刊,1991,13:13~25
    76 邵明安.农田生态系统中物质运移过程研究.西安:陕西人民出版社,2002
    77 沈建柱,赵楚年.地表水平衡的模式及其应用.见:水量转换.北京:科学出版社,1988
    78 宋炳煜,尹晓青,1988草原植物群落蒸腾耗水量的测定方法比较,草原生态系统研究,中国科学院内蒙古草原生态系统定位研究站编,北京:科学出版社,2:224~231
    79 孙菽芬.降兩条件下土壤入渗规律的研究.土壤学报,1988,25(2)
    80 台培东,郭书海,宋玉芳,孙铁珩,李培军,姜恕.草原地区不同生态类型的植物生理特性的比较研究.应用生态学报,2000,11(1):53-56
    81 唐登银等.我国蒸发研究概况与展望.气象文摘,1985(3)
    82 唐海行,等.人工降雨条件下土柱入渗的试验研究.水文,1987(2)
    83 陶祖文.裴步祥.农田蒸散和土壤水分变化的计算方法.气象学报,1979,37(4):79-87
    84 王兵.绿洲荒漠过渡区水热平衡规律及其耦合模拟研究:[博士学位论文].北京:中国林业科学研究院,2002
    85 王殿武等.冀西北高原油菜、苜蓿混播人工草地土壤水分动态研究.中国草地,1997(4):29~32.
    86 王全九,邵明安.非饱和土壤导水特性分析.土壤侵蚀与水土保持学报,1998,4(6):16~22
    87 王仁忠等.松嫩草原羊草群落水分生态的研究.草业学报,1996,5(3):7~12.
    88 吴擎龙,雷志栋、压力入滲仪测定导水率的理论及其应用.水利学报,1996,(2):56~62
    
    
    89 吴擎龙,雷志栋,杨诗秀.求解SPAC系统水热输移的耦合迭代计算方法.水利学报,1996,(2):1~10
    90 吴薇.毛乌素沙地沙漠化过程极其整治对策.中国生态学报,2001,9(3).15~18.
    91 希勒尔.土壤水动力学计算模拟(罗焕炎等译).北京:中国农业出版社,1979
    92 肖树铁.地面入渗水分在包气带中的运动.水文地质工程地质,1981(3)
    93 谢贤群.测定农田蒸发的试验研究.见:谢贤群等主编,农田蒸发——测定与计算机.北京:北京气象出版社,1991,90~97
    94 信乃诠.赵聚宝主编.旱地农田水分状况与调控技术.北京:农业出版社,1992
    95 杨持,李永宏,燕玲.羊草草原主要种群地上生物量与水热条件定量关系初探.见:草原生态系统研究(1),北京:科学出版社,1985,24-37
    96 杨文斌.梭梭抗旱的生理生态水分关系的研究.生态学报.1991,11(4):23~27
    97 杨文治,韩仕峰.黄土丘陵地区人工林草地的土壤水分生态环境.见:中国科学院西北水土保持研究所集刊(第2集).西安:陕西科学技术出版社,1985
    98 杨新民.黄土高原灌木林地水分环境特性研究.干旱区研究,2001,18(1):8~12.
    99 杨艳生,史德明,等.江西兴国县土壤渗透性的研究.水土保持通报,1982(6)
    100 杨艳生,史德明,等.侵蚀土壤地表径流和土壤渗透的研究,土壤学报,1984,21(2)
    101 姚贤良,程云生.土壤物理学.北京:农业出版社.1986
    102 游直方.降水量与牧草产量的关系.内蒙古气象.1981,5
    103 于静洁,刘昌明.入渗曲线的拟合与单元产流.见:水量转换(实验与计算分析).北京:科学出版社,1988
    104 余新晓,陈丽华.人工降雨条件下土壤入渗实验研究.水土保持学报,1990,5(4)
    105 余优森等.人工草地土壤水分变化规律的研究.甘肃中部种草养畜农牧结合研究编,北京:气象出版社,1991,41~52.
    106 远腾泰造.森林水源涵养研讨班教材.中国林业科学研究院,1984
    107 张国盛,王和林,董智等.毛乌素沙区风沙土机械组成及含水率的季节性变化.中国沙漠,1999,19(2);145~150
    108 张娜,梁一民,1999,黄土丘陵区两类天然草地群落地上部数量特征及其与土壤水分关系比较研究,西北植物学报,19(3):494~501
    109 张娜,梁一民,1999,黄土丘陵区两类天然草地群落地下部生长及其与土壤水分关系比较研究,西北植物学报,19(4):699~706
    110 郑丽明.栗沙土羊草草原群落水分关系研究:[硕士学位论文].内蒙古:内蒙古大学,1997
    111 中国科学技术协会,中国工程院,陕西人民政府.1999。中国西部生态重建与经济协调发展学术讨论会文集[C].成都:四川科学技术出版社。
    112 中华人民共和国农业部.全国草地生态保护建设规划(2001~2010).2000
    113 中华人民共和国农业部畜牧兽医司等.中国草地资源.北京:中国农业科技出版社,1994a
    114 中华人民共和国农业部畜牧兽医司等.中国草地资源数据库.北京:中国农业科技出
    
    版社、1994b
    115 中野秀章.李云森译.森林水文学.北京:中国林业出版社,1983
    116 钟海民,杨福囤,沈振西.矮嵩草草甸草原主要植物气孔分布及开闭规律与蒸腾强度的关系.植物生态学与地植物学报,1991,15(1):66-70
    117 塚本良则.森林水文学.日本:文永堂出版.1991
    118 周择福.太行山低山区不同植被条件下土壤水分动态变化规律的研究:[博士学位论文].北京:北京林业大学.1994
    119 朱首军等.农林复合生态系统土壤水分空间变异性和时间稳定性研究.水土保持研究,2000,7(1):46~48.
    120 左大康主编.华北平原水量平衡与南水北调研究文集.北京:科学出版社,1985
    121 Ahuja, L R, EI-Swaify, S A and rahman, A. Measuring hydrologic propertiers of soil with a double-ring infiltromerter and multiple depth tensiometers. Soil Sic Am J, 1976, 40
    122 Ahuja, L R, Green, R E and Chong, S K, Nielsen, D R. A simplified functions approach for determing soil hydroulic conductivities and water charateristeics in situ. Water Res, 1980, 16 (5): 947~953
    123 Anderson, J E & McNaughton, S J. Ecology, 1973, 54(6):1220~1233
    124 Aussenae G & G levy. Effect of soil drying on the plant water relation and growth of pedunculate oak and ash grown in buried, cubs. Forestry Abstracts, 1984(45): 1888
    125 Brooks R H, Corey A T. Hydraulic properties of porous media. Fort Ccollins:Ccolorado States University, 1964, 27
    126 Campbell G S. A simple method for determining unsaturated hydraulic conductivity from moisture retention data. Soil Sci, 1975, 117:311~314
    127 Cavande SA & Talor SA. Agron. J., 1967, 59:4~6
    128 Chan K Y, W D Bellotti, W P Roberts. Changes in surface soil properties of vertisols under dryland cropping in a semi-arid environment. Australian Journal of Soil Research, 1988, 26: 509-518
    129 Charley J L, West N E. Plant-induced soil chemical patterns in some shrub-dominated semi-desert ecosystems of Utah. J. Ecol., 1975, 63:945~963
    130 Chong S K, Richard E G et al. Simple in situ determination of hydraulic Conductivity by power function descriptions of drainge. Water Res., 1981, 17(4)
    131 Clothier B E, While I. Measurement of sorptivity and soil water diffusiutity in the field. Soil Sci. Am., 1981, 45
    132 Cowen I R. Stomatal behaviour and environment. Advances in botany reserch, 1977, 4: 117-228
    133 Daniel D E. Water in Desert Ecosystems, 1981, 256~271
    134 Eagleson P S, Climate. Soil and Vegetation, 1 Introduction to water balance dynamics. Water Resour Res, 1978a, 14 (5)
    135 Eagleson P S, Climate. Soil and Vegetation, 2 The distribution of annual precipitiation
    
    derived from observed storm sequences. Water Resour Res 1978b, 14 (5)
    136 Eagleson P S. Climate, Soil and Vegetation, 3 A simiplified model of soil moisture movement in thee liquid phase. Water Resour Res 1978c, 14 (5)
    137 Eagleson P S. Climate, Soil and Vegetation, 4 The expected value of annul evapertranspiration. Water Resour Res, 1978d, 14 (5)
    138 Eagleson P S. Climate, Soil and Vegetation, 5 A derived distribution of storm surface run off. Water Resour Res, 1978e, 14 (5)
    139 Eagleson P S. Climate, Soil and Vegetation, 6 Dynamics of the annual water balance. Water Resour Res, 1978f, 14 (5)
    140 Eagleson P S. Dynamic Hydrology. McGraw-Hill, New York, 1970
    141 Frank A B, Bauer A. Rooting activity and water use during vegetative development of crested and western wheatgrass. Agronomy Journal, 1991, 83:906~910
    142 Fritschen L J. Accuracy of evapotranspiration determination by the Bowen ratio method. I. A. S. H. Bull., 1965, 10
    143 Gardner W R. Dynamic aspects of availability to plants. Soil Sci., 1960, 89:63~73
    144 Hart S C, Binkley D, Perry D. A Influence of red alder on soil nitrogen transformation in two conifer forests of contrasting productivity. Soil Biol. Biochem., 1997, 29(7): 1111-1123
    145 Hartemink A E. Changes in soil fertility and leaf nutrient concentration at a sugar cane plantation in Papua New Guinea Communications. Soil Science and Plant Analysis, 1998, 29(7-8): 1045-1060
    146 Hillel D. Applications of soil physics. Academic Press, 1980
    147 Horton R E. An approach toward a physicalinterpretation of infiltration-capacity. Soil Sci. Am. Proc., 1940, 5
    148 Hsiao T C and Acevedo E. Plant responses to water deficits, water-use efficiency and drought resistance. Agricultural Meterology, 1974, 14:59~84
    149 Johnson H, Jahnson P E. Water balance and soil moisture dynamics of field plots with barley and grassley. Journal of Hydrology Amsterdam, 1991, 129(1~4): 149~173
    150 Kirkby M J. Hillslope Hydrolopy, 1979
    151 Latcher W. Physiological plant ecology And revised edn. Springer-Verlin, 1980
    152 Lassoie J P & D J salo. Physilogical response of large Douglas-fir to natural and indrced soil water deficits. Can. J. For. Res., 1981(11): 139-144
    153 Lbardi P L, reichardt, K, Nielesn, D R and Biggar, J W. Simple field methods for estimating soil hydraulic conductivity. Soil Sci. Soc. Sm. J., 1980, 44
    154 Penman H L. Nature evaporation from open water, bare soil and grass. Proc. of Roy., Soc. of London A., 1948, 193
    155 Penman H L. Vegetation and hydrology, 1963
    156 Philip J R. Plant water relations: some physical aspacts. Ann. Rev. Plant Physical, 1966, 17: 245~268
    
    
    157 Philip J R. Theory of infietration. Adv Hydrosci, 1969, 5
    158 Priban K & Ondok J P. The Journal of Ecology, 1980, 68:547
    159 Rager R, Feyen J & Hillel D. Comparsion of experimental and simulated infiltration profiles in sand. Soil Sci, 1982, 133 (1)
    160 Richand Lee. Forest Hydrology. Globia: Globia University Press, 1983
    161 Robertson J A, S Pawluk. Changes in the micromorphology and analytical properties of a gray luvisol (cryoboralf) under a 49 year old forage stand. Geoderma, 1987, 40:209-224
    162 Schlte P J & P E. Morshall Growth and water relation of black locust and pine seedlings exposed to control water stress. Can. J. For. Res., 1981(11): 139-144
    163 Sela O E. Long-term soil water dynamics in the shortgrass steppe. Ecology, 1992, 73(4): 1175~1181
    164 Smith M K. A comparative study of the hydrology of radiate pine and eucalypt forest at Lidsdale. N. S. W. Civ. Eng. Trans. Inst. Engrs. Aust., 1984, 26
    165 Sokolov A A, Chapman T G. Method for water balance computation. In: An International Guide for research and Practice. Paris: the UNESCO Press, 1974
    166 Sormen A U & M J Abdulrzzak. Estimation of actual evaporation using precipitation and soil moisture records in arid climates. J. Hydrol. Proc., 1995, 9:729~741
    167 Spittlehouse D L, Black T A. Determination of Forest Evapo-transpiration using Bowen ratio and eddy correlation measurements. J. App. Met., 1979, 18
    168 Spittlehouse D L, Black T A. Evaluation of the bowen Ratio/Energy Balance Mothed For Determing Forest Evapotranspiration. Atmosphere Ocean, 1980, 18 (2)
    169 Strebel O, J Bottcher, M Eberle, R Aldag. Quaantitative and qualitative changes in soil properties of A-horizont yon Sandboden nach Umwandlung yon Dauergrunland in Ackerland. Zeitschrift-fur-Pflanzenernahrung-und-boenkunde, 1988, 151(5): 341~347
    170 Thomas N B, Graham D F & Keith A M. Carbon-water balance and patchy stomatal conductance. Oecologia, 1999, 118:132-143
    171 Trlica M J, Biondini M E. Soil water dynamics, transpiraion, and water losses in a crested wheatgrass and native shortgrass ecosystem. Plant and soil, 1990, 126:187~201
    172 Van G R. Predicting the hydraulic conductivity of unsaturated soils. Soil Sei. Soc. Am. Proc., 1980, 44:892~898
    173 Warren W, Stan S, Willian L, Kinerson R. & Smith M. Primary productivity and water use in native forest, grassland, and desert ecosystems. Ecology, 1978, 59(6): 1239~1247
    174 WMO. Measurement and estimation of evaporetion and evapotrans-piration. WMD, Genera, 1966, 83
    175 Yu Xinxiao. Forest hydrology Research in China. J. hydro., 1991, 122
    176 Zinke P J, Crocker R L. The influence of giant sequoia on soil properties. For. Sci., 1962, 8: 2~11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700