用户名: 密码: 验证码:
林木根系固土力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林生态系统中的根系有固持植物体、吸收水分和溶于水中的矿物质的作用,同时还能够阻止浅层滑坡、固持水土。本文通过对华北土石山区4种常见乔木:油松、落叶松、白桦和蒙古栎根系进行轴向疲劳拉伸试验,测定其疲劳前后的抗拉力学特性;分析了直径、树种等因素对根系疲劳前后对最大抗拉力、抗拉强度和应力-应变关系的影响;然后,选取4个树种直径3、5、7mm根系作为试验根样与华北木兰围场取回的土样一起制备成根—土复合体试样,采用全自动三轴压缩仪对复合体进行剪切试验,对复合体的剪切特性进行研究分析,评价根系直径、树种和不同分布方式对土壤抗剪强度的增强作用。
     主要研究成果如下:
     (1)疲劳前4种乔木根系最大抗拉力的平均值大小顺序为:白桦>蒙古栎>油松>落叶松。循环10000次前后油松的抗拉力变化最大,其次是落叶松和蒙古栎,变化最小的是白桦。疲劳后4种乔木根系最大抗拉力平均值大小顺序为:蒙古栎>白桦>油松>落叶松。
     (2)4个树种根系疲劳前抗拉强度随着直径的增加而减小,成幂函数关系;4个树种的抗拉强度排序为白桦>蒙古栎>油松>落叶松。经过10000次疲劳拉伸试验后,4种乔木根系抗拉强度顺序是:白桦>蒙古栎≈油松>落叶松。这与疲劳前顺序基本没有变化,说明疲劳对树种单根抗拉强度有所影响但不足以改变物种本身根系结构组成所造成的影响,树种依旧是影响根系抗拉强度特性非常重要的因素。植物根系在10000次疲劳后的最大抗拉力和抗拉强度均比循环前相同根径的大,说明根系在自然界中的水流或者暴风等破坏力的低周疲劳作用下,自身的抗拉性能不但没有降低,其抗拉性能有不同程度的增加,增强了根系的固土能力。
     (3)三轴压缩试验结果表明根系能明显有效地提高土壤的抗剪强度。分布在土体中根系直径增加,根—土复合体的内摩擦角和内粘聚力也随之增大,土壤抗剪强度加强,加根能够明显提高土体抵抗剪切破坏的能力。
     (4)根系这种增强作用与根系直径及其在土样中的分布方式有很大关系。复合根复合体抗剪强度值较其他两种分布方式抗剪强度有明显增加。在水平根、垂直根和复合根三种复合体抗剪强度增加顺序基本遵循复合根复合体>垂直根复合体>水平根复合体。说明复合根在增强土体强度方面效果最为显著,说明植物根系在土壤中形成横纵交错的状态对减少滑坡等自然灾害方面起到更好的作用。
Roots in forest ecosystems play the roles of retaining plants, absorbing water and solubling minerals in water, and also can be able to prevent shallow landslides, soil and water retention. This article is adopted by the roots of the four common trees in North China Mountainous Area in10000axial fatigue tensile test about Chinese pine, larch, birch, and Mongolian oak which is3,5,7mm diameter,to get the determination of tensile mechanical properties of single root fatigue before and after. The qualitative analysis of the impact of the diameter, species and other factors at the root fatigue before and after the maximum tensile strength, tensile strength and stress-strain relations. Then,selected four species roots as3,5,7mm diameter test root like Mulan Paddock of North China retrieved soil samples with the preparation of the complex into the root soil sample, using automatic triaxial compression meter complex shear test research and analysis of complex shear characteristics,evaluation of the enhanced role of the shear strength of the soil root diameter, tree species, and buried roots way.
     The main research results are as follows:
     (1) The average size of the order of the maximum tensile strength of four kinds of tree roots before the fatigue test:birch> mongolian oak> pine> larch. Looping10,000times, the greatest change in tensile strength is Pinus tabulaeformis,then larch and mongolian oak,the the last is birch.After fatigue test,four kinds of tree roots maximum tensile strength of the average size of the order:Mongolian oak> birch> pine> larch.
     (2) Before fatigue test,four species root tensile strength with increasing diameter decreases,takes on a power function relationship.The tensile strength of the four species is birch> Mongolian oak> pine> larch. After10000fatigue tensile test, the tensile strength of the order of the four kinds of tree roots: birch> mongolian oak=pine> larch. This is essentially unchanged before fatigue test. There is the description that fatigue but not enough to change the impact of the species itself that the root structure of the composition have an impact on a single tensile strength of the species, the species is still a very important factor affecting root tensile strength characteristics. Roots after the10000fatigue have bigger maximum tensile strength and tensile strength than the same root diameter before test. It shows that the low cycle fatigue under the action of the root system in the nature of the Chinese Pine water or storm destructive, not only decreases its own tensile performance,but also contributes to the improvement of its tensile properties and enhanced root solid soil capacity.
     (3) Triaxial compression test results show that the root system can significantly improve the shear strength of the soil. Buried in the soil increased root diameter, root soil complex internal friction angle and inner cohesion also increases and soil shear strength is strengthened.Adding roots can significantly improve the ability of the soil to resist shear.
     (4) The arrangement of the enhanced role of the root diameter of the roots in soil samples have a great relationship. Same as the buried roots way, the composite root complex shear strength values compared to the other two buried root shear strength increased significantly. Three forms of horizontal root, vertical root and composite root type, soil shear strength increased order is:composite root complex>the level root complex>vertical root complex. It shows that the composite root in enhancing soil strength effect is most significant, and the composite root forest tree species is best suited to enhance the strength of the soil to maintain soil stability.
引文
[1]包承钢.土工合成材料界面特性的研究和试验验证[J].岩石力学与工程学报.2006,25(9):1 735-1744.
    [2]陈兵,李润生,甄晓云.云南元磨高速公路边坡生物防护设计[J].昆明理工大学学报,2002,27(6):151-157.
    [3]程洪,谢涛,唐春,等.植物根系力学与固土作用机理研究综述[J].水土保持通报,2006,26(1):97-102.
    [4]程洪,颜传盛,李建庆,等.草本植物根系网的固土机制模式与力学试验研究[J].水土保持研究,2006,13(1):62-65.
    [5]程洪,张新全.草本植物根系网固土原理的力学试验探究[J].水土保持通报,2002,22(5):20-23.
    [6]陈丽华,余新晓,刘秀萍,等.林木根系本构关系[J].山地学报,2007,25(2):224-228.
    [7]陈丽华,余新晓,宋维峰,等.林木根系固土力学机制[M].北京:科学出版社,2008,10-11,44.
    [8]陈丽华,余新晓,张东升.整株林木垂向抗拉试验研究[J].资源科学,2004,26(s1):39-43.
    [9]陈昌富,刘怀星,李亚平.草根加筋土的护坡机理及强度准则试验研究[J].中南公路工程,2006,31(2):14-17.
    [10]代全厚,张力,刘艳军,等.植物根系固土护堤功能研究[J].吉林水利,1998(10):27-29.
    [11]丁建明,张波.土工合成材料与粘土接触面直剪试验研究[J].华中科技大学学报(城市科学版),2005,22(2):58-62.
    [12]封福记.受损河岸生态系统生态修复与重建研究[D].东北师范大学硕士论文.2005.
    [13]封金财,王建华.植物根的存在对边坡稳定性的作用[J].华东交通大学学报,2003(5):42-45.
    [14]封金财,王建华.乔木根系固坡作用机理的研究进展[J].铁道建筑.2004(3):29-31.
    [15]高鹏.植物固土护坡机理及其在河道护坡工程中的应用[D].扬州大学硕士论文,2007.
    [16]GB/T 228-2002.金属材料室温拉伸试验方法[S].中国标准出版社,2002.
    [17]GBT3075-2008.金属材料疲劳试验轴向力控制方法[S].中国标准出版社,2009.
    [18]BT25917-2010.轴向加力疲劳试验机动态力校准[S].国家质检总局(CN-GB),2011.
    [19]GBT26077-2010.金属材料疲劳试验轴向应变控制方法[S].国家质检总局(CN-GB),2011.
    [20]GB/T228.1-2010.金属材料拉伸试验第1部分:室温试验方法[S].国家质检总局(CN-GB),2011.
    [21]GB/T 24176-2009.金属材料疲劳试验数据统计方案与分析方法[S].国家质检总局(CN-GB),2010.
    [22]耿威,王林和,刘静,等.鄂尔多斯高原3种4龄-5龄灌木根系抗拉特性初步研究[J].内蒙古农业大学学报,2008,29(3):86-89.
    [23]拱祥生,林宏达.植生对边坡生态工法稳定性影响分析初探[J].技师月刊,2003,31:60-68.
    [24]郭维俊,黄高宝,王芬娥,等.土壤-植物根系复合体本构关系的理论研究[J].中国农业大学学报,2006(2):35-38.
    [25]郝彤琦,谢小研,洪添胜.滩涂土壤与植物根系复合体抗剪强度的试验研究[J].华南农业大学学报,2000(4):78-80.
    [26]何才.疲劳试验数据处理及P-S-N曲线的作用[J].汽车工艺与材料,2007,(4):50-57.
    [27]霍林.摩擦学原理[M].北京:机械工业出版社,1975.
    [28]及金楠.基于根土相互作用机理的根锚固作用研究[D].北京林业大学,2007.
    [29]江浩浩.基于灰色关联度和主成分分析的草本植物护坡效果评价[D].东北林业大学,2009.
    [30]李国荣,胡夏嵩,毛小青,等.寒旱环境黄土区灌木根系护坡力学效应研究[J].水文地质工程地质,2008,1:94-97.
    [31]李会科,王忠林,贺秀贤.地埂花椒林根系分布及力学强度测定[J].水土保持研究,2000,7(1):38-41.
    [32]李勉,姚文艺,李占斌.黄土高原草本植被水土保持作用研究[J].地球科学进展,2005,20(1):74-77.
    [33]李绍才,孙海龙,杨志荣,等.护坡植物根系与岩体相互作用的力学特性[J].岩石力学与工程学报,2006,25(10):2051-2057.
    [34]刘本同,钱华,何志华.我国岩石边坡植被修复技术现状和展望.浙江林业科技,2004,24(3):47-54.
    [35]刘国彬,蒋定生,朱显谟.黄土区草地根系生物力学研究[J].土壤侵蚀与水土保持学报,1996,2(3):21-28.
    [36]刘霖,刘春艳.土工合成材料与风积砂土界面作用特性的试验研究[J].内蒙古工业大学学报,2005,20(4):295-299.
    [37]刘世奇,陈静曦,王吉利.植物护坡技术浅析[J].土工基础,2003,17(3):49-51.
    [38]刘秀萍,陈丽华,宋维峰.林木根系与黄土复合体的三轴试验[J].林业科学,2007,43(5):54-58.
    [39]刘秀萍,陈丽华,宋维峰,等.油松根系抗拉应力与应变全曲线试验研究[J].中国水土保持科学,2006,4(2):66-69.
    [40]刘秀萍,陈丽华,宋维峰,等.油松根系形态分布的分形分析研究[J].水土保持通报,2007,27(1):47-54.
    [41]刘秀萍,陈丽华,宋伟峰,等.油松根系抗拉应力与应变全曲线试验研究[J].中国水土保持科学,2006,4(2):66-70.
    [42]卢敦华,王星华.植被根系系统加固破碎岩坡的作用机理分析[J].科技导报,2007,25(23):55-58.
    [43]马时冬.土工格栅与土的界面摩擦特性试验研究[J].长江科学院院报,2004,21(1):11-14.
    [44]欧阳仲春.现代土工加筋技术[M].北京:人民交通出版社,1991.
    [45]潘义国,丁贵杰,彭云,等.关于植物根系在土壤抗侵蚀和抗剪切中的作用研究进展[J].贵州林业科技,2007,35(2):10-1.
    [46]彭书生.通过植被护坡对土质边坡浅层稳定性影响研究[D].中国科学院武汉岩土力学研究所硕土论文.2007:40-45.
    [47]史敏华,王棣.石灰岩区主要水保灌木根系分布特征与根抗拉力研究初报.山西林业科技,1994,(1):17-19.
    [48]石明强.高速公路边坡生态防护与植物固坡的力学分析[D].武汉:武汉理工大学,2007.
    [49]宋维峰,陈丽华,刘秀萍.林木根系固土作用数值分析[J].北京林业大学学报,2006,28(增刊2):80-84.
    [50]宋维峰,陈丽华,刘秀萍.树木根系固土力学机制研究综述[J].浙江林学院学报,2008,25(3):376-381.
    [51]宋维峰.林木根系与均质土间相互物理作用机理研究[D].北京:北京林业大学,2006:65-70.
    [52]孙立达,朱金兆.水土保持林体系综合效益研究与评价.北京:中国科学技术出版社,1995.
    [53]唐娴.公路边坡植物防护的水土保持机理[J].水土保持研究,2007.13(5):64-65.
    [54]《土工合成材料工程应用物册》编委会.土工合成材料工程应用手册(第二版)[M].北京:中国建筑工业出版社.2000,218-232.
    [55]王剑敏,沈烈英,赵广琦.中亚热带优势灌木根系对土壤抗剪切力的影响[J].南京林业大学学报(自然科学版),2011,35(2):47-50.
    [56]王可钧,李悼芬.植物固坡的力学简析[J].岩石力学与工程学报,1998,17(6):687-691.
    [57]王礼先.森林水文学研究发展概况[D].北京:北京林业大学出版社,1990.
    [58]王培清,王保田,陈西安.不同含水率对筋土界面抗剪强度的影响[J].施工技术,2007,36(8):86-89.
    [59]王萍花.华北地区4种常见乔木根系抗拉强度的力学综合模型[J].北京林业大学学报,2012,33(01):22-27.
    [60]王旭亮,聂宏.基于灰色系统GM(1,1)模型的疲劳寿命预测方法[J].南京航空航天大学学报,2008,40(6):845-848.
    [61]王玉杰,解明曙.三峡库区花岗岩山地林木对坡面稳定性影响的研究[J].北京林业大学学报,1997,19(4):7-11.
    [62]王钊.国外土工合成材料的应用研究[M].香港:现在知识出版社,2002.
    [63]吴景海,王德群,王铃娟,等.土工合成材料加筋的试验研究[J].土木工程学报,2002,6(35):93-99.
    [64]吴钦孝等著.森林保持水土机理及功能调控技术[M].北京:科学技术出版社,2005.
    [65]肖东升,张涛.边坡土体强度与植被根系作用的研究[J].路基工程,2008,1:135-137.
    [66]肖盛燮,周辉,凌天清.边坡防护工程中植物根系的加固机制与能力分析[J].岩石力学与工 程学报,2006,25(增1):2670-2674.
    [67]解明曙.乔灌木根系固坡力学强度的有效范围与最佳组构方式[J].水土保持学报,1990,4(1):17-24.
    [68]邢会文.4种植物根-土界面摩阻特性研究[D].内蒙古农业大学,2009.
    [69]熊燕梅,夏汉平,李志安,等.植物根系固坡抗蚀的效应与机理研究进展[J].应用生态学报,2007,18(4):895-904.
    [70]徐超,赵春风,叶观宝.关于土与土工合成材料界面的试验研究[J].同济大学学报,2004,32(3):307-312.
    [71]徐颧著.疲劳强度[M].北京:高等教育出版社.2004.
    [72]徐永年.人类活动及植被对坡体滑塌的影响[J].泥沙研究,1999,(3):33-39.
    [73]鄢朝勇,叶建军,韦书勇.植被对边坡浅层稳定的影响[J].水土保持研究,2007(1):24-28.
    [74]晏益力,宋云.植物根系-土体的相互作用力学模型[J].湖南城市学院学报(自然科学版),2006,15(2):10-11.
    [75]杨广庆,李广信,张保俭.土工格栅界面摩擦特性试验研究[J].岩土工程学报,2006,28(1):948-952.
    [76]杨焕辉,赵明华,刘小平.生态防护加固岩质边坡的机理分析及应用[J].中南公路工程,2007,32(1)47-50.
    [77]杨维西,黄治江.黄土高原九个水土保持树种根的抗拉力[J].中国水土保持,1988(9):47-49.
    [78]杨维西,赵廷宁,李生智,等.人工刺槐林和油松林的根系固土作用初探[J].水土保持学报,1988,2(4):38-43.
    [79]杨维西,赵廷宁,李生智,等.人工刺槐林采伐后根系固土作用的衰退状况[J].水土保持学报,1990,4(1):6-10.
    [80]杨亚川,莫永京,王芝芳,等.土壤-草本植被根系复合体抗水蚀强度与抗剪强度的试验研究[J].中国农业大学学报,1996(2):31-38.
    [81]杨永红.东川砾石土地区植被固土机理研究[D].成都:西南交通大学,2006.
    [82]姚环,郑振,游精佑,等.香根草护坡机理的初步试验研究[J].工程地质学报,2004(1):329-332.
    [83]姚卫星著.结构疲劳寿命分析[M].北京:国防工业出版社,2004.
    [84]叶建军,许文年,鄢朝勇,等.边坡生物治理回顾与展望[J].水土保持研究,2005,12(1):173-175.
    [85]野久田捻郎,林拙郎,等.由根系抗拉强度推算根系固坡效果[J].水上保持科技情报,1997.
    [86]张波,石名磊.粘土与筋带直剪试验与拉拔试验对比分析[J].岩土力学,2005,26(增刊):61-64.
    [87]张超波.林木根系固土护坡力学基础研究[D].北京林业大学博士论文,2011.
    [88]张东升.长江上游暗针叶林林木根系抗拉力学特性研究[D].北京林业大学硕士论文,2002.
    [89]张飞,陈静曦,陈向波.边坡生态防护中表层含根系土抗剪试验研究[J].土工基础,2005(3):25-27.
    [90]张谢东,石明强,赵来,刘志强.公路边坡植物根系固土的力学分析研究[J].交通科技,2008,226(1):50-52.
    [91]张新善,廖红建,邢心魁.桩土相互作用的力学特性室内式验[J].工程勘察,2005,6:1-4.
    [92]张兴玲,胡夏嵩,毛小青,等.青藏高原东北部黄土区护坡灌木柠条锦鸡儿根系拉拔摩擦试验研究[J].岩石力学与工程学报,2011,30(增2):3739-3745.
    [93]赵丽兵,张宝贵,苏志珠.草本植物根系增强土壤抗剪强度的量化研究[J].中国生态农业学报,2008(16)3:718-722.
    [94]赵丽兵,张宝贵.紫花苜蓿和马唐根的生物力学性能及相关因素的试验研究[J].农业工程学报,2007,23(9):7.
    [95]赵亚楠.芦苇的快速繁育方法及其根茎抗阻拉力研究[D].东北师范大学硕士论文.2006.
    [96]郑湘如.植物学[M],2001,9(1):58-59.
    [97]中国科学院中国植物志编辑委员会.中国植物志[M].北京:科学出版社,1961,251-253,185-186,236,112-115,356.
    [98]周德培,张俊云.植被护坡工程技术[M].人民交通出版社,2001.
    [99]周健,孔祥利,鞠庆海,李玉岐.土工合成材料与土界面的细观研究[J].岩石力学与工程学报.2007,16(增1):3176-3202.
    [100]周硕.林木根系拉伸力学特性研究[D].北京林业大学硕士论文,2011.
    [101]朱海丽,胡夏嵩,毛小青,等.青藏高原黄土区护坡灌木植物根系力学特性研究[J].岩石力学与工程学报,2008,27(Z2):3445-3452.
    [102]朱清科,陈丽华,张东升,等.贡嘎山森林生态系统根系固土力学机制研究[J].北京林业大学学报,2002,24(4):64-67.
    [103]周跃,陈晓平,李玉辉,等.云南松侧根对浅层土体的水平牵引效应的初步研究[J].植物生态学报,1999,23(5):458-465.
    [104]周跃,李宏伟,徐强.云南松幼村垂直根的土壤增强作用[J].水土保持学报,2000,14(5):110-113.
    [105]周跃,徐强,络华松,等.乔木侧根对土体的斜向牵引效应研究-(Ⅰ)原理和数学模型[J].山地学报,1999a,17(1):4-9.
    [106]周跃,徐强,络华松,等.乔木侧根对土体的斜向牵引效应研究-(Ⅱ)野外直测[J].山地学报,1999b,17(1):10-15.
    [107]周跃,张军,林锦屏,等.西南地区松属侧根的强度特征对其防护林固土护坡作用的影响[J].生态学杂志,2002,21(6):1-4.
    [108]Abe K, Iwamoto M,1986. An evaluation of tree-root effect on slope stability by tree-root strength. J Jpn Forestry Sci,69,505-510.
    [109]A G Bengough. A biophysical analysis of root growth under mechanical stress[J].Plant soil, 1997(18):155-164.
    [110]Anderson C.J.,Coutts M.P.,Ritchie R.M.,et al. Root extraction force measurements for Sitka Spruce[J]. Forestry,1989,62,127-137.
    [111]Atmatzidis D K, Athanasopoulos G A, Papantonopoulos C I. Sand-geotextile interaction by triaxial compression testing.In:5th Int Conf on Geotextiles, Geomembranes and Related Products,Vol 1. Singapore,1994.377-380.
    [112]Barker D H. The way ahead-continuing and future developments in vegetative slope engineering or ecoengineering.Vegetation and slopes:Stabilization, Protection and Ecology[M].London:Thomas Telford,1994,238-255.
    [113]Bischetti G B, Chiaradia E A, Epis T, Morlotti E,2009. Root cohesion of forest species in the Italian Alps. Plant Soil 324,71-89.
    [114]Bischetti G.B., Chiaradia E.A., Simonato T., et al.. Root Strength and Root Area Ratio of Forest Species in Lombardy (Northern Italy) [J]. Plant and soil,2005,278:11-22.
    [115]Bishop D M, Stevens M E,1964. Landslides on logged areas in southeast Alaska:Northern Forest Experiment Station, U.S.Forest Service, Research Paper NOR-1,18 p.
    [116]Broms B B, Chandrasekaran B,Wong K S. Fabric reinforced re-taining walls.In:Int Symposium on Application of GeosyntheticTechnology,KⅢ. Jakarta,1977.1-30.
    [117]Burroughs, E.R.J., Thomas, B.R., Declining root strength in Douglas-fir after felling as a factor in slope stability [J]. USDA Forest Service Department of Agriculture, Research Paper, 1977,INT-190,27.
    [118]Cammeraat E, van Beek R, Kooijman A,2005. Vegetation succession and its consequences for slope stability in SE Spain. Plant Soil 278,135-147.
    [119]Cofie P, Koolen A J, Perdok U D,2000. Measurement of stress-strain relationship of beech roots and calculation of the reinforcement effect of tree roots in soil-wheel systems. Soil Till Res 57,1-12.
    [120]Coppin N J, Richards 1 J,1990. Use of Vegetation in Civil Engineering. CIRIA, Butterworths, London.
    [121]D.Russell V. Jones, Neil Dixon. Shear strength properties of geomembrane/geotextile interfaces[J].GeotextilesandGeomembranes,1998,16:45-71.
    [122]Endo T., Tsuruta. T.. Effects of trees roots upon the shearing strengths of soils[J]. Annual Report of the Hokkaido Branch Government Forest Experimental Station Tokyo,1968,18,167-179.
    [123]Ennos A R,1990. The anchorage of leek seedlings:the effect of root length and soil strength. Ann Bot-London 65,409-416.
    [124]Esterhuizen,J.J.B.,Filz,GM.,and Duncan,J.M. Constitutive behavior of geosyntheticinterfaces.J.Geotech.AndGeoenvir.Engry.,ASCE,2001,127(10):834-840.
    [125]Felice A.Santagata, Gilda Ferrotti, Manfred N.Partl, Francesco Canestrari. Statistical investigation of two different interlayer shear test methods[C]. Materials and Structures,2008,87-89.
    [126]FogelR.1983. Root turnover and productivity of coniferous forests.Plant and Soil,71:75-85.
    [127]Genet M.,Stokes A.,Salin F.,et al.. The influence of cellulose content on tensile strength in tree roots[J]. Plant and Soil,2005,278:1-9.
    [128]Gray D H, Al-Refeai T,1986. Behavior of fiber-versus fiber-reinforced sand, J Geotech Engrg ASCE 112(8),804-820.
    [129]Gray D H,1974. Reinforcement and Stabilization of Soil by Vegetation. J Geotech Engrg ASCE (100(GT6)),695-699.
    [130]Gray D H,1995. Influence of vegetation on the stability of slopes. In:Barker, D.H. (Ed.),Vegetation and Slopes Stabilisation, Protection and Ecology. Thomas Telford House, London, pp.2-23.
    [131]Gray D H, Leiser A T,1982. Biotechacal Slope Protection and Erosion Control:New York, Van Nostrand Reinhold Co.271 p.
    [132]Gray D H, Megahan W F,1981. Forest vegetation removal and slope stability in the Idaho Batholith. Forest Service, U.S.DePt.of Agriculture, Research Paper INT-271,23 p.
    [133]Gray D H, Ohashi H,1983. Mechanics of fiber reinforcement in sand. J Geotech Eng 109 (3), 335-353.
    [134]Gray D H, Sotir R B,1996. Biotechnical soil bioengineering slope stabilization:A practical guide for erosion control. John Wiley & Sons, New York, NY.
    [135]Gray D H,1970. Effects of forest clear-cutting on the stability of natural slopes. Bull Assoc Eng Geolog 7,45-66.
    [136]Gray D H,1973. Effects of forest clear-cutting on the stability of natural slopes:results of field studies. University of Michigan, Dept.of Civil Engineering Report,119 p.
    [137]Gyssels G, Poesen J, Bochet E, Li Y,2005. Impact of plant roots on the resistance of soils to erosion by water:a review. Prog Phys Geog 29,189-217.
    [138]Hathaway R L, Penny D,1975. Root strength in some Populus and Salix clones. N Z J Bot 13, 333-344.
    [139]Jonathan F,Luiz C W,Ken M.Low cycle fatiguesimulation and fatigue life prediction of multilayercoated surfaces[J].Wear,2010,269(9):639:646.
    [140]Kassiff G., Kopelovitz A. Strength properties of soil-root systems [J]. Israel Institute of Technology,1968,256:44.
    [141]Lawrance CJ, Rickson RJ, Clark JE.1996. The effect of grass roots on the shear strength of colluvial soils in Nepal AndersonMG, Brooks SM, eds. Advances in Hillslope Processes. Vo.l 2. Chichester:JohnW iley& Sons:857-868.
    [142]Lee I W Y,1985. A review of vegetative slope stabilization. J Hong Kong Inst Engineer 13 (7),9-12.
    [143]Makarova O V, Cofie P, Koolen A J,1998. Axial stress-strain relationships of fine roots of Beech and Larch in loading to failure and in cyclic loading. Soil Till Res 45,175-187.
    [144]Manbeian T,1973.The influence of soil moisture suction,cyclicwetting and drying,and plant roots on the shear strength of cohesive soil[Ph.D. thesis]:Berkeley, CA, University of Califrnia, Department of Soil Science.
    [145]Mickovski S B,2005. Uprooting resistance of vetiver grass(Vetiveria zizanioides). Plant Soil 278,33-41.
    [146]Min-Woo Seo, Jun Boum Park, Inn joon Park,Moon-Kyung Chung.Modeling of Interface Shear Behavior between Geosynthetics[J].KSCE Journal of Civil Engineering.2003,7(l):9-16.
    [147]MIZAYAL IZGIN,ILDIZ WASTI.Geomembrane-geotextile interface shear properties as determined by inclined board and direct shear box tests[J].Geotextiles and Geomembranes,1998,16:207-219.
    [148]Nilaweera N S and Nutalaya P 1999 Role of tree roots in slope stabilisation.Bull.Eng.Geol.Env 57,337-342.
    [149]Norris J E,2005a. Root reinforcement by hawthorn and oak roots on a highway cut-slope in Southern England. Plant Soil 278,43-53.
    [150]Norris J E,2005b. Root mechanics applied to slope stability. PhD thesis, Nottingham Trent University, Nottingham, UK.
    [151]OPerstein V., Frydman S. The influence of vegetation on soil strength.Ground lmpro,2000,4:81-89.
    [152]PerssonH.1978. Root dynamics in a young Scots pine stand in centralSweden.Oikos,30: 508-519.
    [153]Roering J J, Schmidt K M, Stock J D, et al.,2003. Shallow landsliding, root reinforcement, and the spatial distribution of trees in the Oregon Coast Range. Can Geotech J 40,237-253.
    [154]Schiechtl H M,1980. Bioengineering for land reclamation and conservation. University of Alberta Press, Edmonton, Alberta, Canada.
    [155]Shewbridge S.The influence of fiber properties on the deformation characteristics of a reinforced sand[D].Berbely:University of California,1987.
    [156]Stokes A, Lucas A, Jouneau L,2007b. Plant biomechanical strategies in response to frequent disturbance:uprooting of Phyllostachys nidularia (Poaceae) growing on landslide prone slopes in Sichuan, China Am J Bot 94,1129-1136.
    [157]Tan S A, chew S H, Wong W K. Sand-goeotextile interface shear strength by torsionalring shear tests[J].Geotextiles and Geomenrbrance,1998,16:161-174.
    [158]Thome C.R. Effects of vegetation on riverbank erosion and stability[M]. Thomes J.B.Vegetation and Erosion Processes and Environments New York John Wiley and Ssns,1990,125-144.
    [159]Tosi M,2007. Root tensile strength relationships and their slope stability implications of three shrub species in the Northern Apennines (Italy). Geomorphology 87,268-283.
    [160]Turmanina V,1965. On the strength of tree roots. Bull Moscow Soc Naturalists, Biol Sec 70, 36-45.
    [161]Waldron L J,1977. The shear resistance of root permeated homogenous and stratified soil. Soil Sci Soc Am J 41,843-849.
    [162]Waldron L J, Dakessian S,1982. Effect of grass, legume, and tree roots on soil shearing resistance. J Soil Sci Soc Am 46,894-899.
    [163]Waldron L J, Dakessian S,1981. Soil reinforcement by roots:Calculation of increased soil shear resistance from root properties. Soil Sci 132,427-435.
    [164]Watson A, Phillips C, Marden M,1999. Root strength, growth, and rates of decay:root reinforcement changes of two tree species and their contribution to slope stability. Plant Soil 217,39-47.
    [165]W.D.Deng,C.Z.Deng,Q.R.Yan. Study on Direct Shear on Interface Performance of Geogrid and Corase grained Soil[C].Proceedings of the 4th Asian Regional Conference on Geosynthetics,2008,157-160.
    [166]Wu T H,1984. Effect of vegetation on slope stability. Soil reinforcement and moisture effects on slope stability. Transportation Research Board, Washington DC.
    [167]Wu T H, Watson A J, El-Khouly M A,2004. Soil-root interaction and slope stability. In: Barker DH, Watson AJ, Sombatpanit B, Northcut B, Magliano AR (eds) Ground and Water Bioengineering for Erosion Control and Slope Stabilization. Science Publishers Inc. USA, pp 183-192.
    [168]Wu T H,1976. Investigation of Landslides on Prince of Wales Island. Geotechnical Engineering Report 5. Civil Engineering Department, Ohio State University, Columbus, Ohio, USA.
    [169]Wu T H,2007. Root reinforcement analyses and experiments. In:Eco-and ground bio-engineering:the use of vegetation to improve slope stability. Developments in plant and soil sciences-Stokes A, Spanos I, Norris JE, Cammeraat LH, eds. Dordrecht:Springer. 21-30.
    [170]Wu T H, McKinnell W P III, Swanston D N,1979. Strength of tree roots and landslides on price of Wales Island, Alaska. Can Geotech J 16(1),19-33.
    [171]Wu T H, Watson A,1998. In situ shear tests of soil blocks with roots. Can Geotech J 35(4), 579-590.
    [172]Zaruba R,Mencl V. Landslides and their Control.Amsterdaln:Elsevier Scientific,1982,324.
    [173]Zhang X C,Xuan F Z.Stress-dependent fatiguemechanisms of CrC-NiCr coatings in rolling contact[J].Fatigue & Fracture of Engineering Materials & Structures,2011,34(6):438-447.
    [174]Ziemer R R,1981. Roots and the stability of forested slopes. IAHS Publication 132,343-357.
    [175]Ziemer R R, Swanston D N,1977. Root strength changes afterer logging in southeast Alaska. Forest Service, U.S. Department of Agriculture, Research Note PNW-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700