用户名: 密码: 验证码:
棉花蔗糖合成酶基因(Sucrose Synthase 3)启动子结构、功能及其调控分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是一种种植非常广泛的重要经济作物,它主要提供天然的纺织纤维。棉纤维是一个单细胞体,因此可作为研究细胞伸长、细胞壁和纤维素合成的一个模式系统。其发育过程可分为4个相互交迭的阶段:起始、伸长、次生壁形成、成熟,由此得到成熟的棉纤维。棉花在开花时,大约有15-25%的胚珠表皮层细胞可分化发育成长绒纤维细胞。至今,人们对棉花纤维细胞起始的分子机制还了解的很少。棉花蔗糖合成酶(SuSy)是近十年的研究所发现的一系列在棉纤维起始阶段起调控作用的功能基因之一。SuSy催化蔗糖分解为果糖和UDP-葡萄糖,为纤维素的合成提供底物。研究者发现SuSy促进棉纤维细胞的分化与伸长,同时SuSy在棉纤维细胞的起始和伸长等一系列活动中起着至关重要的作用,以RNA干扰的方式抑制该基因的表达后会使转基因棉花出现无毛的表型。
     研究与棉纤维发育相关基因的启动子元件及调节这些基因表达的转录因子有助于了解棉花纤维起始和发育相关的分子机制。拟南芥从结构和遗传学来看,它与棉花纤维有一定的相似性。拟南芥的转基因技术成熟,效率相对较高,且生长周期短,一般2-3个月即可完成一代。因此,本研究利用拟南芥来进行棉花SuSy启动子及相关调控的研究。结果如下:
     1.根据Genbank中SuSy的cDNA序列(U73588)获得了该基因的基因组DNA全长序列,与拟南芥中的蔗糖合成酶家族进行比较分析后发现,棉花SuSy与拟南芥中的AtSus1和AtSus4在基因的结构及外显子的长度上都有非常高的相似性;
     2.经过三次基因组步移后,成功获得了长为1554bp的SuSy基因5′上游序列,同时分离出了SuSy编码区的第一个内含子,构建了启动子不用长度的5′端缺失载体及内含子相关的载体,通过农杆菌介导转化野生型拟南芥,经过筛选后获得可以稳定遗传的各载体转基因拟南芥株系;
     3.棉花SuSy启动子可以驱动GUS基因在转基因拟南芥的维管组织、毛刺、子叶、根、根毛以及花器官中表达。-554bp到-1554bp之间的片段对启动子的活性有非常明显的增强作用,可以达到20倍以上;
     4.赤霉素只对1152bp的启动子片段有调控作用,可以提高2.5倍GUS的活性,但对全长及810bp以内的启动子片段没有调控作用;
     5.启动子-296到-376之间的80bp片段对SuSy启动子在拟南芥毛刺中的活性起着决定作用,同时也对其在花粉中的活性有一定的影响;
     6.启动子上-96bp处有一个W-box序列,将该序列突变后并不影响启动子的组织特异性,但可以降低启动子的活性为原来的1/3:
     7.棉花SuSy基因编码区的第一个内含子在与其启动子协同下可以特异抑制GUS基因在花粉中表达,并且在其他组织中降低GUS的活性,这种抑制作用可以达到一个数量级;
     8.以赤霉素对内含子相关的转基因拟南芥进行处理,可以使GUS的活性提高4倍,这种增强作用可能与内含子上的P-box有关。
Cotton fibers play an important economic role in the world, it supplys the crude fiber for textile. Each cotton fiber is a highly elongated single cell of maternal origin that initiates from the ovule epidermis outer layer at or just before anthesis. It is divided into four distinct but overlapping phases: initiation, elongation, secondary wall synthesis and maturation. About 15-25%of the epidermal layer cells differentiates and develops lint fibers. In recent decade many studies were focused on molecular mechanism of the cotton fiber development. The cotton sucrose synthase 3 (SuSy) is one of the functional genes which were found involving in cotton fiber cell initiation and elongation, plays a role in carbohydrate partitioning and ovule development. It catalyzes a reversible reaction from sucrose to fructose and UDP-glucose, and the latter is the prefect substrate for cellulose biosynthesis in cotton fiber. Several studies have indicated that SuSy performed a very important role during the fiber initiation and elongation. Furthermore, down-regulation of SuSy mRNA levels in the cotton ovular epidermis by RNAi leads a fiber-less phenotype.
     Efforts to understand and manipulate fiber development would be enhanced by an improved knowledge of the promoter elements and transcription factors that regulate fiber relative gene expression. The structure and genetic control of trichome morphogenesis of Arabidopsis have been extensively characterized, showing a number of structural and genetic similarities to cotton fibers. Thus, it has been possible to monitor the activity of cotton fiber relative promoters in this hetreologous model specie. The results are described as following:
     1. According to the sequence of SuSy cDNA (U73588), genomic DNA of this gene was isolated by PCR. There are 13 exons in the gene coding region and its genomic structure has a high similarity with Sus1 and Sus4 of Arabidopsis thaliana in the length of exons;
     2. A1554bp promoter fragment was isolated by LA PCR~(TM) in vitro cloning kit after three times PCR- based genome walking. The promoter then fused to GUS gene with a part of the first exon of SuSy and three binary vectors related to intron were constructed. All resulting vectors were transformed into Arabidopsis thaliana mediated by agrobacterium;
     3. The transgenic plants demonstrated highly specific GUS expression in the vascular tissue, trichome, cotyledon, root, root hair and flower. The region between -554 and -1554 enhanced the GUS activity to more than 20 fold more than that of 554bp promoter fragment;
     4. GA_3 could make the GUS activity of 1152bp promoter fragment (Susp8::1301) increasing 2.5 times, but has no effect on that of the whole promoter (Susp9::1301)and the other fragments less than 810bp (Susp7::1301, Susp6::1301, Susp5::1301, Susp4::1301);
     5. The fragment from the -296 to -396 is essential for the promoter activity in transgenic Arabidopsis trichome, and also play a role in driving GUS expression in pollen;
     6. Mutation of a W-box in the position of -96bp reduced the GUS activity in transgenic plants, but no changes were found of the promoter tissue specificity;
     7. The intron specific inhibited the GUS expression in mature pollen and reduced 90% GUS activity in other tissues;
     8. GA_3 enhanced the GUS activity in Susp9fi::1301 transgenic plant with 4 fold.
引文
Alan BR. 2004. The effect of intron location on intron-mediated enhancement of gene expression in Arabidopsis, The plant journal, 40:744-751
    Applequist WL, Cronn R, Wendel JF. 2001. Comparative development of fiber in wild and cultivated cotton. Evolution and Development 3:3-17.
    Basra A, Malik CP. 1984. Development of the cotton fiber. International Review of Cytology 89:65-113.
    Cameron SJ, Ben K, David RS. 2002. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. The Plant Cell 14:1359-1375.
    Chee PP, Klassy RC, Slightom JL. 1986. Expression of a bean storage protein 'phaseolin minigene' in foreign plant tissues. Gene 41: 47-57.
    Desai A, Chee PW, Rong J, May OL, Paterson AH. 2006. Chromosome structural changes in diploid and tetraploid A genomes of Gossypium. Genome 49: 336-345.
    Deutsh M, Long M. 1999. Intron-exon structure of eukaryotic model organisms. Nucleic Acids Research 30: 3219-3228.
    Esch JJ, Chen M, Sanders M, Hillestad M, Ndkium S, Idelkope B, et al. 2003. A contradictory GLABRA3 allele helps define gene interactions controlling trichome development in Arabidopsis. Development 130: 5885-5894.
    Gallie DR, Young TE. 1994. The regulation of gene expression in transformed maize aleurone and endosperm protoplasts. Analysis of promoter activity, intron enhancement and mRNA untranslated regions on expression. Plant Physiology 106: 929-939.
    Curi GC, Chan RL, Gonzalez DH. 2005. The leader intron of Arabidopsis thaliana genes encoding cytochrome c oxidase subunit 5c promotes high-level expression by increasing transcript abundance and translation efficiency, Journal of Experimental Botany 56: 2563-2571.
    Graves DA, Stewart JM. 1988. Chronology of the differentiation of cotton (Gossypium hirsutum L. fiber cells. Planta 175: 254-258.
    Fu HY, Kim SY, Park WD. 1995. A Potato Sus3 Sucrose Synthase Gene Contains a Context-Dependent 3' Element and a Leader lntron with Both Positive and Negative Tissue-Specific Effects. The Plant Cell 7:1395-1403.
    Fu HY, Kim SY, Park WD. 1995. High-level tube expression and sucrose inducibility of a potato Sus4 sucrose synthase gene require 5' and 3' flanking sequence and the leader intron. The Plant Cell 7:1387-1394.
    Higo K, Ugawa Y, Iwamoto M, Korenaga T. 1999. Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Research 27: 297-300.
    Hulskamp M. 2004. Plant trichomes: a model for cell differentiation. Nature Reviews. Molecular Cell Biology 5: 471-480.
    Hulskamp M, Misera S, Jurgens G. 1994. Genetic dissection of trichome cell development in Arabidopsis. Cell 76:555-566.
    Jefferson R A. 1987. Assaying chimaeric genes in plants: the gus gene fusion system. Plant Molecular Biology Reporter 5:387-405.
    Ji SJ, Lu YC, Feng JX, Wei G, Li J, Shi YH, et al. 2003. Isolation and analyses of gene preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array. Nucleic Acids Research 31: 2534-2543.
    John ME. 1996. Structural characterization of genes corresponding to cotton fiber mRNA, E6: reduced E6 protein in transgenic plants by antisense gene. Plant Molecular Biology 30:297-306.
    John ME, Crow LJ. 1992. Gene expression in cotton (Gossypium hirsutum L.) fiber: cloning of the mRNAs. Proceedings of the National Academy of Sciences of the USA 89: 5769-5773.
    Jeon JS, Lee S, Jung KH, Jun SH, Kim CH, An GH. 2000. Tissue-Preferential Expression of a Rice a-Tubulin Gene, OsTubA1, Mediated by the First Intron. Plant Physiology 123: 1005-1014.
    Casas-Mollano JA, Lao NT, Kavanagh A. 2006. Intron-regulated expression of SUVH3, an Arabidopsis Su(var)3-9 homologue. Journal of Experimental Botany 57: 3301-3311.
    Kim HJ, Triplett BA. 2001. Cotton fiber growth in planta and in vitro: models for plant cell elongation and cell wall biogenesis. Plant Physiology 127: 1361-1366.
    Kim HJ, Triplett BA. 2004. Characterization of GhRacl GTPase expressed in developing cotton (Gossypium hirsutum L.) fibers. Biochimica et Biophysica Acta 1679: 214-221.
    Kirik V, Simon M, Hulskamp M, Schiefelbein J. 2004. The ENHANCER OF TRY AND CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis. Devolopment Biology 268: 506-513.
    Larkin JC, Oppenheimer DG, Pollock S, Marks MD. 1993. Arabidopsis GLABROUS1 gene requires downstream sequences for function. The Plant Cell 5: 1739-1748.
    Morello L, Bardini M, Sala F, Breviario D. 2002. A long leader intron of the Ostub16 rice b-tubulin gene is required for high-level gene expression and can autonomously promote transcription both in vivo and in vitro. The Plant Journal 29:33-44.
    Larkin JC, Oppenheimer DG, Lloyd AM, Paparozzi ET, Marks MD. 1994. Roles of the GLABROUS1 and TRANSPARENT TESTA GLABRA genes in Arabidopsis trichome development. The Plant Cell 6:1065-1076.
    Lee JJ, Hassan OSS, Gao W, Wang J, Wei EN, Russel JK, et al. 2006. Developmental and gene expression analyses of a cotton naked seed mutant. Planta 223: 418-432.
    LeHir H, Nott A, Moore MJ. 2003. How introns influence and enhance gene expression. Trends in the Biochemical Sciences 28,215-220.
    Li CH, Zhu YP, Meng YL, Wang JW, Xu KX, Zhang TZ, et al 2002. Isolation of genes preferentially expressed in cotton fibers by cDNA filter arrays and RT-PCR. Plant Science 163:1113-1120.
    Loguercio LL, Zhang JQ, Wilkins TA. 1999. Differential regulation of six novel MYB-domian genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.). Molecular and General Genetics 261: 660-671.
    Lohmer S, Maddaloni M, Motton M. 1991. The maize regulatory locus Opaque-2 encoding a DNA-binding protein which activates the transcription of b-32 gene. EMBO J 10: 617-624.
    Lolle SJ, Cheung AY, Sussex IM. 1992. Fiddlehead: an Arabidopsis mutant constitutively expressing an organ fusion program that involves interactions between epidermal cells. Developmental Biology 152: 383-392.
    Marks MD. 1997. Molecular genetic analysis of trichome development in Arabidopsis. Annual Review of Plant Physiology and Plant Molecular Biology 48: 137-163.
    Mascarenhas D, Mettler I J, Perece D A. 1990. Intron-mediated enhancement of heterologous gene expression in maize. Plant Molecular Biology 15: 913-920.
    Mass C, Laufs J, Grant S. 1991. The combination of novel stimulatory element in the first exon of maize Shrunken-1 gene with the following intron 1 enhances report gene expression up to 1000-fold. Plant Molecular Biology 16:199-207.
    Mena M, Cejudo FJ, Isabel-Lamoneda I, Carbonero P. 2002. A Role for the DOF Transcription Factor BPBF in the Regulation of Gibberellin-Responsive Genes in Barley Aleurone. Plant Physiol 130: 111-119.
    Morita A, Umemura T, Kuroyanagi M, Futsuhara Y, Perata P, Yamaguchi J. 1998. Functional dissection of a sugar-repressed alpha-amylase gene (Ramy1A) promoter in rice embryos. FEBS Lett 423:81-85.
    Payne T, Clement J, Arnold D, Lloyd A. 1999. Heterologous myb genes distinct from GL1 enhance trichome production when overexpressed in Nicotiana tabacum. Development 126:671-682.
    Pesch M, Hu¨lskamp M. 2004. Creating a two-dimensional pattern de novo during Arabidopsis trichome and root hair initiation. Current Opinion in Genetics & Development 14:422-427.
    Percival AE, Wendel JF, Stewart JM. 1999. Taxonomy and germplasm resources. In: Smith CW, Cothren JT, eds. Cotton: origin, history, technology, and production. New York, NY: John Wiley & Sons, 33-63.
    Prestridge, D S. 1991. SIGNAL SCAN: A computer program that scans DNA sequences for eukaryotic transcriptional elements. CABIOS 7: 203-206.
    Pruitt RE, Vielle-Calzada JP, Ploense SE, Grossniklaus U, Lolle SJ. 2000. FIDDLEHEAD, a gene required to suppress epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme. Proceedings of the National Academy of Sciences of the USA 97: 1311-1316.
    Rerie WG, Feldmann KA, Marks MD. 1994. The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in Arabidopsis. Genes & Development 8: 1388-1399.
    Ruan YL, Chourey PS. 1998. A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds. Plant Physiology 118: 399-406.
    Ruan YL, Lewellyn D, Furbank R. 2001. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and k(t) transporters and expansin. The Plant Cell 13: 47-60.
    Ruan YL, Lewellyn DJ, Furbank RT. 2003. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. The Plant Cell 15: 952-964.
    Ruan YL, Xu SM, White R, Furbank RT. 2004. Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover. Plant Physiology 136: 4104-4113.
    Ruan YL. 2007. Rapid cell expansion and cellulose synthesis regulated by pamodesmata and sugar: insights from the single-celled cotton fibre. Functional Plant Biology 34: 1-10.
    Salgueiro S, Pignocchi C, Parry MAJ. 2000. Intron-mediated gusA expression in tritordeum and wheat resulting from particle bombarment. Plant Molecular Biology 42: 615-622.
    Schellmann S, Schnittger A, Kirik V, Wada T, Okada K, Beermann A, et al. 2002. TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis. EMBO Journal 21: 5036-5046.
    Schellmann S, Hulskamp M. 2005. Epidermal differentiation: trichomes in Arabidopsis as a model system. International Journal of Developmental Biology 49: 579-584.
    Schnittger A, Folkers U, Schwab B, Jurgens G, Hulskamp M. 1999. Gneeration of a spacing pattern: The role of TRIPTYCHON in trichome patterning in Arabidopsis. The Plant Cell 11:1105-1116.
    Serna L, Martin C. 2006. Trichomes: different regulatory networks lead to convergent structures. Trends in Plant Science 11:274-280.
    Sebastien Baud, Marie-Noelle Vaultier, Christine Rochat. 2004. Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. Journal of Experimental Botany 396: 397-409.
    Smith CW, Cothren JT. 1999. Cotton: origin, history, technology, and production. New York, NY: John Wiley & Sons.
    Suo J, Liang X, Pu L, Zhang Y, Xue Y. 2003. Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.). Biochimica et Biophysica Acta 1630: 25-34.
    Seven K. Deaney, Sharon J. Orford, Michael Martin-Harris, Jeremy N. Timmis. 2007. The fiber specificity of cotton FSltp4 gene promoter is regulated by an AT-rich promoter region and the AT-Hook transcription factor GhAT1. Plant Cell Physiol 48: 1426-1437.
    Sinibaldi RM, Mettler IJ. 1992. Intron splicing and intron mediated-enhanced expression in monocots. Progress of Nucleic Acids Resarch Molecular Biology 42: 229-257.
    Steven JC, Andrew FB. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16: 135-743.
    Szymanski DB, Marks MD. 1998. GLABROUS1 overexpression and TRIPTYCHON alter the cell cycle and trichome cell fate in Arabidopsis. The Plant Cell 10: 2047-2062.
    Szymanski DB, Lloyd AM, Marks MD. 2000. Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis. Trends in Plant Science 5: 214-219.
    Sun C, Palmqvist S, Olsson H, Boren M, Ahlandsberg S, Jansson C. 2003. A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. The Plant Cell 15: 2076-2092.
    Taliercio EW, Boykin D. 2007. Analysis of gene expression in cotton fiber initials. BMC Plant Biology 7: 22.
    Tanka A, Mita S, Ohta S. 1990. Enhancement of forgien gene expression by a dicot intron in rice but not in tobacoo is correlated with an increased level of mRNA and an efficient spilicing of the intron. Nucleic Acids Research 18: 6767-6770.
    Tiwari SC, Wilkins TA. 1995. Cotton (Gossypium hirsutum) seed trichomes expand via diffuse growing mechanism. Canadian Journal of Botany 73:746-757.
    Van't Hof J. 1999. Increased nuclear DNA content in developing cotton fiber cells. American Journal of Botany 86: 776-779.
    Wada T, Tachibana T, Shimura Y, Okada K. 1997. Epidermal cell differentiation in Arabidopsis determined by a Myb homolog, CPC. Science 277: 1113-1116.
    Wang S,Wang JW, Yu N, Li CH, Luo B, Gou JY, et al. 2004. Control of plant trichome development by a cotton fiber MYB gene. The Plant Cell 16:2323-2334.
    Wendel JF. 1989. New World tetraploid cottons contain Old World cytoplasm. Proceedings of the National Academy of Sciences of the USA 86:4132-4136.
    Wendel JF, Cronn RC. 2003. Polyploidy and the evolutionary history of cotton. Advances in Agronomy 78: 139-186.
    Wilkins TA, Jernstedt JA. 1999. Molecular genetics of developing cotton fibers. In: Basra AM, ed. Cotton fibers. New York, NY: Hawthorne Press, 231-267.
    Wu Y, Machado AC, White RG, Llewellyn DJ, Dennis ES. 2006. Expression profiling identifies genes expressed early during lint fibre initiation in cotton. Plant Cell Physiology 47:107-127.
    Xie Z, Zhang Z L, Zou X, Yang G, Komatsu S, Shen Q. 2006. Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin signaling in aleurone cells. Plant Journal 46: 231-242.
    Xu YH, Wang JW, Wang S, Wang JY, Chen XY. 2004. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-δ-cadinene synthase-A. Plant Physiology 135: 507-515.
    Yang SS, Cheung F, Lee JJ, Ha M, Wei NE, Sze SH, et al. 2006. Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. The Plant Journal 47: 761-775.
    Yephremov A,Wisman E,Huijser P,Huijser C,Wellesen K,Saedler H.1999.Characterization of the FIDDLEHEAD gene of Arabidopsis reveals a link between adhesion response and cell differentiation in the epidermis.The Plant Cell 11:2187-2201.
    Kim YJ,Lee SH,Park KY.2004.A leader intron and 115-bp promoter region necessary for expression of the carnation S-adenosylrnethionine decarboxylase gene in the pollen oftransgenic tobacco.FEBS Lett 578:229-235.
    Zhang ZL,Xie Z,Zou X,Casaretto J,Ho TH,Shen QJ.2004.A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells.Plant Physiology 134:1500-1513.
    Zhu YP,Xu KX,Luo B,Wang JW,Chert XY.2003.An ATP-binding cassette transporter GhWBC1 from elongating cotton fibers.Plant Physiology 133:580-588.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700