用户名: 密码: 验证码:
核磁共振T2谱反演及流体识别评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提出两种核磁共振T2谱反演方法:共轭梯度法和M-P广义逆法。共轭梯度法首先建立反演的目标函数,然后利用共轭梯度法具有二次终止性、收敛速度快的特点求该目标函数的极小值从而得到T2谱,采用迭代和平方两种方法实现T2谱的非负约束;M-P广义逆法首先推导出T2谱反演的M-P广义逆解,然后采用截断法或阻尼法使反演结果稳定,并应用迭代技术进行T2谱的非负约束。数值实验及岩心和测井的实际应用表明:共轭梯度法和M-P广义逆法都可以有效地应用于岩心数据和测井资料的T2谱反演中;共轭梯度法可用于信噪比SNR≥5的T2谱反演,但迭代约束速度慢,平方约束容易陷入局部极小;M-P广义逆法可用于SNR≥10的双峰谱和SNR≥20的三峰谱反演,对于测井的多点连续反演只需进行一次奇异值分解,反演速度比共轭梯度法大为提高。
     分析T2谱反演的影响因素:回波采集参数及质量(回波间隔、回波个数、回波采集时间、信噪比)、T2谱反演设置参数(布点个数、布点范围)和T2谱形态(单峰、双峰、三峰),给出反演质量评价与控制的指标:条件数、回波数据分辨矩阵、T2谱参数分辨矩阵、展伸系数和方差。应用数值实验和质量评价与控制指标研究了上述各种因素对反演质量的影响,指出提高反演质量的途径,指导岩心核磁共振实验和核磁共振测井的测前设计。
     基于CPMG和DE脉冲序列,提出核磁共振储层流体一维T2谱分离方法。该方法首先建立储层岩石多流体弛豫模型,然后采用稳健的反演技术从CPMG和DE脉冲序列测量的多组回波数据中分离反演出无扩散水T2谱(表面弛豫谱)、无扩散油T2谱(自由弛豫谱)和扩散气T2谱(扩散弛豫谱)。该方法在油气水T2谱重合的情况下仍可以分离出各自的T2谱,克服了常规核磁共振流体识别方法(TDA和DIFAN)只针对视谱(油气水混合谱)解释计算的缺陷。不同含水饱和度的油水和气水两相正反演数值实验表明:反演的无扩散水T2谱、无扩散油T2谱和扩散气T2谱与构造的T2谱符合得很好。因此该方法在理论上是可行的,可以进一步应用于实验室和测井的流体识别与评价工作中,检验其实用性。
Conjugate gradient method and M-P generalized inverse method of NMR T2 spectrum inversion are proposed in this thesis. Conjugate gradient method builds up the inversion objective function at first, then searches the minimum of the objective function with the conjugate gradient algorithm that has quick convergence rate and quadratic termination,and puts Non-negativity constraint of T2 spectrum into practice by way of iteration and square at last. M-P generalized inverse method deduces the solution of M-P generalized inverse of the T2 spectrum inversion at first, then The stability and resolution of the solution are ensured by discarding some small singular values or adding damping term, finally, the non-negativity constraint of T2 spectrum is realized by iterative technique. Numerical simulation and practical application of core and log demonstrates:Both methods can be applied in T2 spectrum inversion of drilling core and well logging effectively; Conjugate gradient method can be used in the situation of the signal to noise ratio(SNR)≥5,but iteration non-negativity constraint is slow and square non-negativity constraint is easy to fall into local minimum of the function; M-P generalized inverse method can be applied in bimodal spectrum of SNR≥10 and trimodal spectrum of SNR≥20, its inversion velocity is larger than Conjugate gradient method in the inversion of log because it need singular value decomposition(SVD) once only as to continuous logging data.
     There are several influential factors of T2 spectrum inversion:Quality and parameters of echoes acquisition that include echo spacing,echo numbers, acquisition time and SNR, Presupposition parameters of inversion that include numbers and range of T2 value, shape of T2 spectrum that include single modal,bimodal and trimodal distribution. Quality evaluation and control indices of T2 spectrum inversion that include conditional number, echo data resolution matrix, T2 spectrum parameter resolution matrix, spread coefficient and variance are proposed. All kinds of influential factors above mentioned are studied applying numerical simulation and evaluation and control indices of quality.Approaches to improve quality of inversion are suggested so that they can direct prelog designing of core experiment and well logging.
     The method of NMR one-dimension T2 spectrum separation of reservoir fluid is proposed based on CPMG and DE(Difussion Editing) pulse sequence. It builds up multi-fluid relaxation model of Oil-Water and Gas-Water of reservoir firstly. Then non-difussion water T2 spectrum (surface relaxation spectrum), non-difussion oil T2 spectrum (bulk relaxation spectrum) and gas T2 spectrum (difussion relaxation spectrum) are inverted from several echo trains which come from CPMG and DE pulse sequence by robust inversion technique. By this method conincidence T2 spectrum of oil, gas and water can be separated from each one. It overcomes the defect of conventional fluid identification methods (TDA and DIFAN), which interpret and calculate apparent spectrum(composite spectrum of oil,gas and water). Forward and inverse numerical experiment from different water saturation in two phases of Oil-Water and Gas-Water shows that the inversion of non-difussion water T2 spectrum, non-difussion oil T2 spectrum and difussion gas T2 spectrum accord with those of artificial spectrum respectively well. So this method is feasible theoretically. Its practicability can be verified further by being used in identification and evaluation of reservoir fluid in laboratory and well logging.
引文
[1]毕林锐.核磁共振测井技术的最新若干进展[J].工程地球物理学报,2007,4(4):369~374.
    [2]谢然红,肖立志,邓克俊,等.二维核磁共振测井[J].测井技术,2005,29(5):430~434.
    [3]王为民.核磁共振测井理论与应用[M].北京:石油工业出版社,1998:18~43.
    [4]肖立志.核磁共振成像测井与岩石核磁共振及其应用[M].北京:科学出版社,1998,30~100.
    [5] George Coates,肖立志等.核磁共振测井原理与应用[M].北京:石油工业出版社,2007.91~113.
    [6]赵文杰,谭茂金:胜利油田核磁共振测井技术应用回顾与展望[J].地球物理学进展,2008,23(3):814~821.
    [7]运华云,赵文杰,周灿灿,等.利用T2分布进行岩石孔隙结构研究[J].测井技术, 2002, 26(1):18~21.
    [8]谭茂金,赵文杰,范宜仁.用核磁共振测井双TW观测数据识别储层流体性质[J].天然气工业, 2006,16(4):51~53.
    [9]邵维志,刘德武,韩成.利用T2谱评价板桥潜山油气藏[J].测井技术, 2000,24(5): 345~350.
    [10]李召成,孙建孟,耿生臣,等.应用核磁共振测井T2谱划分裂缝型储层[J].石油物探,2001, 40(4):113~116.
    [11]谭茂金,赵文杰.用核磁共振测井资料评价碳酸盐岩等复杂岩性储集层[J].地球物理学进展. 2006, 25(2): 42~49.
    [12]赵文杰. NMR测井资料在复杂砂泥岩油气层解释中的应用[J].测井技术. 2001, 16(2):42~49.
    [13]彭智,赵文杰,张晋言,等.胜利油田基山砂岩体产能预测研究[J].测井技术, 2004, 28(5):423~427.
    [14]林振洲,潘和平.核磁共振测井进展[J].工程地球物理学报,2006,3(4):295~304.
    [15]卢文东,肖立志,李伟,肖东.内部磁场梯度引起的扩散对NMR岩石测量响应的影响[J].地球物理学进展,2007,22(2):556~561.
    [16]原宏壮,陆大卫,张辛耘,等.测井技术新进展综述[J].地球物理学进展,2005,20(3):786~795.
    [17]申本科,王贺林,宋相辉,等.低电阻率油气层的测井系列研究[J].地球物理学进展,2009,24(4):1437~1445
    [18]Prammer M G. Lithology-Independent Gas Detection By Gradient-NMR Logging[R].SPE30562,1995
    [19]Rosa D. Use of the NMR Diffusivity Log To Identify and Quantify Oil and Water in Carbonate Formations[R]. SPE101396, 2008
    [20]Akkurt R. Determination of Residual Oil Saturation Using Enhanced Diffusion[R].SPE49014,1998
    [21] Slijkerman W F J.Processing of Multi-Acquisition NMR Data[R].SPE56768,1999
    [22]谢然红,肖立志,邓克俊.核磁共振测井孔隙度观测模式与处理方法研究[J].地球物理学报,2006,49(5):1567~1572
    [23]何雨丹,毛志强,肖立志,等.核磁共振T2分布评价岩石孔径分布的改进方法[J].地球物理学报,2005,48(2):373~378
    [24]Sun B Q. NMR Inversion Methods For Fluid Typing,SPWLA 44th Annual Logging Symposium, June 22-25[C],2003
    [25]Butler J P, Reeds J A, Dawson S V. Estimating solutions of first kind integral equations with nonnegative constraints and optimal smoothing. SIAMJ Numer Anal,1981,18(3):381~397.
    [26]Dunn K J, Latorraca G A, Warner J L. On the calculation and interpretation of NMR relaxation time distribution. SPE28367, 69th Annual SPE Technical Conference and Exhibition, New Orleans, 1994. 45~54.
    [27]Mohnke O, Yaramanci U. Smooth and block inversion of surface NMR amplitudes and decay times usingsimulated annealing. Journal of Applied Geophysics, 2002,50: 163~177.
    [28]Dunn K J, Latorraca G A. The inversion of NMR log data sets with different measurement errors. Journal of Magnetic Resonance, 1999,140: 153~161.
    [29]王为民,李培,叶朝辉.核磁共振弛豫信号的多指数反演[J].中国科学( A辑),2001,31(8):730~736.
    [30]翁爱华,李舟波,王雪秋,陆敬安,莫修文.基于回归M-估计的核磁测井数据反演[J].石油地球物理勘探,2002,37(3).258~261.
    [31]王忠东,肖立志,刘堂宴.核磁共振弛豫信号多指数反演新方法及其应用[J].中国科学(G辑),2003,33(4):323~333.
    [32]王才志,尚卫忠.应用奇异值分解算法的核磁共振测井解谱方法[J].石油地球物理勘探,2003,38(1):91~94.
    [33]姜瑞忠,姚彦平,苗盛等.核磁共振T2谱奇异值分解反演改进算法[J].石油学报,2005,26(6):57~59.
    [34]童茂松,李莉,姜亦忠等.岩石激发极化衰减谱的多指数反演[J].物探化探计算技术,2006,28(2):133~136.
    [35]谭茂金,石耀霖,谢关宝.基于遗传算法的核磁共振T2分布反演[J].测井技术,2007,31(5):413~416.
    [36]刘宏强,王祝文.基于奇异值分解法的核磁测井解谱算法[J].吉林大学学报,2007,37:135~138.
    [37]林峰,王祝文,刘菁华,丁阳,李长春.核磁共振T_2谱奇异值反演改进算法[J].吉林大学学报(地球科学版),2009.39(6):1150~1154.
    [38]翁爱华,李舟波,莫修文,王雪秋.低信噪比核磁共振测井资料的处理技术[J].吉林大学学报(地球科学版),2003,33(2).232~235.
    [39]张继令;翁爱华.地面核磁共振模型约束反演含水层参数.吉林大学学报(地球科学版),2008,38(4):692~697.
    [40]张文权,翁爱华.地面核磁共振正则化反演方法研究[J].吉林大学学报(地球科学版),2007,37(4):809~813.
    [41]廖广志,肖立志,谢然红,付娟娟.孔隙介质核磁共振弛豫测量多指数反演影响因素研究[J].地球物理学报, 2007, 50(3):932~938.
    [42]D.Marschall et al. Method for Correlating NMR Relaxometry and Mercury Injection Data, SCA-9511, 1995.
    [43]R.L.Kleinberg and H.J.vinegar.NMR Properties of Reservoir Fluids, The Log Analyst,November-December 1996.
    [44]R.L.Kleinberg et al. Nuelear Magnetic Resonance of Roeks:T1 vs. T2, SPE-26470,1993.
    [45]M.B.Crowe et al.Measuring Residual 0i1 Saturation in West Texas Using NMR, SPWLA 38th Annual Logging Symposium,June15-18,1997.
    [46]R.Akkurt et al.Selection of Optimal Aequisition Parameters for MRIL Logs, The Log Analyst,November-Deeember 1996.
    [47]R.Akkurt et al. Enhanced Diffusion: Expanding the Range of NMR Dircet Hydrocarbon-typing Applications , SPWLA 39th Annua1 Logging SymPosium ,May26-29,1998.
    [48]Akkurt, R. et al.: NMR Logging of Natural Gas Reservoirs,paper N presented at the 1995 Annual Meeting of the Society of Professional Well Log Analysts, Paris, 26–29 June
    [49]Prammer, M.G. et al.: Lithology-Independent Gas Detection By Gradient-NMR Logging, paper SPE 30562 presented at the 1995 SPE Annual Technical Conference and Exhibition, Dallas, 22–25 October
    [50]Looyestijn, W.J.: Determination of Oil Saturation from Diffusion NMR Logs, paper SS presented at the 1996 Annual Meeting of the Society of Professional Well Log Analysts
    [51]Akkurt, R. et al.: Determination of Residual Oil Saturation Using Enhanced Diffusion, paper SPE 49014 presented at the 1998 SPE Annual Technical Conference and Exhibition, New Orleans, 27–30 September
    [52]Slijkerman, W.F.J. et al.: Processing of Multi-Acquisition NMR Data,paper SPE 56768 presented at the 1999 SPE Annual Technical Conference and Exhibition, Houston, 3–6 October
    [53]Freedman, R., Heaton, N., and Flaum, M.:“Field Applications of a New NuclearMagnetic Resonance Fluid Characterization Method,”paper SPE 71713 presented at the 2001 SPE Annual Technical Conference and Exhibition, New Orleans, 30 September–3 October
    [54]Freedman, R. et al.:“A New NMR Method of Fluid Characterization in Reservoir Rocks: Experimental Confirmation and Simulation Results,”SPE 63214,2001 SPE Annual Techinical Conference and Exhibition,Dallas,Texas. 452~464
    [55]M.D.Hurlimann et al. Diffusion Editing: New NMR Measurement of Saturation and Pore Geometry. SPWLA 43rd Annual Logging Symposium, June 2-5, Oiso,Japan,2002
    [56]Freedman, R. et al.:“Wettability, Saturation, and Viscosity Using the Magnetic Resonance Fluid Characterization Method and New Diffusion-Editing Pulse Sequences”,paper SPE 77397 presented at the SPE Annual Technical Conference and Exhibition, San Antonio,Texas, 29 September–2 October 2002
    [57]D. Di Rosa, et al“Use of the NMR Diffusivity Log To Identify and Quantify Oil and Water in Carbonate Formations”,paper SPE101396,was accepted for presentation at the 2006 SPEAbu Dhabi international Petroleum Exhibition and Conference, Paper peer approved 6 October 2007, Published 2008
    [58]Fang, S., Chen, S., Tauk, R., Philippe, F., and Georgi, D. 2004. Quantification of Hydrocarbon Saturation in Carbonate Formations Using Simultaneous Inversion of Multiple NMR Echo Trains. Paper SPE 90569 presented at the SPE Annual Technical Conference and Exhibition,Houston, 26–29 September. DOI: 10.2118/90569-MS
    [59]Boqin Sun et al:“NMRInversion Methods For Fluid Typing”,SPWLA 44th Annual Logging Symposium, June 22-25,2003
    [60]孙建孟.以核磁共振测井为基础进行长垣以西葡萄花油层储层流体性质识别.中国石油大学(华东).2007.07
    [61]邵维志.利用T2谱形态确定T2截止值的方法探索[J].测井技术,2009,33(5):430~435
    [62]姚彦平.岩石孔隙中NMR油水识别技术研究[D].廊坊:中国科学院渗流流体力学研究所,2005
    [63]《测井学》编写组.测井学[M].北京:石油工业出版社,1998:224~233.
    [64]郭余峰.石油测井中的核物理基础[M].北京:石油工业出版社,1996:27~75.
    [65]黄隆基.核测井原理[M].东营:石油大学出版社,2000:164~174.
    [66]Brown, R., Protonrelaxation in crude oil, Nature,1961.
    [67]Seevers,D.O.A nuclear magnetic method for determining the permeability of sandstones, Paper Presented at Annual Logging Symposium Transactions: Society of Professional Well Log Analysts, 1966.
    [68]Timur, A. An Investigation of permeability , porosity and residual water saturation relationships,Paper Presented at Annual Logging Symposium Transactions: Society ofProfessional Well Log Analysts, 1968.
    [69]Timur, A. Producible porosity and permeability of sandstone investigated through nuclear magnetic resonance principles, The Log Analyst, January-February, 1969, p. 3~11.
    [70]Timur, A. Pulsed nuclear magnetic resonance studies of porosity, moveable fluid, and permeability of sandstones: Journal of Petroleum Technology, 1969, V.21,p. 775~786.
    [71]R. L. Kleinberg and H. J. Vinegar. NMR Properties of Reservoir Fluids, The Log Analyst, November-December 1996.
    [72]R. L. Kleinberg at al. NMR of Pock: T1 vs. T2, SEP-26470, 1993.
    [73]D. Marschall et al. Method for Correlating NMR Relaxometry and Mercury Injection Data, SCA-9511, 1955.
    [74]S. Chen et al. Method for Computing Swi and BVI from NMR Logs, SPWLA 39th Annual Logging Symposium, May 26~29,1998.
    [75]Stefan Menger and Manfred Prammer. Can NMR Porosity Replace Conventional Porosity Formation Evaluation? SPWLA 39th Annual Logging Symposium, May 26~29,1998.
    [76]M. B. Crowe et al. Measuring Residual Oil Saturation in West Texas Using NMR, SPWLA 39th Annual Logging Symposium, June 15~18, 1997.
    [77]R. Akkurt et al. Determination of Residual Oil Saturation Using Enhanced Diffusion, SPE-49014, 1998.
    [78]肖立志.核磁共振测井资料解释与应用导论[M].北京:石油工业出版社,2001:1~96.
    [79]陆大卫.石油测井新技术实用性典型图集[M].北京:石油工业出版社,2001:52~68.
    [80]孙建孟,李召成,耿生臣等.核磁共振测井T2cutoff确定方法探讨[J].测井技术,2001,25(3):175~177.
    [81]肖立志,谢然红,丁蜈娇。核磁共振测井仪器的最新进展与未来发展方向,测井技术,2003,27(4):265~269.
    [82]核磁共振测井在珠江口盆地(东部)油气勘探中的应用.中国石油大学(北京)核磁共振成像测井实验室,2006.11
    [83]地球物理反演基本理论与应用方法[M].北京:中国地质大学出版社,2002:1~72.
    [84]施光燕等.最优化方法[M].北京:高等教育出版社,1999:44~53.
    [85]袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社,1997:183~199.
    [86]谭浩强.C程序设计(第二版)[M].北京:清华大学出版社,1999:122~322.
    [87]杨冰.实用最优化方法及计算机程序[M].哈尔滨:哈尔滨船舶工程学院出版社,1994:111~124.
    [88]史荣昌.矩阵分析[M].北京:北京理工大学出版社,1996:142~153.
    [89]罗家洪.矩阵分析引论[M].广州:华南理工大学出版社,2005:129~135.
    [90]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004:341~398.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700