用户名: 密码: 验证码:
MRI图像的脑肿瘤分割方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核磁共振成像(MRI)是医学影像中的一种重要成像技术,由于其高质量的图像显示效果,现在已经被广泛的应用到人体各种组织器官病变的诊断,其中较为主要的一个应用就是检测脑部病变组织。MRI脑肿瘤分割为临床诊断和治疗提供了很好的基础,但如何分割MRI脑肿瘤不仅是临床诊断与治疗,也是MRI脑肿瘤图像研究的一个重点和难点。本文将改进现有MRI脑肿瘤图像分割算法,利用模糊C均值算法、区域增长算法、以及结合模糊相似度理论和区域结构识别技术的分割算法实现脑胶质瘤MRI图像的分割。
     首先,简略的介绍现有的MRI脑肿瘤图像分割算法的原理,以及这些算法应用在MRI脑肿瘤图像分割中的优缺点。介绍MRI成像原理、MRI成像的优点和缺点,为后续研究奠定基础理论知识。
     其次,针对极具代表性的模糊c均值算法,确定了FCM算法在脑MRI图像分割的应用中相关参数的选择问题,指出参数的优化选择对算法的性能和速度的影响,实现了较为精准的肿瘤分割。
     再次,针对区域生长对噪声敏感以及生长阈值选取困难的不足,本文提出了基于边缘平均梯度和类内平均方差的模型。在图像分割的预处理过程中,首先进行各向异性滤波,达到平滑滤波去除噪声影响的同时避免了边界的模糊,接着引入基于边沿平均梯度和类内平均方差的模型,以边沿平均梯度的倒数和类内平均方差的和作为目标函数,取目标函数的极小值为约束条件。在区域生长的过程中,逐渐增加生长阈值门限,通过目标函数来优化图像分割。我们选取得到目标函数极小值的生长门限值作为最终的分割结果。在实际的脑肿瘤MRI图像分割结果表明,该模型合理有效。
     最后,基于模糊相似度理论的MRI分割算法依赖于初始条件,而图像可以看作是一个网络结构,区域结构对于分析网络的系统结构很有利,同时基于结点相似性的区域结构检测技术不依赖于结点的初始假设,因此,提出基于模糊相似度理论和区域结构检测技术的MRI分割算法,该算法具有快速、鲁棒等特点。
Magnetic Resonance Imaging (MRI) is an important medical diagnostic tool, because of its high quality in image display, which now has been widely applied to detect pathological lesions and diseases in various tissues and organs, especially in tumor detection. The segmentation of tumor is important and of great significance in clinical and scientific research. Although many segmentation algorithms have been proposed, most have limitations. The dissertation focuses on the Fuzzy C Means (FCM) algorithm, Region Growing method, and a segmentation approach of brain tumor which combines the fuzzy affinity technology with the community structure detection technique based on the node similarity is proposed, and tries to improve the performance of them.
     Firstly, the dissertation briefly describes the characteristics and principles of many algorithms in medical image segmentation, also their advantages and disadvantages in MRI tumor segmentation. As the same time, the dissertation briefly describes the principle of MR imaging.
     Secondly, as the representative algorithm, FCM method is discussed emphatically in the dissertation. We analyze the parameter selection in FCM, and achieve the accurate tumor segmentation.
     Thirdly, to overcome the difficulty of manual threshold selection and sensitivity to noise in region growing method, an adaptive region growing method based on the gradients and variances along and inside of the boundary curve is proposed. Firstly, we use the anisotropic diffusion filter to preserve the edge information. Then the new model is given, which chooses the mean variance inside of the boundary curve and the reciprocal of the mean gradient along the curve as the research subject. The objective function of the model is to add two elements about gradient and variance mentioned. The minimum of the sum is the optimum result which corresponding to the desirable threshold. In region growing processing step, the threshold is increased gradually and the set of the coarse contour is obtained. Finally, through optimizing the model, the optimal segmentation result can be acquired from the set of contours. In clinical MRI image segmentation, our method can produce very satisfactory results.
     In the last, the method based on the fuzzy affinity depends on the initial conditions. An image is viewed as a network, and the detection of the community structure in networks is beneficial to understand the network structure and to analyze the network properties. The community structure is discovered based on node similarity, which is fast and efficient. Then a new segmentation approach of brain tumor which combines the fuzzy affinity technology with the community structure detection technique based on the node similarity is proposed in the dissertation.
引文
[1]A. Jemal, R. Siegel, J. Xu, E. Ward. Cancer statistics. CA Cancer J Clin.,2010,60: 277-300
    [2]李树玲.新编头颈肿瘤学.北京:科学技术文献出版社,2005:297-343
    [3]吴在德.外科学(第五版).北京:人民卫生出版社,2001:304-311
    [4]耿道颖,冯晓源.脑与脊髓肿瘤影像学.北京:人民卫生出版社,2004:41-73
    [5]林瑶,田捷.MRI脑肿瘤图像分割方法综述.北京.中国科学院自动化研究所人工智能研究室,2002
    [6]J. S. Duncan, Ni. Ayache. Medical image analysis:progress over two decades and the challenges ahead. IEEE Transaction on patter analysis and machine intelligence, 2000,22:181-204
    [7]D. L. Pham, C. Y. Xu, and J. L. Prince. A survey of current methods in medical image segmentation. Technical Report JHU/ECE 99-01, Johns Hopkins Univ.,1998
    [8]Y. J. Zhang. A survey on evaluation methods for image segmentation. Pattern Recognition,1996,29:1335-1346
    [9]N. Otsu. Discriminant and least square threshold selection. In:Proc 4IJCPR,1978: 592-596
    [10]T. Pun. A new method for gray-level picture thresholding using the entropy of histogram. Signal Processing,1980,2:223-237
    [11]J. N. Kapur, P. K. Sahoo, K. C. Wong. A new method for gray-level picture thresholding using the entropy of the histogram. Computer Vision, Graphics and Image Processing,1985,29:273-285
    [12]Y. Nakagawa, A. Rosenfeld. Some experiments on variable thresholding. Pattern Recognition,1979,11:191-204
    [13]S. K. Pal, R. A. King, A. A. Hashim. Automatic gray level thresholding through index of fuzziness and entropy. Pattern Recognition Letters,1983,1:141-146
    [14]J. F. Mangin, V. Frouin, I. Bloch, et al. From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. J. Math. Imag. Vis.,1995,5:297-318
    [15]J. K. Udupa, S. Samarasekera. Fuzzy connectedness and object definition:theory, algorithms, and applications in image segmentation. Graphical Model and Image Processing,1995,58:246-261
    [16]J. M. Prewitt. Object enhancement and extraction, In Picture Processing and Psychopictories. B. S. Lipkin & A. Rosenfeldeds, Aead. Press,1970:75-149
    [17]Y. A. Tolias, S. M. Panas. Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions. IEEE Trans. On System, Man and Cybernetics,1998,28:359-369
    [18]丁震,胡钟山.FCM算法用于灰度图像分割的研究.电子学报,1997,25:39-43
    [19]刘健庄.基于二维直方图的图像模糊聚类分割方法.电子学报,1992,20:40-46
    [20]X. Q. Ye, Z. H. Huang, Q. Xiao. Histogram based fuzzy c-mean algorithm for image segmentation, International Conference on Image. Speech and Signal Analysis,1992,3:704-707
    [21]M. M. Trivedi, J. C. Bezdek, Low-level segmentation of aerial image with fuzzy clustering, IEEE SMC,1986,16:589-598
    [22]B. Chaudhuri, N. Sarkar, Texture segmentation using fractal dimension, IEEE PAMI, 1995,17:72-77
    [23]J. C. Bezdek, A convergence theorem for the fuzzy ISODATA clustering algorithm, IEEE PAMI,1980,1:1-8
    [24]T. F. Cootes, C. Beeston, G J. Edwards, et al. A unified framework for atlas matching using active appearance models. in Proc. Information Processing in Medical Imaging (IPMI'99),1999:323-333
    [25]A. Hill, C. J. Taylor, Automatic landmark identification using a new method of non-rigid correspondence, in Proc. Information Processing in Medical Imaging (IPMI'97),1997:483-488
    [26]A. Hill, C. J. Taylor, A. D. Brett, et al. A framework for automatic landmark identification using a new method of nonrigid correspondence. IEEE Trans. Pattern Analysis and Machine Intelligence,2000,22:241-251
    [27]W. E. Blanz, S. L. Gish. A connextionist classifier architexture applied to image segmentation. in Proc.10th ICPR,1990:272-277
    [28]N. Babaguchi, K. Yamada, K. Kisc, et al. Connectionist model binarization. in Proc. 10th ICPR,1990:51-56
    [29]阮萍.核磁共振成像及其医学应用.广西物理,1990,28:50-53
    [30]黄卫华.走近核磁共振.医药与保健,2004,3:15
    [31]田建广,刘买利,夏照帆等.磁共振成像的安全性.波谱学杂志,2002,6:505-511
    [32]叶朝辉.磁共振成像新进展.物理,2004,1:12-17
    [33]T. Cornelius. Medical imaging systems technology:methods in cardiovascular and brain. World Scientific Publishing Company,2005:207-280
    [34]W. B. Dou, R. Su, Y. P. Chen, et al. A framework of fuzzy information fusion for the segmentation of brain tumor tissues on MR images. IVC,2007,25:164-171
    [35]J. Lei, W. H. Yang. A Modified Fuzzy C-Means Algorithm for segmentation of magnetic resonance images. Ⅶth Digital Image Computing:Techniques and Applications, Sydney,2003:10-12
    [36]N. Otsu. A threshold selection method from gray level histograms. IEEE Trans. Systems, SMC-8,1979:62-66
    [37]W. K. Deng, W. Xiao, C. Pan, et al. MRI brain tumor segmentation based on improved fuzzy c-means method, in Proceeding of MIPPR 2009,74972N-1-6,2009
    [38]刘金旺,何家儒.模糊数学导论.成都:四川教育出版社,1992
    [39]王光远,张跃.模糊随机过程论.贵阳:贵州科技出版社,1993
    [40]刘增良,刘有才.模糊逻辑与神经网络-理论研究与探索.北京:北京航空航天大学出版社,1996
    [41]孙即祥.现代模式识别.国防科技大学出版社,2002
    [42]J. C. Dunn. Well separated clusters and the optimal fuzzy partitions. Cybernet,1974, 4:95-104
    [43]N. Sladoje, I. Nystrom, P. K. Saha. Measuring perimeter and area in low resolution images using a fuzzy approach, Proceedings of the 1 lth International Conference on Discrete Geometry for Computer Imagery (DGCI),2003,2886:348-357
    [44]S. R. Kannan. Segmentation of MRI using new unsupervised fuzzy mean algorithm. Int. J. Graphics Vision Image Process,2005:1-8
    [45]Y. Lin, J. Tian, X. P. Zhang. Application of a new medical image segmentation method based on fuzzy connectedness and fcm. Chinese journal of stereology and image analysis,2001,6:103-108
    [46]J. C. Bezdek. Review of MRI images segmentation techniques using pattern recognition. Medical Physics,1993,20:1033-1048
    [47]M. N. Wu, C. C. Lin, C. C. Chang. Brain tumor detection using color-based k-means clustering segmentation. Intelligent information hiding and multimedia signal processing,3rd Int. Conf, USA,2007:245-250
    [48]M. Li, T. L. Huang. Improved fast fuzzy C-means algorithm for medical MR images segmentation. Genetic and Evolutionary Computing (WGEC),2008:1-4
    [49]边肇祺,张学工等.模式识别(第二版).北京:清华大学出版社,1999:273-281
    [50]张爱华,余胜生.基于模糊聚类分析的图像分割技术研究:[博士学位论文].华中科技大学,2004
    [51]A. Mehnert, P. Jackway. An improved seeded region growing algorithm. Pattern Recognition Letters,1997,18:1065-1071
    [52]R. Adams, L. Bischof. Seeded region growing. IEEE Trans. Pattern Anal. Machine Intell.,1994,16:641-647
    [53]A. Mehnert, P. Jackway. An improved seeded region growing algorithm. Pattern Recognition Letters,1997,18:1065-1071
    [54]X. Mounoz, J. Freixenet, X. Cufi. Strategies for image segmentation combining region and boundary information. Pattern Recognition Letters,2003,24:375-392
    [55]D. Y. Kim, J. W. Park. Connectivity-based local adaptive thresholding for carotid artery segmentation using MR images. Image and Vision computing,2005,23: 1277-1287
    [56]R. M. Chantal, P. Francoise, C. Yannick. Automated 3D region growing algorithm based on assessment function. Pattern Recognition Letters,2002,23:137-150
    [57]S. Lallich, F. Muhlenbach, J. M. Joloin. A test to control a region growing process within a hierarchical graph. Pattern Recognition,2003,36:2201-2211
    [58]C. Revol, M. Jourlin M. New minimum variance region growing algorithm for imagesegmentation. Pattern Recognition Letters,1997,18:249-258
    [59]P. Perona, J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Machine Intell.,1990,12:629-639
    [60]沈毅,马立勇,王艳.一种用截尾中值滤波实现的最频值各向异性图像平滑方法.200910072205,2009
    [61]张玲,郭磊民,何伟等.一种基于最大类问方差和区域生长的图像分割法.信息与电子工程,2005,3:21-23
    [62]胡正平,张晔,谭营.区域进化自适应高精度区域生长图像分割算法.系统工程与电子技术,2007,21:43-47
    [63]孙晓平.一种基于ROI区域生长的MRI脑肿瘤图像压缩方法.计算机应用与软件,2009,12:26-28
    [64]S. Pohlman, K. A. Powell, N. A. Obuchowski, et al. Quantitative classification of breast tumores in digitized mammograms. Medical Physics,1996,23:1337-1345
    [65]沈毅,马立勇,王艳.一种用截尾中值滤波实现的最频值各向异性图像平滑方法.200910072205,2009
    [66]W. K. Deng, W. Xiao, H. Deng, et al. MRI brain tumor segmentation with region growing method based on the gradients and variances along and inside of the boundary curve. In Proceeding of BMEI,2010:393-396
    [67]张玲,郭磊民,何伟等.一种基于最大类问方差和区域生长的图像分割法.信息与电子工程,2005,3:21-25
    [68]胡正平,张晔,谭营.区域进化自适应高精度区域增长图像分割算法.系统工程与电子技术,2007,29:45-50
    [69]孙晓平.一种基于ROI区域生长的MRI脑肿瘤图像压缩方法.计算机应用与软件,2009:26-28
    [70]J. G Liu, J. K. Udupa, D. Odhner, et al. A system for brain tumor volume estimation via MR imaging and fuzzy connectedness. Computerized Medical Imaging and Graphics,2005,29:21-34
    [71]K. E. Emblem, B. Nedregaard, J. K. Hald, et al. Automatic glioma characterization from dynamic susceptibility contrast imaging:brain tumor segmentation using knowledge-based fuzzy clustering. Journal of Magnetic Resonance Imaging,2009, 30:1-10
    [72]T. Cornelius. Medical imaging systems technology:methods in cardiovascular and brain. World Scientific Publishing Company,2005
    [73]W. E. Phillips, R. P. Velthuizen, S. Phupanich, et al. Applications of fuzzy C-means segmentation technique for tissue differentiation in MR Images of a hemorrhagic glioblastoma multiform. Journal of Magnetic Resonance Imaging,1995,13: 277-290
    [74]J. Nie, Z. Xue, T. Liu, et al. Automated brain tumor segmentation using spatial accuracy-weighted hidden markov random field. Computerized Medical Imaging and Graphics,2009,33:431-441
    [75]M. Droske, B. Meyer, M. Rumpf, et al. An adaptive level set method for interactive segmentation of intracranial tumors. Neurological Research,2005,27:363-370
    [76]J. J. Corso, E. Sharon, S. Dube, et al. Efficient multilevel brain tumor segmentation with integrated Bayesian model classification. IEEE Transactions on Medical Imaging,2008,27:629-640
    [77]R. Ayachi, N. B. Amor. Brain tumor segmentation using support vector machines. in Proceeding of ECSQARU 2009,2009:736-747
    [78]G. Mirajkar, B. Barbadekar. Automatic segmentation of brain tumors from MR images using undecimated wavelet transform and gabor wavelets. in Proceeding of ICECS 2010,2010:702-705
    [79]J. Z. Shah. Tumor detection in brain MR images using ANN based segmentation. in Proceeding of INMIC 2002,2002:27-28
    [80]H. M. Cai, R. Verma, Y. M. Ou, et al. Probabilistic segmentation of brain tumors based on multi-modality magnetic resonance images. in Proceeding of 4th IEEE International Symposium on Biomedical Imaging,2007:600-603
    [81]W. Y. Cho, J. Park, S. Park, et al. Level-set segmentation of brain tumors using a new hybrid speed function. in Proceeding of ICPR 2010,2010:1545-1548
    [82]Y. Pan, D. H. Li, J. G. Liu, et al. Detecting community structure in complex networks via node similarity. Physica A.,2010,389:2849-2857
    [83]W. K. Deng, H, Deng, J. G. Liu. Brain tumor segmentation using fuzzy affinity and community structure detection. Journal of Convergence Information Technology, 2011,6:191-199
    [84]J. K. Udupa, S. Samarasekera. Fuzzy connectedness and object definition:theory, algorithms and application in image segmentation. Graph Models Image Processing, 1996,58:246-61
    [85]P. K. Saha, J. K. Udupa. Relative fuzzy connectedness among multiple object: theory, algorithms, and applications in image segmentation. Comput Vis Image Understand,2001,82:42-56
    [86]S. H. Strogatz. Exploring complex networks. Nature,2001,410:268-276
    [87]R. Albert, A. L. Barabasi. Statistical mechanics of complex networks. Rev. Modern. Phys.,2002,74:47-97
    [88]S. N. Dorogovtsev, J. F. F. Mendes. Evolution of networks. Adv. Phys.,2002,51: 1079-1187
    [89]M. E. J. Newman. The structure and function of complex networks. SIAM Rev., 2003,45:167-256
    [90]M. Girvan, M. E. J. Newman. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA,2002,99:7821-7826
    [91]M. E. J. Newman. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E,2006,74:036104
    [92]B. W. Kernighan, S. Lin. An efficient heuristic procedure for partitioning graphs. Bell. Syst. Tech. J.,1970,49:291-307
    [93]M. Fiedler. Algebraic connectivity of graphs. Czech Math. J.,1973,23:298-305
    [94]M. E. J. Newman, M. Girvan. Finding and evaluating community structure in networks. Phys. Rev. E,2004,69:026113
    [95]M. E. J. Newman. Fast algorithm for detecting community structure in networks. Phys. Rev. E,2004,69:066133
    [96]A. Clauset, M. E. J. Newman, C Moore. Finding community structure in very large networks. Phys. Rev. E,2004,70:066111
    [97]U. N. Raghavan, R. Albert, S. Kumara. Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E,2007,76:036106
    [98]B. Xiang, E. H. Chen, T. Zhou. Finding community structure based on subgraph similarity. Stud. Comput. Intell.,2009,207:73-81
    [99]T. Zhou, L. Lii, Y. C. Zhang. Predicting missing links via local information. Eur. Phys. J.B,2009,71:623-630
    [100]H. Zhou. Distance, dissimilarity index, and network community structure. Phys. Rev. E,2003,67:061901
    [101]S. Fortunato, V. Latora, M. Marchiori. A method to find community structures based on information centrality. Phys. Rev. E,2004,70:056104
    [102]P. Pons, M. Latapy. Computing communities in large networks using random walks. in:Proc. of the 20th International Symptom on Computer and Information Sciences, Springer-Verlag, Berlin,2005,284-293
    [103]B. Yang, J. Liu. Discovering global network communities based on local centralities. ACM Trans. on the Web,2008,2:1-32
    [104]J. G. Liu, T. Zhou, H. A. Che, et al. Effects of high-order correlations on personalized recommendations for bipartite networks. Physica A,2010,389: 881-886
    [105]A. Lancichinetti, S. Fortunato, F. Radicchi. Benchmark graphs for testing community detection algorithms. Phys. Rev. E,2008,78:046110

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700