用户名: 密码: 验证码:
电力系统动态过程刚性分布特性与柔性化仿真方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力系统的不断壮大,在带来巨大规模效益的同时,不可避免地造成了电力系统运行复杂度的增加。电力系统发生级联事故的可能性、波及范围和危害性,会随着系统规模的不断增大而可能得到不同程度的扩大。如何正确高效地仿真电力系统受到扰动后的动态响应,是可靠掌握系统运行行为、针对安全隐患正确整定保护和控制系统的一项十分重要而基础性的工作。由于构成电力系统的环节和系统可能受到的扰动存在多样性差异,因此,电力系统的动态过程往往既存在快慢速现象共存、又存在快慢速变量集合构成不断发生变化的情形,使得电力系统的动态过程表现出明显的刚性特征,严重制约了电力系统动态过程仿真的效率。本文通过对电力系统动态过程刚性分布的时空局部性的分析,研究了如何根据动态过程变化情况自适应地划分系统变量组别以使系统刚性过程得到柔性化的措施。在此基础上,构建了电力系统动态过程柔性化仿真算法,并将其应用于包含风电系统的电力系统长动态过程仿真。
     作为电力系统动态过程刚性问题实施柔性化的理论基础,论文首先通过对刚性含义的阐述,界定了局部刚性与全局刚性的区别,并通过对系统动态过程刚性分布特性的分析,指出:刚性往往具有时间和变量空间上的局部分布特征,即刚性程度一方面会随着时间而发生改变,系统可以由较强刚性向着弱刚性甚至柔性转换;另一方面,如果某些时段系统表现出刚性,通常也只是在某些变量集合之间呈现刚性,而集合内部的变量之间往往表现出良好的柔性特征。大型电力系统动态过程、特别是长动态过程,其刚性分布的时空局部性表现得更为明显。这种特性为电力系统动态过程刚性的柔性化提供了前提条件。基于刚性分布的时空局部特性,论文分析了电力系统动态过程刚性问题柔性化的策略,为后续研究提供了技术支持。
     变量分组是实施刚性问题柔性化的一种可行措施。在以往的仿真方法中,贯彻系统动态计算全过程的往往只是一种事先给定的固定变量分组形式,不同变量组别间的步长比例因子等赋定初值后也不再相机调整,此种方式对不同系统动态过程刚性分布的时空局部特征的适应性明显不够,制约了相应算法的计算效率。针对此现状,本文提出了一种综合自适应柔性分组和具有自校正积分措施的变量组协调策略的电力系统动态过程柔性化仿真方法。方法由局部截断误差自适应地划分变量组别、调整相对步长因子和最小积分步长,以达到自适应柔性分组的目的,并在慢变组步长时点处进行校正式积分,以提高计算精度。算例分析表明,所提出的方法,在保证计算精度的前提下,可显著提高计算效率。
     电力系统动态过程中的许多变量,在系统扰动对其影响衰减到一定程度后,进一步变化的幅度、特别是包络值或包络中心值进一步变化的幅度将变得十分微小。此时,如果忽略这种微小变化,并使其自动退出积分计算,则对系统后续积分精度的影响不会超出工程允许的范围,且可以明显提高后续计算的效率;如果将这些变量继续保留参与分组和积分运算,则会明显制约积分步长的放大并影响计算效率的进一步提高。针对此问题,本文提出了一种变量适时退出机制,并形成了一种综合变量分组和退出策略的柔性化仿真方法。仿真算例结果表明,融合变量退出机制的柔性仿真方法,可以在保证计算精度的前提下,进一步提高计算效率。
     目前,尚缺乏比较成熟的方法和计算程序对大型电力系统长动态过程行为进行高效计算,特别是大规模风电系统的并网运行,更加速了对相关仿真方法和计算程序需求的迫切性。针对此现状,本文最后结合异步风力发电机和双馈风力发电机模型,将柔性仿真方法应用于包含风电系统的大型电力系统长动态过程仿真,并针对不同风速变化模式和系统运行工况,对风电系统接入电网后的频率、电压等动态行为进行分析。算例结果表明,论文提出的柔性仿真方法能够适应包含风电系统的大型电力系统长动态过程行为快速分析的需要,具有比较广阔的应用前景。
     本文工作得到国家自然科学基金项目“含间歇式电源的大型电力系统绿色能效协联优化理论研究”(项目编号:50877014)和黑龙江省博士后科研启动基金项目“电力系统稳定数值仿真的动态模式分析法”的资助。
The unceasing strengthen of the power system will led to the coutinuous increase of power system operation complexity when the enormous benefits is brought. The possibility of the occurrence, affecting scope, and dangers of cascading accidents, will be enlarged in different extent with the continual increasing system scale. How to correctly and efficiently simulate power system dynamic response after the disturbance is a very important and basic work for reliable mastering system operation acts and setting the correct protection and control system against the safety. As a result of possible disturbances being subject to the link and system which constitutes the power system may exist diverse differences, therefore, the dynamic process of power system is often not only the existence of the coexistence of slow-fast phenomenon, but also the existence of slow and fast variables constitute a continual changing situation, which make the power system dynamic process show the obvious stiff characteristics, has seriously hampered the efficiency of power system dynamic simulation process. This thesis research on how to adaptively divide variables into different groups based on the changes of dynamic process so as to obtain flexible stiff process measures through the analysis for dynamic process of spatial and temporal distribution of localized stiff analysis. On this basis, a flexible algorithm for power system dynamic simulation process is built and applied to power system long dynamic process simulation including wind power.
     As the theoretical foundation of the implementation flexibility to stiff problem for power system dynamic process, this thesis firstly expounds the definition of the stiffness, defines the the distinction between local stiffness and the overall stiffness, and through the analysis for distribution characteristics of stiffness of system dynamic process, pointed out: stiffness often has the local distribution characteristics of time and variables space, that is, the degree of stiffness on the one hand, will change over time, the system can be conversed from more stiffness toward the weak-stiff or even flexible. On the other hand, if system shows sfiff some time, usually only in some variables sets, while the variables in internal sets often show the characteristics of a good flexiblity. During dymamic process for a large scale power system, especially a long term dynamic process, temporal and spatial characteristics of stiffness distribution show obvious, which provides precondition for flexibility of stiffness in power system dynamic process. Based temporal and spatial characteristics of stiffness distribution, this thesis analyze flexiblity strategies for stiff problem of power system dynamic process, which provides technical support for follow-up study.
     Variable grouping problem is a feasible measure to implement the flexiblity of stiff problem. In the past simulation methods, only a pre-fixed variables grouping form runs through the the whole process of system dynamic calculation, the grouping scale factor between different variables after the initial value is given, is no longer adjusted, this way is difficult to adapt the temporal and spatial characteristics of stiffness distribution for different dynamic process, which restricts efficiency of relevant computational methods. According to existing problems, this thesis provides a kind of flexiblity simulation method combining self-adaptive flexible grouping strategy and variables grouping coordination strategy with self-adjustment integral measures for power system dynamic process. Based on the local truncation error, this method can finish variables grouping adaptively, and adjust the relative step factor and the smallest integral step, which achieves the purpose of adaptively flexible grouping, and at the slow-varying step size spot, integral tuning is implemented in order to improve computational precision. Results of calculation example show that the proposed method improves computational efficiency in ensuring the accuracy.
     For many variables in power system dynamic process after influence of system disturbances attenuation to a certain extent, it will be very small to further variable range especially variable range of envelope value or envelope centre value. At that time, if these small changes are ignored, and make variables secede from integral computation, then the influence on the follow-up integral precision of system will not be out of range of engineering permission, which can improve the follow-up computational efficiency obviously. If these variables are retained in grouping and integral computation, it will restraint enlarge the integral step and influence the improvement of computational efficiency. Pointing to this problem, this thesis provides a variable seceding mechanism at proper time, which forms a flexible simulation method combining variables grouping and seceding strategies. Simulation examples show that this flexible simulation method including variables seceding strategy may further improve computational efficiency in ensuring the computational accuracy.
     At present, there are scarced relative ripe methods and computational programs used for computing efficiently long term dynamic behaviour of large scale power system, especially wind power integration on a large scale power system, which speeds up the urgent demand for simulation methods and computational programs. Pointing to this situation, flexible simulation method has been applied to large-scale power system simulation including wind electric power grid combined with asynchronous wind generators and doubly-fed wind turbine model, analyze dynamic behavior such as frequency, voltage for different wind speed change modes and system operating conditions after wind power integration on power system. The simulation results show that the proposed flexible simulation method can adapt to the need for rapid analysis for long term dynamic process of large power systems that contains wind power.
     This research work is supported by the National Nature Science Foundation of China "optimization theory research on green energy efficiency of large power systems including intermittent power supply" under Grant 50477008, and Heilongjiang Province research initiation funds for the postdoctoral researcher project "analysis method of the dynamic mode for numerical simulation of power system stability".
引文
1梅生伟,何飞,张雪敏,夏德明.一种改进的OPA模型及大停电风险评估.电力系统自动化, 2008, 32(13):1~6
    2张进.电力系统动态仿真可信度研究.华北电力大学工学博士学位论文.2005:1~5
    3王梅义,吴竞昌,蒙定中.大电网系统技术(第二版).中国水利电力出版社, 1995:1~10
    4易海琼,杜兆斌,程时杰,张尧,侯云鹤,倪以信.互联系统长期动态仿真的结构保留建模.电力系统自动化, 2007, 31(22): 21~26
    5李莉.大机组事故切机对区域电网稳定影响的研究.西安理工大学工程硕士学位论文. 2007:1~4
    6侯慧,尹项根,陈庆前,游大海,童光毅,邵德军.南方部分500 kV主网架2008年冰雪灾害中受损分析与思考.电力系统自动化, 2008, 32(11):12~15, 38
    7刘有飞,熊建华.江西电网1.21事故分析及启示.华中电力, 2008, 21(6): 28~31
    8 Dusko P. Nedic. Simulation of Large System Disturbances. Dissertation for the Doctoral Degree of the University of Manchester Institute for Science and Technology, December, 2003:6~37
    9何大愚.对于美国西部电力1996年7月2日大停电事故的初步认识.电网技术, 1996, 20(9):35~39
    10孙瑜,卢燕.美国纽约大停电的原因及对策.青岛理工大学学报, 2007, 28(6):116~118
    11印永华,郭剑波,赵建军,等.美加“8.14”大停电事故初步分析以及应吸取的教训.电网技术, 2003, 27(10) : 8~11
    12鲁宗相,蒋锦峰,袁德,等.从“8.14”美加大停电思考电力可靠性.中国电力, 2003, 33(12) : 1~6
    13胡学浩.美加联合电网大面积停电事故的反思和启示.电网技术, 2003, 27(9): T2~T6
    14周孝信,郑建超,沈国荣等.从美加东北部电网大面积停电事故中吸取教训.电网技术, 2003, 27(9):T1
    15蓝毓俊. 2003年世界上几起大停电事件的经验、教训和启示.供用电, 2005,22(1):14~16
    16韩祯祥,曹一家.电力系统的安全及防治措施.电网技术, 2004, 28(9): 1~6
    17甘德强,胡江溢,韩祯祥.2003年国际若干停电事故思考,电力系统自动化, 2004, 28(3):1~5
    18李春艳,孙元章,陈向宜,邓桂平.西欧“11.4”大停电事故的初步分析及防止我国大面积停电事故的措施.电网技术, 2006, 30(24):16~21
    19李再华,白晓民,丁剑,周子冠,方竹.西欧大停电事故分析电力系统自动化.2007,31(1):1~3, 32
    20陈向宜,陈允平,李春艳,邓长虹.构建大电网安全防御体系—欧洲大停电事故的分析及思考.电力系统自动化, 2007, 31(1): 4~7
    21兰洲,倪以信,甘德强.现代电力系统暂态稳定控制研究综述.电网技术, 2005, 29(15): 40~50
    22朱方,赵红光,刘增煌,寇惠珍.大区电网互联对电力系统动态稳定性的影响.中国电机工程学报, 2007, 27(1):1~7
    23 Jonathan D. Rose, Ian A. Hiskens. Challenges of Integrating Large Amounts of Wind Power. 2007 1st Annual IEEE Systems Conference Waikiki Beach, Honolulu, Hawaii, USA April 9-12, 2007: 259~265
    24迟永宁,王伟胜,刘燕华,戴慧珠.大型风电场对电力系统暂态稳定性的影响.电力系统自动化, 2006, 30(15):10~14
    25 Lin Li, Zhang Yan, Yang Yihan. Transient Characteristics of the Grid-Connected Wind Power Farm with DFIGs and SCIGs. 3rd International Conference on Deregulation and Restructuring and Power Technologies, DRPT 2008, 2008: 2676~2681
    26 L Mariotto, H Pinheiro, G Cardoso, MR Muraro. An Analytical Tool for Computing Transient Stability Margins of Power Systems with Large Amount of Wind Power. 2007 International Conference on Clean Electrical Power, ICCEP '07, 2007: 747~753
    27张红光,张粒子,陈树勇,安宁.大容量风电场对电力系统小干扰稳定和阻尼特性的影响.电网技术, 2007, 31(13):75~79
    28张红光,张粒子,陈树勇,安宁.大容量风电场接入电网的暂态稳定特性和调度对策研究.中国电机工程学报,2007,27(31):46~51
    29宋新立,汤涌,卜广全,刘文焯,刘涛,万磊.大电网安全分析的全过程动态仿真技术.电网技术, 2008, 32(22):23~28
    30汤涌.电力系统全过程动态(机电暂态与中长期动态过程)仿真技术.中国电力科学研究院博士论文, 2002:1~18
    31马进,王景钢,贺仁睦.电力系统动态仿真的灵敏度分析.电力系统自动化, 2005, 29(10): 20~27
    32 Roderic J. Frowd, F. C. Giri, Robin Podmore, Transient Stability and Long-Term Dynamics Unified, IEEE Transaction on Power Apparatus and Systems, 1982, PAS-101 (10): 3841~3850
    33 Vince Converti, Demos P. Gelopulos, Mike Housley, Gerhard Steinbrenner, Long-Term Stability Solution of Interconnected Power Systems, IEEE Transaction on Power Apparatus and Systems, 1976, PAS-95 (1): 96~104
    34 E. G. Gate, K. Hemmaplardh, J. W. Manke. Time Frame Notion and Time Response of the Models in Transient, Mid-term and Long-term Stability Programs. IEEE Transactions on Power Apparatus and Systems, 1984, 103(1): 143~150
    35 Dan Yang, Venkataramana Ajjarapu. An Overview of Critical Bigenvalue Tracing and Decoupled Time Domain Simulation in Power System Analysis. Proceedings of the 37th Annual North American, 2005: 434~440
    36汤涌,宋新立,刘文焯,周孝信.电力系统全过程动态仿真的数值方法——电力系统全过程动态仿真软件开发之一.电网技术, 2002, 26(9): 7~13
    37 Dan Yang, Venkataramana Ajjarapu. A Decoupled Time-Domain Simulation Method via Invariant Subspace Partition for Power System Analysis. IEEE Transactions on Power Systems, 2006, 21(1): 11~17
    38 Prabha Kundur.Power System Stability and Control, McGraw-Hill, Inc, 1993:1073~1099
    39朱艺颖,蒋卫平,印永华.电力系统数模混合仿真技术及仿真中心建设.电网技术, 2008, 32(22):35~38
    40李保福,李营等.RTDS应用于线路保护装置的动模试验.电力系统自动化, 2000, 24(15) , 69~70
    41翟培,于庆广,李铸新,黄志刚,童陆园.电力系统机电暂态实时仿真系统.电网技术, 2008, 32(9): 42~45
    42 M.Roitman, R.B.Solleroand J.J.Oliveira. Real Time Digital Simulation: Trends on Technology and T&D Applications. IEEE Trans on Power Systems Conference and Exposition, 2004, 3: 1767~1769
    43潘志宏,孙宏斌,张伯明等.新一代DTS中的动态仿真程序. 1999, 39(9): 18~21
    44戴仁昶,潘哲龙,孙宏斌等.DTS中动态实时仿真研究.电力系统自动化, 2000, 24(10): 1~8
    45梁志成,马献东.继电保护测试用小型化实时数字仿真器研究.电力系统自动化, 1996, 23(23): 27~30
    46 X. Lei, B. Buchholz, D. Povh, D. Retzmann.Power System Analysis-Software Approach and Real-time Simulation. Power Engineering Society Winter Meeting, 2002, 2:1011~1016
    47柳勇军,梁旭,闵勇.电方系统实时数字仿真技术.中国电力, 2004, 37(4) : 39~42
    48夏道止.电力系统分析(下册).北京:水利电力出版社, 1995:1~46
    49王锡凡,方万良,杜正春.现代电力系统分析.北京:科学出版社, 2003: 240~290
    50黄家裕,陈礼义,孙德昌.电力系统数字仿真.北京:水利电力出版社, 1995:60~83
    51 Enrique Acha, Claudio R. Fuerte-Esquivel, Hugo Ambriz-Perez, Cesar Angeles-Camacho. FACTS: Modelling and Simulation in Power Networks, John Wiley & Sons, Ltd, 2004: 9~41
    52 F. P. de Mello. Boiler Models for System Dynamic Performance Studies. IEEE Trans. Power Systems, 1991,6: 66~74
    53汤涌,宋新立,刘文焯,周孝信.电力系统全过程动态仿真中的长过程动态模型——电力系统全过程动态仿真软件开发之三.电网技术, 2002, 26(11): 20~25, 52
    54 P. M. Anderson, A. A. Fouad. Power System Control and Stability. IEEE press power engineering society, sponsor, 2002:13~527
    55陈礼义.电力系统动态仿真.计算机仿真, 1986, 4:9~15
    56倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析.清华大学出版社, 2002:135~180
    57易善军.电力系统暂态稳定数值仿真方法研究.哈尔滨工业大学硕士学位论文, 2001:1~10
    58 Fernando A. Moreira, JoséR. Marti. Latency Techniques for Time-Domain Power System Transients Simulation. IEEE Transactions on power systems, 2005, 20(1): 246~253
    59 Thomas J. Overbye. Power System Simulation Understanding Small- And Large-System Operations. IEEE power & energy magazine, 2004, 2(1): 20~31
    60 Zhong Baorong, D. Z. Fang, T. S. Chung. Complex Coefficient Newton Method and Its Application in Dynamic Simulation of Power System. Proceedings of the 5th International Conference on Advances in Power System Control, Operation and Management, APSCOM 2000, Hong Kong, October 2000, 2: 469~472
    61 D. Z. Fang, Yang Xiaodong. A New Method for Fast Dynamic Simulation of Power Systems. IEEE Transactions on Power Systems, 2006, 21(2): 619~62
    62 I. Roytelman, S. M. Shahidehpour. A Comprehensive Long Term Dynamic Simulation for Power System Recovery. IEEE Transactions on Power Systems, 1994, 6(3): 1427~1433
    63 Xianrong CHANG, Yubin WANG, Lifeng HU.An Implicit Taylor Series Numerical Calculation Method for Power System Transient Simulation. Proceedings of the 25th Iasted International Conference Modelling, Identification, and Control, Lanzarote, Canary Islands, Spain, 2006:82~85
    64王宇宾,常鲜戎,罗艳,马瑞军.基于隐式Taylor级数法的电力系统暂态稳定计算.华北电力大学学报, 2005, 32(2):1~6
    65 N.R. Watson. Accuracy of Discretization Methods for Electromagnetic Transient Simulation. International Conference on Power Systems Transients–IPST 2003 in New Orleans, USA
    66 M. O. Faruque, Venkata Dinavahi, Wilsun Xu. Algorithms for the Accounting of Multiple Switching Events in Digital Simulation of Power-Electronic Systems. IEEE Transactions on power delivery, 2005, 20(2): 1157~1167
    67 Thierry Van Cutsem, Marie-Eve Grenier, Daniel Lefebvre. Combined Detailed and Quasi Steady-State Time Simulation for Large-Disturbance Analysis. 15th PSCC, Liege, 2005:1~7
    68王蕾,胡翔勇,李咸善,哈恒旭.电力系统动态仿真的一种改进迭代算法.继电器, 2006, 34(14): 42~45
    69 M. Prochaska, B. R. Oswald, W. Mathis. An Approach for Reduced Order Modeling of Nonlinear Power Systems. International Conference on Power Systems Transients (IPST’05) in Montreal, Canada on June 19-23, 2005
    70 Johnson R B I, Cory B J, Short M J. A Tunable Integration Method for the Simulation of Power System Dynamics. IEEE Transactions on Power System, 1988, 3(4): 1530~1537
    71陈礼义,顾强.电力系统数字仿真及其发展.电力系统自动化, 1999, 23(23):1~6
    72王成山,王丹,郭金川,曾沅,张沛.基于网式链表—双层结构的电力系统时域仿真算法,电力系统自动化, 2008, 32(16):6~10,60
    73 Wenzhong Gao, Solodovnik, E. Dougal, R. Cokkinides, G. Meliopoulos, A.P.S. Elimination of Numerical Oscillations in Power System Dynamic Simulation. IEEE Applied Power Electronics Conference, February, 2003, 2: 790~794
    74 Wenzhong Gao. New Methodology for Power System Modeling and Its Application in Machine Modeling and Simulation. Dissertation for theDoctoral Degree of Georgia Institute of Technology, January, 2002:1~29
    75 Fernando L. Alvarado, Robert H.Lasseter, Juan J.Sanchez. Testing Of Trapezoidal Integration with Damping for the Solution of Power Transient Problems. IEEE Transactions on Power Apparatus and Systems. 1983, PAS-102 (12): 3783~3790
    76王卉,陈楷,彭哲,杜刚.数字仿真技术在电力系统中的应用及常用的几种数字仿真工具.继电器, 2004, 32(21):71~75.
    77林良真,叶林.电磁暂态分析软件包PSCAD/EMTDC.电网技术, 2000(1): 65~66
    78柳勇军,闵勇,梁旭.电力系统数字混合仿真技术综述.电网技术, 2006, 30(13): 38~43
    79汤涌.电力系统数字仿真技术的现状与发展.电力系统自动化, 2002, 26(17): 66~70
    80颜伟,李丹,刘方,余娟.基于C++ Builder与Matlab的配电网无功优化软件设计.电工技术杂志, 2003, 12:43~46
    81 J. Mahseredjian and F. Alvarado. Creating an Electromagnetic Transient Program in MATLAB: MatEMTP. IEEE Trans. Power Delivery, 1997, 12(1): 380~388
    82 F. Milano. Federico Milano. Power System Analysis Toolbox Documentation for PSAT version 2.0.0β2. 2007, 2
    83 CHOW J H. Power System Toolbox: A Set of Coordinated M-Files for Use MATLAB. Colborne, Canada: Cherry Tree Scientific Software, 1996
    84 Kip Morison, Lei Wang, Prabha Kundur. Power System Security Assessment. IEEE power & energy magazine. 2004:30~39
    85 Xiaokang Xu. Application of Singular Perturbation Models to Long-Term Dynamic Stability Studies. Ph.D.dissertation, Dept.Electrical & Computer engineering, Eng., Univ.Ontatio, College Park, 1999:1~10, 13~100
    86 X. Xu, R.M. Mathur, J. Jiang, G.J. Rogers, and P. Kundur.Modeling of Generators and Their Controls in Power System Simulations Using Singular Perturbations. IEEE Transactions on Power Systems, 1998, PWRS-13(1): 109~114
    87 R. K. Varma, R. M. Mathur, G. J. Rogers, and P. Kundur. Modeling Effects of System Frequency Variation in the Long-Term Stability Studies. IEEE Transactions on Power Systems, 1996, PWRS-11 (2): 827~832
    88 N. A. Fountas, N. D. Hatziargyriou, C. Orfanogiannis, A. Tasoulis. Interactive Long-Term Simulation for Power System Restoration Planning. IEEE Transactions on Power Systems, 1997, 12(1): 61~68
    89 Ying Huang, Zheng Xu. HVDC Supplementary Controller Based on Synchronized Phasor Measurement Units. IEEE PSCE'04, New York, USA, 1-Oct., 2004, 2: 668~ 672
    90 Kundur P, Paserba J, Ajjarapu V, et al. Definition and Classification of Power System Stability. IEEE Trans on Power Systems, 2004, 19(3): 1387~1401
    91 S.C. Tripathy, R. Balasubramanian, P. S. Chandramohanan Nair. Adaptive Automatic Generation Control with Superconducting Magnetic Energy Storage in Power Systems. IEEE Transactions on Energy Conversion, 1992,7(3): 434~441
    92 Hu Jiabing, He Yikang. Modeling and Enhanced Control of DFIG under Unbalanced Grid Voltage Conditions. Electric Power Systems Research, 2009, 79(2): 273~281
    93 Kretschmann J., Wrede H., Mueller-Engelhardt, S.Erlich, I. S. Enhanced Reduced Order Model of Wind Turbines with DFIG for Power System Stability Studies. First International Power and Energy Conference, (PEC on 2006) Proceedings, 2006: 303~311
    94 Song Seung-Ho, Im Ji-Hoon, Choi Hyeong-Jin, Jeong Seung-Gi, Jeong Byoung-Chang. Simulation Modeling and Experimental Validation of Generator Control Strategy in DFIG System. 22nd Annual IEEE Applied Power Electronics Conference and Exposition, 2007: 1329~1333
    95 Ebrahim Osama S, Jain Praveen K, Nishith Goel. New Direct Power Control for the Wind-Driven DFIG with Improved Performance. International Telecommunication Energy Conference, INTELEC 2007, 2007: 550~556
    96 Xu lie. Enhanced Control and Operation of DFIG-Based Wind Farms during Network Unbalance. IEEE Transactions on Energy Conversion, 2008, 23(4): 1073~1081
    97 Janssens, Noel A., Lambin, Guillaume, Bragard, Nicolas. Active Power Control Strategies of DFIG Wind Turbines. Proceedings of 2007 IEEE Lausanne POWERTECH, 2007: 516~521
    98 Djemai Naimi, Tarek Bouktir. Impact of Wind Power on the Angular Stability of a Power System. Leonardo Electronic Journal of Practices and Technologies, 2008,7(12):83~94
    99 Federico Milano. Assessing Adequate Voltage Stability Analysis Tools for Networks with High Wind Power Penetration. IEEE 3rd Conference on Electric Utility Deregulation and Restructuring and Power Technologies, Nanjing China, 2008, 2492 ~2497
    100 El-Shimy M., Badr M.A.L., Rassem O.M. Impact of Large Scale Wind Poweron Power System Stability. 12th International Middle East Power System Conference, Aswan, Egypt, 2008. Institute of Electrical and Electronics Engineers Computer Society, Piscataway, 2008:630~636
    101曹娜,李岩春,赵海翔,戴慧珠.不同风电机组对电网暂态稳定性的影响.电网技术, 2007, 31(9): 53~57
    102关宏亮,迟永宁,戴慧珠,杨以涵.异步风电机组接入系统的小干扰稳定及控制.电力系统自动化,2008, 32(4): 54~58
    103雷亚洲.与风电并网相关的研究课题.电力系统自动化, 2008, 27(8): 84~89
    104高钦和,黄先祥.复杂液压系统动态特性仿真中的刚性问题研究.系统仿真学报, 2003,15(4):482~485
    105袁兆鼎,费景高,刘德贵.刚性常微分方程初值问题的数值解法.科学出版社, 1987
    106徐绪海,朱方生.刚性微分方程的数值方法.武汉大学出版社, 1997年8月,第一版:武汉
    107 H. Jokinen, M. Valtonen. Steady-State Time-Domain Analysis Method with Variable Time Step Integration. Proceedings of the Third IEEE International Conference. 1996, 2: 1139~1142
    108崔振庆.独立自适应积分法及其在核电系统数值仿真中的应用.哈尔滨工业大学工学硕士学位论文.1999, 6:1~30
    109 Yong Chen, Yongqiang Liu. Summary of Singular Perturbation Modeling of Multi-time Scale Power Systems. IEEE/PES Transmission and Distribution Conference & Exhibition, Asia and Pacific Dalian, China, 2005:1~4
    110 A. Kurita, H. Okubo, D. B. Klapper, etc al. Multiple Time-scale Power System Dynamic Simulation. IEEE Transaction on Power System, 1993, 8(1): 216~382
    111钟万勰.结构动力方程的精细时程积分法.大连理工大学学报, 1994, 34(2): 131~136
    112孔向东,钟万勰.非线性动力系统刚性方程精细时程积分法.大连理工大学学报, 2002, 42(6): 654~658
    113张素英,邓子辰.非线性动力方程的增维精细积分法.计算力学学报, 2003, l20(4): 423~426
    114王宇宾,常鲜戎,罗艳,王冬辉.精细时程法电力系统暂态仿真初探.浙江电力,2005, 1~4
    115 Toshiji Kato, Kenji Ikeuchi. Variable Order and Variable Step-Size Integration Method for Transient Analysis Programs. IEEE Trans on PWRS, 1991, 6(1):206~213
    116 D. Negrut, E.J.Haug, M.Iancu.Variable Step Implicit Numerical Integration of Stiff Multibody Systems. NATO ASI Conference, 1997, Varna, Bulgaria.1997: 1~10
    117 Sanchez-Gasca J J, Aquila R D, Paserba J J, et al. Extended-term Dynamic Simulation Using Variable Time Step Integration. IEEE Computer Applications in Power, 1993, 6(4): 23~28
    118 Sanchez-Gasca, J.J., D'Aquila, R., Price, W.W., Paserba, J.J. Variable Time Step, Implicit Integration For Extended-Term Power System Dynamic Simulation, IEEE Power Industry Computer Applications Conference 1995, 183~189
    119 J. Y. Astic, M. Jerosolimski. The Mixed Adms-BDF Variable Step Size Algorithm To Simulate Transient and Long Term Phenomena In Power System. IEEE Trans on PWRS, 1994, 9(2): 929~935
    120 JoséE. O. Pessanha, Alex A. Paz. Testing a Differential-Algebraic Equation Solver in Long-Term Voltage Stability Simulation. Mathematical Problems in Engineering, 2006, 1~13
    121 JoséE. O. Pessanha, Osvaldo Saavedra, Alex Paz, Carlos Portugal. Power System Stability Computer Simulation Using a Differential-Algebraic Equation Solver. International Journal of Emerging Electric Power Systems, 2005, 4(2): 1~14
    122汪芳宗,陈德树.一种新的电力系统暂态稳定性在线计算方法.电力系统自动化, 1994, 18 (5): 31~35
    123汤涌.电力系统稳定计算隐式积分交替求解.电网技术, 1997, 21(2): 1~3
    124 Vaahedi E, Mansour Y, Tse E K.A General Purpose Method for On-Line Dynamic Security Assessment.IEEE Trans on Power Systems, 1998, 13(1): 243~249
    125 Chan K W, Dunn R W, Daniels A Ret al . On-line Dynamic-security Contingency Screening and Ranking. IEE Proceedings-Generation, Transmission and Distribution, 1997, 144(2): 132~138
    126郭志忠,朱文东,柳焯等.电力系统暂态稳定的快速动态仿真判定法.电工技术学报, 1994, (8): 47~50
    127汪芳宗,陈德树,何仰赞.大规模电力系统暂态稳定性实时仿真及快速判断.中国电机工程学报, 1993, 13(6): 13~19
    128刘德贵,费景高,韩天敏.刚性大系统数字仿真方法.河南科学技术出版社, 1996:1~318
    129 Yuan Zhou, Venkataramana Ajjarapu. A Novel Approach to Trace Time-Domain Trajectories of Power Systems in Multiple Time Scales. IEEE Trans on PWRS, 2005, 20(1): 149~155
    130 M. STUBBE, A. BIHAIN, J. DEUSE, J.C. BAADER. Stag - A New Unified Software Program for the Study of the Dynamic Behaviour of Electrical Power Systems. IEEE Transactions on Power Systems, 1989,4(1): 129~138
    131 James G. Chen, M. L Crow. A Study of Numerically Efficient Algorithms for Power System Dynamic Analysis. Proceedings of the 36th Midwest Symposium on Circuits and Systems, 1993: 712~715
    132 M. L. Crow, James G. Chen. The Multirate Method for Simulation of Power System Dynamics. IEEE Trans on PWRS, 1994, 9(3): 1684~1690
    133 M. L. Crow, James G. Chen. The Multirate Simulation of Facts Devices in Power System Dynamics. IEEE Trans on PWRS, 1996, 11(1): 376~382
    134 Lanjuan Hou. Power System Dynamic Simulation Using System Partitioning and Multiple Stepsize Techniques. Dissertation for the Doctoral Degree of Arizona State University, December, 1994:1~63
    135 Lanjuan Hou, Anjan Bose. Multi-Step Partitioned Solution for Power System Transient Stability Analysis. Power sytem computation conference Avignon, France, August 1993:79~85
    136 Lanjuan Hou, Anjan Bose. Implementation of the Waveform Relaxation Algorithm on a Sharedmemory Computer for the Transient Stability Problem. IEEE Transactions on Power Systems, 1997, 12(3): 1053 ~1060
    137王路,李兴源,罗凯明,等.交直流混联系统的多速率混合仿真技术研究.电网技术, 2005, 29(15): 23~27
    138王路,李兴源,颜泉,等.复杂交直流系统的双时标混合协调仿真.电力系统自动化,2005,29(22): 28~32
    139王路.复杂交直流互联系统的电磁-机电暂态混合仿真和相关问题的研究. 四川大学博士学位论文.2005:14~104
    140鄂志君,房大中,王立伟,宋文南.基于EMTDC的混合仿真算法研究.继电器.2005,33(8):47~51
    141 SU Hong-tian, CHAN K K W, Snider L A. Interfacing an Electromagnetic SVC Model into theTransientStability Simulation. Proceedings of the International Conference on Power, 2002, 3: 1568~1572
    142岳程燕,田芳,周孝信,吴中习,李若梅.电力系统电磁暂态-机电暂态混合仿真接口原理.电网技术, 2006, 30(1): 23~27, 88
    143岳程燕,田芳,周孝信,吴中习,李若梅.电力系统电磁暂态一机电暂态混合仿真接口实现.电网技术, 2006, 30(4):6~10
    144柳勇军.电力系统机电暂态和电磁暂态混合仿真技术的研究.清华大学工学博士学位论文. 2006:16~79
    145柳勇军,梁旭,闵勇,等.电力系统机电暂态和电磁暂态混合仿真的接口算法.电力系统自动化, 2006, 30(11): 44~48
    146柳勇军,梁旭,闵勇,等.电力系统机电暂态和电磁暂态混合仿真的程序设计和实现.电力系统自动化, 2006, 30(12): 53~57
    147 Steven D. Pekarek, Oleg Wasynczuk, Eric A. Walters, Juri V. Jatskevich, Charles E. Lucas, Ning Wu, Peter T. Lamm. An Efficient Multirate Simulation Technique for Power-Electronic-Based Systems. IEEE Transactions on Power Systems, 2004, 19(1): 399~408
    148王锡凡.电力系统计算.北京:水利电力出版社, 1978:264~268
    149李汉香.电力系统潮流、短路电流、动态稳定等应用程序考评计算中的几个问题.电网技术, 1984, 8(1): 51~63
    150陈亚民.电力系统计算程序及其实现.北京中国电力出版社,1995:147~202
    151 Rajesh K G, Padiyar K R. Bifurcation Analysis of a Three Node Power System with Detailed Models. Electrical Power and Energy Systems, 1999, 21(5): 375~393
    152武志刚,张尧,郑风雷,宋文南,余贻鑫.电力系统特征值与状态变量对应关系分析.电力系统自动化, 2001, 5: 23~26
    153高严.面向21世纪电力科学技术讲座.北京:中国电力出版社, 2001:251~278
    154范高锋,赵海翔,戴慧珠.大规模风电对电力系统的影响和应对策略.电网与清洁能源.2008, 24(1): 44~47
    155 Bowden G.J., BarkerP.R, ShestoPal V.O.and TWidell J.W. The Weibull Distribution Function and Wind Power Statisties.WindEngineering, 1983, (7): 85~98
    156 IEEE Working Group on Prime Mover and Energy Supply Models for System Dynamic Performance Studies.Dynamic Models for Fossil Fueled Steam Units in Power System Studies.IEEE Transactions on Power Systems,1991,6(2): 753~761
    157 Ray D. Zimmerman, Carlos E. Murillo-Sánchez, Deqiang (David) Gan. MATPOWER: A MATLAB? Power System Simulation Package, Version 3.0.0, February 14, 2005
    158国家电网风电场接入电网技术规定(试行)。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700