用户名: 密码: 验证码:
核电厂检修局部干法自动水下焊接技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核电是未来世界电力发展的趋势,也是低碳经济发展的需要。为了减少核辐射的影响,核电站内部设备的检查和维修往往要在水中进行。目前的核电站内部水下维修以手工焊为主,考虑到操作人员的健康、修复质量和修复效率等因素,核电水下环境焊接作业的发展趋势是远程控制自动化。局部干法水下焊接综合了干法水下焊接的高焊缝质量和湿法水下焊接技术简便易行的优点,是核电站水下焊接修复的首选方式,但目前尚未解决持续有效排水密封、局部干式焊接环境营造和焊接操作自动化问题,导致焊接过程欠稳定,接头质量不能完全满足核电相关标准要求,且罕见针对核电结构材料进行水下焊接工艺和焊缝性能研究的报导。
     本研究首先对核电结构材料的焊接性进行研究,通过核电用不锈钢材料的陆上焊接试验,掌握了不同焊接方式、焊接保护气体、送丝速度及电源设置弧长等参数对焊接过程和焊缝成型的影响,为随后的水下焊接试验提供基础数据。
     其次,建立了基于微型排水罩的局部干法自动水下焊接试验系统,主要由水下焊接试验舱、试验环境系统、焊接监视系统、自动焊接平台、电控系统和焊接电源等部分组成。各部分之间协调动作,能够模拟15m水深的焊接试验环境,并可以对焊接区域进行全过程的实时远程视频监控。在自动水下焊接试验系统当中集成了焊接质量分析系统,对焊接工艺参数及过程稳定性进行监控,以预测焊接质量。
     排水装置的有效排水密封是局部干法自动水下焊接顺利进行的前提条件,本研究通过理论计算及数值分析,获得了排水装置内部稳定的气体流动状态。采用组合材料密封垫设计,可以大大降低焊接电弧及熔池对密封部位的损伤,延长有效排水时间。
     在上述基础之上,进行了321不锈钢和304不锈钢材料的远程控制自动水下焊接试验,掌握了影响排水装置密封效果的因素及影响规律,确立了送丝速度、保护气体、运动参数、坡口形式和水深环境等对水下焊接质量的影响规律:随着送丝速度的提高,焊接过程的稳定性提高;保护气体中添加活性气体可以改善焊缝成型和优化熔滴过渡状态。获得了321不锈钢坡口对接焊和304不锈钢平板堆焊、坡口堆焊和坡口对接焊的水下焊接工艺参数;对不同结构下密封垫的持续密封性能进行了试验研究,通过使用组合材料密封垫获得了良好密封性能。
     最后进行了水下焊接焊缝的综合测试,结果表明:本研究获得的水下焊接工艺参数可以得到良好的水下焊接质量,而局部干法水下焊接过程的不连续是水下焊接缺陷产生的主要原因;与母材性能相比,焊缝的强度满足要求,韧性有所降低、硬度稍有增加,5m和15m水深的不同对焊缝力学性能没有明显影响。对坡口堆焊的焊缝化学成分分析表明,不锈钢水下焊接焊缝的耐腐蚀性能优于母材。根据理论分析和试验验证,由于水下环境对焊缝的强制冷却作用,焊缝在高温区停留的时间较短,奥氏体不锈钢水下焊接时不会产生晶间腐蚀,因此可以采用提高焊接效率的焊接工艺参数,这对于核辐射环境下的远程控制水下焊接而言非常重要。焊缝截面的宏观检测表明水下焊接焊缝与母材能够良好熔合,无可见缺陷。焊缝的微观金相组织分析表明,水下环境的焊缝在铁素体-奥氏体相变时扩散受到限制,铁素体的分布形态与干式环境不同。而对于不同环境水深下的焊缝而言,在排水效果良好的前提下,水的冷却作用与水深基本没有关系,水深对焊缝中铁素体含量及分布形式基本没有影响。能谱分析结果说明水下环境焊缝的Fe、Ci、Ni含量较干式焊缝中均有不同程度的提高,但Cr/Ni的比值比干式焊缝的略高。
     以上研究结果为局部干法自动水下焊接技术及奥氏体不锈钢材料的水下焊接工艺研究提供了良好基础。
Nuclear power is not only the trends of power development, but also the needs of a low-carbon economic development. In order to reduce the effects of exposure to nuclear radiation, inspection and maintenance of internal equipments in nuclear power plant are often carried out in the water. The current underwater maintenance in nuclear reactors is mainly fulfilled by the manual welding. Considering such factors as the health of operators, repair quality and repair efficiency, the trend of nuclear power station underwater welding is remote control automation. Local dry underwater welding is the first choice of nuclear power station during underwater welding repair because it combines the advantages of high-weld-quality in dry underwater welding and easy-to-do in wet welding. But local dry underwater welding method has not solved the problems such as continuous and effective drainage seal, creating sealed environment for local dry welding and welding automation, which lead to less stability of the welding process and which mean joint quality can not fully meet the relevant standards of nuclear power. Besides the study report is rarely in view on underwater welding technology and welding joints properties of nuclear power structural materials.
     Firstly, this research studies the nuclear power structural material's weldability through the-in-air welding test of nuclear power station with stainless steel material, and while getting to know the regular pattern of different welding methods, welding shielding gas, wire feed speed and arc length to weld processes and the welded joint formation, the basic data is gained for the following tests.
     Secondly, this study has established the local dry automatic underwater welding test system based on miniature draining water cover, which is mainly composed of underwater welding test cabin, test environmental system, welding monitoring system, automatic welding platform, electronic control system and welding power supplies. Coordinating action of different parts of system can simulate the welding test environment under 15-meter-depth water, and can realize the real-time remote surveillance of whole process on the welding regions. Integrated the welding quality analysis system in the automatic underwater welding test system can monitor the welding process parameters and the stability to forecasts the welding quality.
     Effective seal of draining water device is a prerequisite for the local dry automatic underwater welding to carry on smoothly. The research has obtained the gas flow stability in drainage system through theoretical calculation and numerical analysis. Using the combination material gasket design can significantly reduce the damage to the sealed parts from welding arc and weld pool, and extend the effective drainage time
     Based on the above, remote control automatic underwater welding experiments of 321 and 304 stainless steel have been conducted. With the experiments the key factors and rules influencing the sealing effect have been recorded, and the law of effect has been established of wire feed speed, shielding gas, moving parameters, groove form and depth of water environment to the welding quality, which says along with the increase of wire feed speed the welding stability of process has been enhanced and adding the active gas to shielding gas can improve the welded joint formation and the optimize melt drop state of transition. The test has also obtained underwater welding technological parameters of 321 stainless steel groove butt welding and 304 stainless steel surfacing welding, built-up welding and groove butt welding.Conducting the experimental study on continually sealing performance of different gasket structure, obtained good sealing property by using combination material gasket.
     Finally, the comprehensive test has been carried out on underwater weld. The results show:the underwater welding technological parameter obtained in the study can achieve a good underwater welding quality, and not-continuous local dry underwater welding process is the main reason which leads to the underwater welding flaw; compared with the parent metal performance, weld strength meets the requirements while toughness is decreased and hardness is increased slightly; 5m and 15m water depth does not have the obvious different effects on the weld mechanical properties. Chemical composition analysis on the built-up welding weld shows that the anti-corrosive performance of underwater stainless steel weld is superior to the parent metal.
     According to theoretical analysis and experimental confirmation, the time that weld stay at high temperatures is shorter than in the air due to the forced cooling effect on the weld in underwater environment, and thus the underwater welding of austenitic stainless steel will not have the intercrystalline corrosion. Therefore the welding process parameters can be used to improve welding efficiency, which is very important for the remote control of underwater welding in nuclear radiation environment.
     The weld macro-analysis of cross-section has showed that underwater welding weld with the parent material can be a good fusion with no visible defects. Microstructure analysis showed that the ferrite-austenite phase transformation has been restricted in underwater welding weld. The distribution of ferrite morphology is different to that in dry environment weld.
     As for the weld under different environments in terms of water depth, under the premise of good draining water effect, the water cooling effect basically has nothing to do with the water depth, and the water depth has no effect on ferrite content and distribution morphology.
     Energy-dispersive spectrometry(EDS) analysis shows that the Fe, Cr, Ni contents in underwater environment weld increase to some degree and the Cr/Ni is slightly higher than that in dry environment weld.
     The above results have laid a good foundation for the local dry automatic underwater welding technology research and austenitic stainless steel materials underwater welding technology research.
引文
[1]马新朝.恰希玛核电工程安全壳筒体钢衬里的埋弧自动焊焊接质量控制[J].核动力工程,2008,29(1):25-29
    [2]杨忠勤,薛飞.核电站老化与寿命管理工作经验交流,2009核电运行建设管理论文汇编2009,12.中国北京
    [3]张炼.焊接在核电工程中的应用(二)[J].现代焊接,2006(8):15-19
    [4]张炼.焊接在核电工程中的应用(三)[J].现代焊接,2006(10):29-34
    [5]王成林.核电站水下修复项目HDS关键技术研究[D].浙江工业大学硕士学位论文,2008
    [6]徐玉虎,徐念念.核电堆内构件在役维修用水下吸尘装置[J].通用机械,2009(4):20-23
    [7]A.L.Lund.Feasibility of underwater weldingof highly irradiated in-vessel components of boiling-water reactors[M].U.S.Department of commerce national technical information service.Nov.1997
    [8]卢本,张炼.焊接在核电工程中的应用(一)[J].现代焊接,2006(8):24-28
    [9]付昱华.水下焊接与切割技术综述[J].中国海上油气(工程),2000,12(3):1-8
    [10]舒新宇,王国荣,李国进.水下机器人技术在焊接中的应用现状与前景[J].电焊机.2005,35(6):24-28
    [11]石永华,王国荣等.水下药芯焊丝焊接的工艺特点与研究进展.焊接技术[J],2000,29(2):16-22
    [12]T Lrie,Y.Ono,T Nakatani.New underwater welding with super-water-repellent material[C].20th International conference on offshore mechanics and arctic engineering.Rio de Janerio,Brazil.June,2001:153-159
    [13]刘桑,钟继光,石永华,王国荣.湿法水下焊接电弧区域图像采集与处理[J].机械与电子,2000(3):15-17
    [14]刘桑,钟继光,张彤,廖霄,王国荣.药芯焊丝水下焊接方法的研究[J].南吕大学学报(工科版).2000,22(2):11-15
    [15]朱加雷,俞建荣,焦向东,等.水下焊接技术研究和应用的进展[J].焊接技术,2005,34(4):6-8
    [16]Ezequiel Caires Pereira Pessoa, Alexandre Queiroz Bracarense,Eduardo Maluf Zica, Stephen Liu, Faustino Perez-Guerrero. Porosity variation along multipass underwater wet welds and its influence on mechanical properties[J]. Journal of Materials Processing Technology.2006, (179):239-243.
    [17]蒙永民,沈晓勤,刘世明,黄石生.16Mn钢水下湿法焊接接头间隙与裂纹率的关系[J].焊接,2000(6):28-30
    [18]王中辉,蒋力培,焦向东,等.高压环境下16Mn模拟全位置管道焊接工艺[J].焊接技术,2006,35(2):25-27
    [19]焦向东,周灿丰,薛龙,等.遥操作干式高压海底管道维修焊接机器人系统[J].焊接学报,2009,30(11):1-4
    [20]蒋力培,王中辉,焦向东,等.水下焊接高压空气环境下GTAW电弧特性[J].焊接学报,2007,28(6):1-4
    [21]薛龙,王中辉,周灿丰,等.高压空气环境下TI G焊接机器人关键技术[J].焊接学报,2006,27(12):17-20.
    [22]David John Lythall,Hertford;Eric Martin Wilson,Weston-Super-Mare.Underwater
    Welding(P).United Kingdom patent.4039798.Aug 2,1997.
    [23]Matthias Creutz,Dieter Mewes,Joerg Bartzsch,Ulrich Draugelates,Helmut Steinkamp. Local pressure reduction by pump impeller for underwater welding[J]. Schweissen & Schneiden.1996,48(10):E200-E202,796,800,803-805.
    [24]钟继光,石永华,王国荣.新型水下焊接电源及送丝机构的研究[J].电焊机,2005,35(12):1-3
    [25]Yoshihiro YAMASHITA, Toru KAWANO and Kurt MANN, Underwater Laser Welding by 4 kW CW YAG Laser[J]. Journal of NUCLEAR SCIENCE and TECHNOLOGY.2001,38(10):891-895
    [26]林尚扬,宋宝天,宋天虎.水下局部排水CO2半自动焊接技术的研究[J].焊接学报.1981,2(1):9-20
    [27]宋宝天,王连东,宋炀,等.渤海六号钻井平台水下焊接修复[J].焊接,1996(3):9-12
    [28]宋炀,陆焕功,宋宝天.码头钢桩支撑水下焊接节点的优化设计[J].焊接,1997(5):8-11
    [29]宋宝天.浑水中局部排水的录像装置[P].中国专利,2004200018723.6.2005-02-23
    [30]Xudong Zhang, Wuzhu Chen, Eiji Ashida.Relationship between weld quality and optical emissions in underwater Nd:YAG laser welding[J].Optics and Lasers in Engineering, 2004(41):717-730
    [31]魏星,刘德镇.奥氏体钢焊接区域的金相组织及扫描电镜分析[J].山东工业大学学报,1999,29(2):183-187
    [32]Newton R.Weld overlay repair.In:Maintenance and Repair Welding in Power Plants V.Orlando:AWS and EPRI,1994,106-107
    [33]黄一桓.奥氏体不锈钢晶间腐蚀机理及预防措施[J].中国科技信息,2006(16):88-90
    [34]孙长庆·超级奥氏体不锈钢的发展,性能与应用(下)[J].化工设备与管道,2000,37(1):52-57J. Wang, K. Kusumoto and K. Nezu. Investigation into micro-tungsten inert gas arc
    [35]behaviour and weld formation[J]. Science and Technology of Welding and Joining.2004,9(1):90-94
    [36]Roger E.Cantrell. SECTION XI PROGRESS IN TEMPERBEAD WELDING 1989 EDITION TO 1996 ADDENDA ANDBEYOND [C]. The 2001 ASME Pressure Vessels and Piping Conference,Atlanta, Georgia. Jul,2001.P.147-153
    [37]Marshall Gordon Jones.Scotia N.Y. Underwater laser welding nozzle[P].U.S.patent.6060686.May 9,2000
    [38]Yoshihiro Yamashita. Newly undertaken inspections and repairs for aged nuclear power generators[J].Journal of Nuclear Science and Technology.2001,38(10):887-890
    [39]王国荣,易耀勇,刘世明,等.水下局部干法药皮焊条焊接的研究[J].华南理工大学学报(自然科学版).1995,23(2):34-40
    [40]沈晓勤,刘世明,王国荣.湿法深水焊条的研制[J].焊接,2000(10):19-23
    [41]栗卓新,李冬梅,杨玉君.不锈钢的高效、低成本、自动化焊接技术-CO2气保护不锈钢药芯焊丝电弧焊[J].兵器材料科学与工程,2001,24(2):61-64
    [42]张京海,鲁晓声,余巍.304不锈钢氩弧焊焊剂的研究[J].材料开发与应用,2000,15(6):1-4
    [43]曹梅青,邹增大,杜宝帅,等.双丝间接电弧氩弧焊的熔滴过渡[J].焊接学报,200 6,27(1):45-48
    [44]杨立军,李桓,李俊岳,等.熔化极气体保护焊熔滴过渡过程控制的精确化趋势[J].焊管,1999,22(6):8-13
    [45]云绍辉,柳刚,韩国明.熔化极气体保护焊熔滴过渡检测方法现状与展望[J].电焊机,1998(4):1-4
    [46]姜伟雁,张九海,赵崇仪.MIG (MAG)脉冲焊熔滴的过渡行为[J].焊接学报,1994,15(1):50-58
    [47]杨世彦,刘井权,张继红,王其隆.MIG/MAG焊射滴过渡的能量模型[J].哈尔滨工业大学学报2000,32(1):41-44
    [48]包晔峰,周昀,吴毅雄,等.熔化极气体保护焊熔滴过渡研究[J].电焊机,2006,36(3):55-58
    [49]吴开源,陆沛涛,李阳,等.脉冲MIG焊控制的研究现状与展望[J].电焊机,2003,33(2):1-4
    [50]吴开源,黄石生,蒙永民,等.脉冲MIG焊熔滴过渡中值波形的控制策略[J].焊接学报,2004,25(4):51-58
    [51]杨运强,李俊岳,张晓囡,等.脉冲MIG焊熔滴过渡控制的新进展[J].机械工程学报,2002,38(11):12-16
    [52]王国荣,杨乾铭.水下焊接电弧温度的光谱诊断[J].华南理工大学学报(自然科学版),1997,25(2):8-13
    [53]丁训慎.核电站蒸汽发生器的更换[J].国外核动力,2006(1):32-39
    [54]Yasuhide Asada.日本核安全研究开发工作综述[J].国外核动力,2001(2):2-12
    [55]张宝锋,夏虹.核电站设备的维修优化[J].核动力工程,2007,28(3):117-120
    [56]Ross Hancock. UNDERWATER WELDING IN NUCLEAR POWER PLANTS/Diving welders keep cool heads in hot water [J]. Welding journal.2003,82(9),48-49
    [57]Fred Delany,William lucas,Wayne Thomas,etc.Advanced joining processes for repair in nuclear power plants.2005能源工程焊接国际论坛论文集[C].2005,54-69
    [58]J.Bartzsch,S.Daniel,B.Bouaifi and U.Draugelates.Arc welding with austenitic filler metal for underwater application[J].1997 OMAE-Volume Ⅲ.Materials Engineering ASME 1997,243-250
    [59]Yasuhiro Makihara,Yasuhiro Miwa,Naoya Hirose,Syuichi Satoh,Katura Ohwaki.The application of the welding technique at fillet groove by the YAG-laser repair-welding robot for underwater environment[C].12th international conference on nuclear engineering,Arlington,Virginia USA.April,2004.149-155
    [60]OBANA Takeshi, HAMADA Yasumitsu,OOTSUKA Toshihiro, et al. Developmentof maintenance technology with underwater TIG welding for Spent FuelStorage Pool[C].溶接学会论文集,2007,25(4):519-531.
    [61]Takehisa HINO,Masataka TAMURA,Yoshimi TANAKA.Development of underwater laser cladding and underwater laser seal welding techniques for reactor components [J] Journal of power and energy systems,2009,3(1):51-59
    [62]Takehisa HINO,Masataka TAMURA,Yoshimi TANAKA.Development of underwater laser cladding and underwater laser seal welding techniques for reactor components[J].Journal of power and energy systems,2009,3(1):51-59
    [63]张旭东,陈柱,芦田荣次,等.局部干法水下Nd:YAG激光焊接技术[J].应用激光,2002,22(3):309-312
    [64]张旭东,陈武柱,芦田荣次,等.光学传感器对水下Nd:YAG深熔激光焊接过程检测的研究[J].应用激光,2002,22(2):177-180
    [65]Xudong Zhang; Eiji Ashida; Susumu Shono. Effect of shielding conditions of local dry cavity on weld quality in underwater Nd:YAG laser welding[J]. Journal of Materials Processing Technology.2006,174(1/3):34-41
    [66]吴文军.混合气体保护焊薄板焊接工艺的开发[J].石油化工建设,2006,28(2):33-36
    [67]孟庆鑫,王茁,袁鹏,等.水下作业工具系统的关键技术研究[J].哈尔滨工程大学学报,2002,23(1):76-79
    [68]于延凯,孙斌,李一平,等·液压系统在水下机器人中的应用[J].液压与气
    动,2002(11):24-25
    [69]高辉,焦向东,周灿丰,等.水下高压局部干式自动焊接试验装置控制系统[J].焊接学报,2008,29(10):65-68
    [70]王宝,高俊华,宋丽,等.汉诺威焊接材料工艺性分析系统在焊接材料领域中的应用[J].焊接,2006(10):15-18
    [71]王宝,宋永伦,D. Rehfeldt.焊接材料工艺性的分析与评价[J].电焊机,2006,36(11):11-13
    [72]Dr.Dietrich Rehfeldt.Computer-aided quality assurance(CAQ)of Al-MIG welding with analysator Hannover [A].2003汽车焊接国际论坛论文集[C].北京:机械工业出版社,2003,11::39-50
    [73]高俊华,王宝,宋丽,等.低氢型结构钢焊条的工艺性判定[J].焊接技术,2006,35(5):52-54
    [74]张英乔,王宝,杨林.不锈钢焊条工艺稳定性判定的新方法[J].焊接技术,2004,33(6):46-48
    [75]王宝,杨林,王勇.药芯焊丝CO2焊熔滴过渡现象的观察与分析[J].焊接学报,2006,27(7):77-80
    [76]王宝,杨林,王勇.焊条典型熔滴过渡形态的判读[J].焊接学报,2006,27(11):95-98
    [77]李志勇,王宝,宋丽,等.干扰因素下药芯焊丝CO2焊焊接过程特征电信号的提取与分析[J].焊接,2007(1):25-27
    [78]刘富强,王宝.焊接电参数新的测试技术[J].热加工工艺,2007,36(11):79-81
    [79]高俊华,王宝,彭铁建.药芯焊丝焊接时的瞬时波动现象分析[J].电焊机,2006,36(11):31-33
    [80]梁明,王国荣,钟继光.采用微型排水罩的药芯焊丝水下焊接焊缝自动跟踪系统[J].机械工程学报,2007,43(3):148-153
    [81]王国荣,易耀勇,刘世明,等.水下局部干法药皮焊条焊接的研究[J].1995,23(2):34-40
    [82]梅福欣,李志明,李尚周.水下局部干法TIG焊接的研究[J].华南工学院学报,1982,10(2):138-149
    [83]王爱珍.全奥氏体钢焊缝金属的显微裂纹[J].郑州工学院学报,1995,16(1):92-96
    [84]严苏星.奥氏体不锈钢显微组织状况对使用性能的影响[J].研究与分析,2007,35(11):23-26
    [85]S. Yamane, H. Yamamoto, T. Ishihara, T. Kubota,K. Eguchi and K. Oshima. Adaptive control of back bead in V groove welding without backing plate[J]. Science and Technology of Welding and Joining.2004,9(2):138-148
    [86]何继海.ASTM321奥氏体不锈钢的焊接工艺评定[J].轻工机械,2006,24(3):73-74
    [87]何德孚,曹志,周志江,等.奥氏体不锈钢焊管焊缝铁素体含量及其测定[J].焊管,2007,30(5):3-8
    [88]马新朝,核电建设的焊接工艺评定[J].焊接技术,2008,37(5):27-31
    [89]于坚,董安.浅议中国核电焊接标准的现状及未来建设思路[J].核电,2008(70):1-3
    [90]陈顺泉,文永忠.钢结构焊接检验中的几个问题[J].无损探伤,2005,29(3):45-46
    [91]向新生.钢结构焊接质量检验及思考[J].工业技术,2006(4):36-37
    [92]GORCH T G. Stress Corrosi on Cracking ofWelded Austenitic Stainless Steel[J]. Welding in theWorld,1984,22 (3/4):65-77 P.K.Ghosh, P.K.Singh,K.K.Vaze and H.S.Kushwaha. Characterisation of pipe welds and
    [93]HAZ in primary heat transport system piping of pressurised heavy water reactors[J]. Science and Technology of Welding and Joining.2004,9(3):200-208
    [94]万军.镍及镍基合金的焊接[J].锅炉制造.2004(3):32-34.
    [95]FANG Z,WU Y, ZHU R. Stress Corr osi on Cracking of Type 304 Stainless SteelWeldments in the Active State[J]. Corrosion,1994,50 (3):171-175
    [96]陈世修,秦宗琼.奥氏体不锈钢中铁素体含量计算[J].阀门,2005(1):2-6
    [97]HEBBLE T L, CANONICO D A, EDMONDS D P, et al.Analysis of δ-ferrite Date from Producti on Welds on Stainless Steel Pipe[J]. Welding Journal,1985,64 (9):260
    [98]黄一桓.奥氏体不锈钢晶间腐蚀机理及预防措施[J].中国科技信息,2006(16):88-90
    [99]刘书丽,高亚平,郑和平,等.奥氏体不锈钢焊接接头的晶间腐蚀[J].煤矿机械,2008,29(1):96-98
    [100]陈炜.奥氏体不锈钢焊接的缺陷分析及解决办法[J].山西焦煤科技,2003,(6):27-28
    [101]陈宏刚.304不锈钢焊接后热处理[J].管道技术与设备,2004(1):43-44
    [102]印有胜.关于铁素体不锈钢焊接晶间腐蚀的若干问题[J].焊接学报,1996,17(1):39-47
    [103]林晓云.18-8奥氏体不锈钢焊接接头晶间腐蚀的评定及控制[J].理化检验-物理分册,2007,43(5):236-241
    [104]朱亮,梁新斌.冷却速度对奥氏体不锈钢Cr15Mn9Cu2Ni1N组织与凝固模式的影响[J].铸造技术,2009,30(7):864-867
    [105]O'Sullivan J E.Underwater welding in nuclear plant application. In:Maintenance and Repair Welding in Power Plants.Miami:AWS,1992.75-83
    [106]陈剑虹.不锈钢焊接冶金学及焊接性[M].北京:机械工业出版社,2008,141
    [107]郭力力,于捷,孙秀芳.TP347H电站高温用奥氏体不锈钢钢管焊接接头金相组织[J].焊接,1998(8):44-45
    [108]孙晓娜,雷毅,张鹰.厚板奥氏体不锈钢焊缝显微组织分析[J].金属热处理,2006,31(10):21-23
    [109]周磊磊,林大为,周灿栋,等.不同冷却速度下双相不锈钢6/Y相变过程的原位观察[J].上海金属,2007,29(3):19-23
    [110]王惠斌,不锈钢堆焊层金相组织分析[J].石油化工设备,2003,32(5):45-46
    [111]李红梅,杨武.304奥氏体不锈钢离子辐照后超显微硬度和微结构变化[J].材料工程,2005(7):11-14
    [112]王英姿,侯宪钦.带能谱分析的扫描电子显微镜在材料分析中的应用[J].制造技术与机床,2007(9):80-83
    [113]王嘉玲.焊接接头特征区的能谱分析与隶属函数[J].金属学报,1994,30(4):175-179
    [114]赵雪芸.321不锈钢焊接波纹管失效分析[J].理化检验-物理分册,2003,39(5):271-274
    [115]王能利,潘希德,薛锦,等.20/0Cr18Ni9复合管焊接工艺和接头的抗腐蚀性能[J].焊接,2003(5):23-26
    [116]Khan R A. Metal incorporation in MCM-41 for hydrodesul furization [D]. Saudi Arabia: King Fahd University of Petroleum and Minerals,2003
    [117]廖天发,王国荣,李国进,等.VC++串口通信在水下焊接远程控制中的应用[J].机械与电子.2004(3):33-35
    [118]王希靖,叶结和.不锈钢搅拌摩擦焊的研究现状与发展趋势[J].现代焊接.2007(2):J1-J3
    [119]刘敏初.珠光体钢与奥氏体钢焊接接头的组织分析及焊接工艺的控制[J].焊接技术,1994(2):18-20
    [120]黎桂江,彭倩,李聪,等.316L奥氏体不锈钢QPQ盐浴复合处理后的显微组织分析[J].金属热处理,2007,32(10):23-25
    [121]Adrian Peter Wivagg,Paul Joseph Boone,Paul R.Radovich SR.BWR inspection manipulator [P]. U.S. Patent, US 2005/0135904A1,Jun.23,2005
    [122]Artjir F.Jacobs,Duane W.Morris,N.Huntingdon.Emergency disconnect means for the manipulator arm of a nuclear reactor vessel inspection apparatus [P]. U.S. Patent,4149932,Apr.17,1979
    [123]Stephen K.Parker,Ronald M.Horn,Terry L.Chapman.Welding underwater in a chamber with a flux-type backing[P]. U.S. Patent, US 2003/0132272A1,Jul.17,2003
    [124]Witold czajewski,andrzej sluzek. Development of a laser-based vision system for an underwater vehicle[C].Bled:Slovenia,1999,173-177
    [125]蒋文春,巩建鸣,陈虎,等.304不锈钢半管夹套焊接部位残余应力有限元模拟[J].压力容器,2006,23(5):25-28
    [126]李萌盛,吴元峰,谢霞.焊接参数对异种钢接头热应力影响的数值模拟[J].焊接,2005(1):16-18
    [127]马艳波,邢卓.镍基合金复合钢板的焊接[J].电焊机,2007,37(7):18-20
    [128]张广志,王金奎.00Cr17Ni14Mo2不锈钢高压管道焊接工艺[J].焊接,2006(4):32-35
    [129]李为卫,宫少涛,熊庆人,等.2205双相不锈钢的焊接性及焊接技术[J].热加工工艺,2006,35(3):36-38
    [130]李衍,冯兆国.不锈钢焊缝的超声检测—现状与进展[J].无损探伤,2005,29(3):1-6
    [131]张秋平.奥氏体不锈钢双面电弧焊技术[J].飞航导弹2003(2):57-59
    [132]阮米庆,范引鹤,顾海锋.奥氏体型合金熔化焊接头微观组织不均匀性及对疲劳性能影响的研究[J].稀有金属材料与工程,1999,28(1):30-33
    [133]孙俊生,武传松.电弧压力对MIG焊接熔池几何形状的影响[J].金属学报,2001,37(4):434-438
    [134]王俨,段云春,吕龙.背面免充氩气保护剂在不锈钢焊接中的应用[J].现代焊接,2008(1):43-44
    [135]刘旭峰,李秋书,杜卫东.凝固速度对奥氏体不锈钢定向凝固组织及其固液界面稳定性的影响[J].材料科学与工艺,2009,17(1):110-117
    [136]徐驰奔,叶增伟.奥氏体不锈钢焊接特点及工艺[J].科技风,2009(2):133-134
    [137]AWS D3.6M:1999. AWS水下焊接标准[S].1999
    [138]焊接和钎焊评定标准(2004版).ASME锅炉及压力容器规范-国际性规范Ⅸ[S].2004
    [139]RCC-M-Edition 2000, DESIGN AND CONSTRUCTION RULES FOR MECHANICAL COMPONENTS OF PWR NUCLEAR ISLANDS SECTION Ⅳ[S].2000
    [140]叶建雄.旋转电弧传感器焊枪倾角检测及水下焊缝跟踪技术研究[D].南吕大学博十学位论文.南昌,2007
    [141]沈毅,王国荣,石永华,等.水下焊接熔池采集过程中摄像机的标定[J].电焊机,2007,37(4):59-63
    [142]Y.OGAWA.Evaluation of groove geometry in turbid water[C].18th International Conference on Offshore Mechanics and Arctic Engineering.Newfoundland,Canada.1999.
    [143]Yoji Ogawa.Image processing for automatic welding in turbid water[J]. Journal of robotics and mechatronics,1999,11 (2):129-134
    [144]Yasuo SUGA,Akira MACHIDA.application of ultrasonic sensing method to automatic seam tracking in underwater wet welding[C].日本机械学会论文集(C编).1995,61(583):494-500
    [145]Guorong Wang,Yonghua Shi,Ming Liang.et al.Recognition of seam deviation using artificial neural networks in vision-based seam tracking of underwater flux-cored arc welding[C].proceeding of the twelfth(2002)international offshore and polar engineering conference.Kitakyushu,Japan,2002
    [146]Yoav Y,Schechner,Nir Karpel.Clear Underwater Vision[C].IEEE,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700