用户名: 密码: 验证码:
核电焊接接头裂尖力学特征及环境致裂裂纹扩展速率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以安全端异种金属焊接接头为代表的核电关键焊接结构环境致裂已成为影响压水堆电站长期安全运行的关键问题。这种焊接接头通常是在低合金钢管嘴堆焊镍基合金形成隔离层后,再用镍基合金焊材(如82/182合金)将隔离层与不锈钢安全端焊接在一起。异种金属焊接接头组织和力学性能的不均匀性、几何结构的不连续性、焊接缺陷以及残余应力的影响,给直接利用实验室数据定量预测核电异种金属焊接接头的在役寿命带来困难。为解决核电关键焊接构件在役寿命定量预测和定期检修的问题,本文对异种金属焊接接头标准断裂力学试样和不同承载情况下的安全端异种金属焊接接头环境致裂裂纹尖端局部力学特征及其对裂纹扩展速率的影响进行了研究,完成的主要工作如下:
     (1)比较分析了核电关键材料环境致裂裂纹扩展速率的定量预测方法,提出了一个适用于全尺寸构件、复杂载荷以及残余应力的高温水环境中异种金属焊接接头环境致裂速率的预测模型。
     (2)根据182合金-A533B低合金钢异种金属焊接接头熔合区的硬度梯度分布,结合弹塑性有限元方法,建立了焊缝熔合区附近的非匀质材料模型,消除了应力应变的间断性,减少了材料性能突变对计算结果造成的影响,为研究焊接力学性能不均匀性对异种金属焊接接头环境致裂行为的影响提供了一种新方法。
     (3)对不同位置异种金属焊接接头试样裂纹尖端的应力应变场和扩展驱动力进行了数值模拟计算,研究了萌生于182合金焊缝的裂纹在熔合线附近的扩展行为,得出了裂尖塑性应变率对裂纹扩展路径的影响。
     (4)基于建立的非匀质材料模型,模拟了正常工况下安全端异种金属焊接接头轴向内表面裂纹前缘的应力应变场,对裂纹扩展驱动力进行了讨论,发现在塑性应变和应力三轴度的共同作用下,裂纹扩展方向受到材料屈服强度的影响而发生偏转。
     (5)模拟了一次超载情况下,安全端异种金属焊接接头纹前缘的应力应变场,得到了裂纹位置和深度不同时,一次超载系数对异种金属焊接接头裂纹扩展驱动力的影响规律。
     (6)对工作应力和残余应力交互作用下,含轴向内表面裂纹的安全端异种金属焊接接头的局部应力、应变、塑性应变率和J积分进行了分析,定量预测了环境致裂裂纹的扩展速率,研究了残余应力对裂纹扩展形态的影响。
Environmentally assisted cracking (EAC) in safe-end dissimilar metal welds (DMW),which represent welded components in nuclear power plants, has become a critical issueaffecting the long-term operation and safety of pressurized water reactors (PWR).Nickel-based alloys are generally pre-deposited on the low alloy steel nozzle face to form thebuttering. Then welding is carried out between the buttering and the stainless steel safe-endpipe with nickel-based alloys such as Alloy82/182. It is very difficult to directly predict theEAC growth rate of actual welded components by laboratory data because of the effects ofDMW microstructure and mechanical heterogeneity, discontinuous geometry, welding defectsand residual stress. To develop the technique of quantitative prediction on service life andpreventive maintenance of key welded components in nuclear power plants, the localmechanical characteristics at EAC crack tips of standard fracture mechanics specimens andsafe-end DMW under different loading conditions were analyzed in this dissertation. Mainworks performed are as follows:
     (1) The approaches to quantitatively predict EAC growth rate of key materials in nuclearpower plants were analyzed and discussed. A prediction model of EAC growth rate infull-size DMW structures with complex operating loads and residual stress inhigh-temperature water environment was proposed.
     (2) According to the gradient distribution of hardness in the fusion boundary (FB) regionof an Alloy182-A533B low alloy steel DMW, a heterogeneous material model adjacent to FBregion in weld metal was established by using elastic-plastic finite element method. Thediscontinuity of stress and strain is eliminated, the effect of material properties mutation oncalculation results is reduced, and more realistic welded mechanical heterogeneity is obtainedby using this model. A new method is provided to research the influence of welded mechanical heterogeneity on EAC behavior in DMW.
     (3) The stress-strain field and crack driving force at crack tip on different location ofDMW specimens were simulated and discussed in details. Growing behavior of crack initiatedin Alloy182weld metal near FB line was investigated. The effect of plastic strain rate oncrack growing path was concluded.
     (4) Based on the established heterogeneous material model, the stress-strain fieldsaround crack fronts of DMW under operating loads were simulated. The DMW crack drivingforce was also discussed. As a result of the combined effect of local plastic strain and stresstriaxiality, the crack growth direction deviates due to the influence of material yield strength.
     (5) The local stress-strain fields around crack fronts of safe-end DMW were simulatedand discussed under the one single overload. And the effect of one single overload ratio onDMW crack driving force was also discussed with different crack location and depth,.
     (6) The local stress, strain, plastic strain rate and J-integral around the inner surface axialcrack fronts of safe-end DMW were investigated under the combined effect of operating loadsand residual stress. The EAC growth rates of DMW with residual stress were quantitativelypredicted. The effect of weld residual stress on crack growing state was also analyzed.
引文
[1]徐步朝,张延飞,花明.低碳背景下中国核能发展的模式与路径分析[J].资源科学,2010,32(11):2186-2191.
    [2]郑明光,叶成,韩旭.新能源中的核电发展[J].核技术,2010,33(2):81-86.
    [3] Nakamura T, Taniguchi K, Hirano S, et al. Stress corrosion cracking in welds ofreactor vessel nozzle at Ohi-3and of other vessel’s nozzle at Japan’s PWRplants[C]//ASME2009Pressure Vessels and Piping Conference,2009:629-637.
    [4]徐松,吴欣强,韩恩厚,等.核电站用钢的高温高压水腐蚀疲劳研究进展[J].腐蚀科学与防护技术,2007,19(5):345-349.
    [5] Brust F W, Scott P M. Weld residual stresses and primary water stress corrosioncracking in bimetal nuclear pipe welds[C]//ASME2007Pressure Vessels and PipingConference,2007:883-897.
    [6]杨江,田文喜,苏光辉,等. AP1000冷管段小破口失水事故分析[J].原子能科学技术,2011,45(5):541-547.
    [7]李光福,杨武.核电站异材焊接件的破裂问题与应力腐蚀评价方法[J].核安全,2003,1(2):37-40.
    [8] Bamford W, Hall J. A review of Alloy600cracking in operating nuclear plantsincluding Alloy82and182weld behavior[C]//ASME12th Int. Conf. on NuclearEngineering,2004:131-139.
    [9] Bamford W, Newton B, Seeger D. Recent experience with weld overlay repair ofindications in alloy182butt welds in two operating PWRs[C]//ASME2006PressureVessels and Piping Conference,2006:427-434.
    [10]李冠军.异种金属焊接件SA508-52M-316L在模拟压水堆一回路水环境中的性能研究[D].上海:上海材料研究所,2011.
    [11] Bamford W H, Foster J, Hsu K R, et al. Alloy182weld crack growth, and its impact onservice-induced cracking in operating PWR plant piping[C]//Proc.10th Int. Conf. onEnvironmental Degradation of Materials in Nuclear Power Systems-Water Reactors,2001:241-249.
    [12]李光福.压水堆压力容器接管-主管安全端焊接件在高温水中失效案例和相关研究[J].核技术,2013,36(4):040644.
    [13] Kim J W, Lee K, Kim J S, et al. Local mechanical properties of Alloy82/182dissimilarweld joint between SA508Gr.1a and F316SS at RT and320℃[J]. Journal of NuclearMaterials,2009,384(3):212-221.
    [14] Riccardella P, Tahoe City C A. Weld overlay residual stress validation in nuclear powerplant nozzles and penetrations[J]. Proc. on4th Residual stress summit, Lake Tahoe, CA,USA,2010:337-352.
    [15]丁训慎.压水堆核电站蒸汽发生器的制造[J].核电站,2003,(4):11-18.
    [16]万正权,孙文婷.焊接残余应力的简化数值模拟技术[J].现代焊接,2006,41(5):16-18.
    [17] Faidy C. Structural Integrity of dissimilar welds: ADIMEW project overview[C]//ASME2004Pressure Vessels and Piping Conference,2004:3-9.
    [18]逢淑来.反应堆压力容器接管安全端焊接工艺研究[J].一重技术,2010,(4):19-20.
    [19]刘顺洪,付才秋.异种奥氏体钢焊接接头显微组织结构分析[J].电焊机,2000,30(1):33-35.
    [20] Vankeerberghen M, Weyns G, Gavrilov S, et al. Crack propagation rate modelling for316SS exposed to PWR-relevant conditions[J]. Journal of Nuclear Materials,2009,384(3):274-285.
    [21]沈长斌,陶晓杰,杨怀玉,等.高温高压水环境下传热管失效形式及防腐措施研究进展[J].腐蚀科学与防护技术,2003,15(4):223-227.
    [22]陆永浩,褚武扬,高克玮,等.304L不锈钢在高温水中的应力腐蚀裂纹扩展[J].金属学报,2004,40(7):763-767.
    [23] Hall Jr M M. Critique of the Ford–Andresen film rupture model for aqueous stresscorrosion cracking[J]. Corrosion Science,2009,51(5):1103-1106.
    [24] Andresen P L, Ford F P. Fundamental modeling of environmental cracking forimproved design and lifetime evaluation in BWRs[J]. International journal of pressurevessels and piping,1994,59(1):61-70.
    [25] Ford F P. Quantitative prediction of environmentally assisted cracking[J]. Corrosion,1996,52(5):375-395.
    [26] Andresen P L, Briant C L. Environmentally assisted cracking of Types304L/316L/316NG stainless steel in288℃water[J]. Corrosion,1989,45(6):448-463.
    [27] Macdonald D D, Urquid-Macdonald M. A coupled environment model forstress-corrosion cracking in sensitized type-304stainless-steel in LWR environments[J]. Corrosion Science,1991,32(1):51-81.
    [28] Scenini F, Newman R C, Cottis R A, et al. Alloy oxidation studies related to PWSCC
    [C]//Proc.12th Int. Conf. on Environmental Degradation of Materials in Nuclear PowerSystems-Water Reactors,2005:891-902.
    [29] Galvele JoséR. A stress corrosion cracking mechanism based on surface mobility[J].Corrosion Science,1987,27(1):1-33.
    [30] Scott P M, Le Calvar M. Some possible mechanisms of intergranular stress corrosioncracking of alloy600in PWR primary water[C]//Proc.6th Int. Conf. on EnvironmentalDegradation of Materials in Nuclear Power Systems-Water Reactors,1993:657-667.
    [31]李冠军,彭君,李光福,等.国产SA-508Ш低合金钢在模拟核电高温水服役环境中的应力腐蚀破裂及力学行为[J].腐蚀与防护,2011,32(9):673-676.
    [32]李光福,李冠军,方可伟,等.异材焊接件A508/52M/316L在高温水环境中的应力腐蚀破裂[J].金属学报,2011,47(7):797-803.
    [33] Wu X Q, Katada Y. Role of dynamic strain aging in corrosion fatigue of low-alloypressure vessel steel in high temperature water[J]. Journal of materials science,2007,42(2):633-639.
    [34] Gorman J, Hunt S, Riccardella P, et al. PWR reactor vessel alloy600issues[J].Companion Guide to the ASME Boiler&Pressure Vessel Code,2009,3.
    [35] Chung W C, Huang J Y, Tsay L W, et al. Stress corrosion cracking in the heat-affectedzone of A508steel welds under high-temperature water[J]. Journal of NuclearMaterials,2011,408(1):125-128.
    [36] Bowerman BS, Czajkowski CJ, Roberts TC, et al. Metallurgical evaluation of afeedwater nozzle to safe-end weld. Materials Characterization.1999,(43):347-353.
    [37] Ljungberg LG, Ortnas A, Stahle P, et al. Stress corrosion cracking initiation in alloys600and182[C]//Sixth International symposium on Environmental Degradation ofMaterials in Nuclear Power systems-Water Reactors.1993:379-386.
    [38] Yoon B, Yang S, Kim Y. Development of an ultrasonic performance demonstrationsystem for dissimilar metal welds in Korean nuclear power plants[J]. Journal ofNuclear Science and Technology,2011,48(11):1403-1411.
    [39] Brown C M, Mills W J. Fracture toughness of alloy690and EN52welds in air andwater[J]. Metallurgical and Materials Transactions A,2002,33(6):1725-1735.
    [40] Congleton J, Zheng W, Hua H. Stress corrosion cracking of annealed type316stainlesssteel in high-temperature water[J]. Corrosion,1990,46(8):621-627.
    [41] Congleton J, Yang W. The effect of applied potential on the stress corrosion crackingof sensitized type316stainless steel in high temperature water[J]. Corrosion science,1995,37(3):429-444.
    [42]李光福,黄春波,李敬民,等.固溶态控氮不锈钢在高温水中的应力腐蚀破裂[J].核动力工程,2005,26(4):384-389.
    [43] Li G F, Congleton J. Stress corrosion cracking of a low alloy steel to stainless steeltransition weld in PWR primary waters at292℃[J]. Corrosion science,2000,42(6):1005-1021.
    [44]刘书丽,高亚平,郑和平,等.奥氏体不锈钢焊接接头的晶间腐蚀[J].煤矿机械,2008,29(1):96-98.
    [45]许毅.热处理对奥氏体不锈钢焊接接头晶间腐蚀的影响[J].制造业自动化,2012,34(7):129-131.
    [46]但体纯,王俭秋,韩恩厚,等.压水堆核电站蒸汽发生器用600合金管在含铅高温碱溶液中的应力腐蚀行为研究[J].腐蚀科学与防护技术,2008,20(5):313-316.
    [47]张志明,王俭秋,韩恩厚,等.表面状态对690TT合金腐蚀及应力腐蚀行为的影响[J].中国腐蚀与防护学报,2011,31(6):441-445.
    [48]刘侠和,吴欣强,韩恩厚.轻水堆结构材料在加锌水中的腐蚀行为研究现状与进展[J].腐蚀科学与防护技术,2011,23(4):287-292.
    [49]韩恩厚,王俭秋,吴欣强,等.核电高温高压水中不锈钢和镍基合金的腐蚀机制[J].金属学报,2010,11(46):1379-1390.
    [50]李江,吴欣强,韩恩厚,等.核电焊接结构材料腐蚀失效研究现状与进展[J].腐蚀科学与防护技术,2014,26(1):1-7.
    [51]马成,彭群家,韩恩厚,等.核电结构材料应力腐蚀开裂的研究现状与进展[J].中国腐蚀与防护学报,2014,34(1):37-45.
    [52] Jang C, Lee J, Sung Kim J, et al. Mechanical property variation within Inconel82/182dissimilar metal weld between low alloy steel and316stainless steel[J]. InternationalJournal of Pressure Vessels and Piping,2008,85(9):635-646.
    [53] Peng Q, Xue H, Hou J, et al. Role of water chemistry and microstructure in stresscorrosion cracking in the fusion boundary region of an Alloy182-A533B low alloysteel dissimilar weld joint in high temperature water[J]. Corrosion Science,2011,53(12):4309-4317.
    [54]侯娟,彭群家,庄子哲雄,等.镍基合金焊接过渡区微观结构及应力腐蚀行为研究[J].金属学报,2010,46(10):1258-1266.
    [55] Terachi T, Yamada T, Miyamoto T, et al. Corrosion behavior of stainless steels insimulated PWR primary water-effect of chromium content in alloys and dissolvedhydrogen[J]. Journal of nuclear science and technology,2008,45(10):975-984.
    [56]陈冰川,李光福,杨武.奥氏体不锈钢里氏硬度,维氏硬度及强度之间的换算关系[J].机械工程材料,2009(9):37-40.
    [57]熊庆人,闫琳,张建勋,等. X80钢级管道环焊缝非均匀裂纹体断裂驱动力[J].焊接学报,2011,32(6):29-32.
    [58] Hou J, Peng Q J, Takeda Y, et al. Microstructure and mechanical property of the fusionboundary region in an Alloy182-low alloy steel dissimilar weld joint[J]. Journal ofmaterials science,2010,45(19):5332-5338.
    [59] Seifert H P, Ritter S, Shoji T, et al. Environmentally-assisted cracking behaviour in thetransition region of an Alloy182/SA508Cl.2dissimilar metal weld joint in simulatedboiling water reactor normal water chemistry environment[J]. Journal of NuclearMaterials,2008,378(2):197-210.
    [60] Schwalbe K H, Cornec A, Lidbury D. Fracture mechanics analysis of the BIMETwelded pipe tests[J]. International journal of pressure vessels and piping,2004,81(3):251-277.
    [61] Gilles P, Devaux J, Cipière M F. ADIMEW Project: ductile tearing prediction of acracked16dissimilar metal weld junction[C]//ASME2004Pressure Vessels and PipingConference,2004:37-54.
    [62] Laukkanen A, Nevasmaa P, Ehrnsten U, et al. Characteristics relevant to ductile failureof bimetallic welds and evaluation of transferability of fracture properties[J]. Nuclearengineering and design,2007,237(1):1-15.
    [63] Boothman D P, Lee M M K, Luxmoore A R. The effects of weld mismatch onJ-integrals and Q-values for semi-elliptical surface flaws[J]. Engineering FractureMechanics,1999,64(4):433-458.
    [64]杨新岐,秦红珊.非匹配焊接接头中裂纹尖端三维拘束状态分析[J].机械强度,2001,23(3):336-340.
    [65] Kim Y J, Schwalbe K H. Numerical analyses of strength mis-match effect on localstresses for ideally plastic materials[J]. Engineering fracture mechanics,2004,71(7):1177-1199.
    [66]唐伟,史耀武.裂纹深度和强度组配对焊接接头断裂性能的影响[J].焊接学报,1995,16(l):50-56.
    [67]李继红,张建勋,裴怡.高组配焊接接头表面裂纹J积分试验研究[J].焊接学报,2000,21(2):47-50.
    [68]张建勋,史耀武.焊接力学性能不均匀性对材料延性断裂影响的研究[J].西安交通大学学报,1994,28(4):80-85.
    [69]王海涛,王国珍,轩福贞,等.核压力容器异种金属焊接接头延性断裂行为的数值研究[J].核动力工程,2012,33(5):36-40.
    [70] Uyulgan B, Cetinel H, Aksoy T. Effect of constraint on fracture behavior of welded17MN4and AISI304steels[J]. Journal of Mechanical Science and Technology,2011,25(9):2171-2177.
    [71] Itatani M, Saito T, Hayashi T, et al. Evaluation of fracture characteristics of Ni-baseweld metal for BWR components[C]//ASME2009Pressure Vessels and PipingConference,2009:419-427.
    [72] Samal M K, Seidenfuss M, Roos E, et al. Investigation of failure behavior offerritic–austenitic type of dissimilar steel welded joints[J]. Engineering FailureAnalysis,2011,18(3):999-1008.
    [73] Ogawa T, Itatani M, Saito T, et al. Fracture assessment for a dissimilar metal weld oflow alloy steel and Ni-base alloy[J]. International Journal of Pressure Vessels andPiping,2012,90:61-68.
    [74] Beremin FM. Cavity formation from inclusions in ductile fracture of A508steel.Metallurgical Transactions A.1981,12A:723-731.
    [75] Beremin F M, Pineau A, Mudry F, et al. A local criterion for cleavage fracture of anuclear pressure vessel steel[J]. Metallurgical transactions A,1983,14(11):2277-2287.
    [76] Samal MK, Balani K, Seidenfuss M, Roos E. An experimental and numericalinvestigation of fracture resistance behaviour of a dissimilar metal welded joint[J].Proceedings of the Institution of Mechanical Engineers, Part C: Journal of MechanicalEngineering Science,2009,223:1507-1523.
    [77] Bourgeois M, Ancelet O, Marie S, et al. Mechanical characterization for a large testdesign of a dissimilar metals welding with a narrow gap nickel alloy weld:experimental and numerical analysis on specimens[C]//ASME2012Pressure Vesselsand Piping Conference,2012:437-444.
    [78]邹吉权.超高强度钢及其焊接接头的断裂行为研究[D].天津:天津大学,2008.
    [79] Gurson A L. Continuum theory of ductile rupture by void nucleation and growth: PartI-Yield criteria and flow rules for porous ductile media[J]. Journal of engineeringmaterials and technology,1977,99(1):2-15.
    [80] Tvergaard V. Material failure by void growth to coalescence[J]. Advances in appliedMechanics,1990,27(1):83-151.
    [81] Wang H T, Wang G Z, Xuan F Z, et al. Local mechanical properties andmicrostructures of Alloy52M dissimilar metal welded joint between A508ferritic steeland316L stainless steel[J]. Advanced Materials Research,2012,509:103-110.
    [82] Wang H T, Wang G Z, Xuan F Z, et al. Numerical investigation of ductile crack growthbehavior in a dissimilar metal welded joint[J]. Nuclear Engineering and Design,2011,241(8):3234-3243.
    [83]王海涛,王国珍,轩福贞,等.核电52M镍基合金异种金属焊接接头的局部断裂行为[J].核技术,2013,36(4):139-144.
    [84] Kim J S, Hwang S S, Kim H P. PWSCC assessment of dissimilar weld on steamgenerator drain nozzle in PWR[C]//ASME2009Pressure Vessels and PipingConference,2009:523-527.
    [85] Shim D J, Wilkowski G M, Rudland D L. Determination of the elastic-plastic fracturemechanics Z-factor for alloy182weld metal flaws[J]. International Journal of PressureVessels and Piping,2011,88(5):231-238.
    [86] Gong N, Wang G Z, Xuan F Z, et al. Leak-before-break analysis of a dissimilar metalwelded joint for connecting pipe-nozzle in nuclear power plants[J]. NuclearEngineering and Design,2013,255:1-8.
    [87] Gong N, Wang G Z, Xuan F Z, et al. Effects of initial crack location on failureassessment curves in dissimilar metal weld joints in nuclear power plants[J]. Journal ofPressure Vessel Technology,2012,134(6):061405.
    [88]李华.焊接接头残余应力的数值模拟[D].大连:大连交通大学,2006.
    [89]赵红,祝美丽.火电站新型中厚板异种钢焊接接头残余应力场数值模拟研究[J].热加工工艺,2006,35(19):77-79.
    [90] Deng D, Murakawa H. Finite element analysis of temperature field, microstructure andresidual stress in multi-pass butt-welded2.25Cr-1Mo steel pipes[J]. Computationalmaterials science,2008,43(4):681-695.
    [91] Deng D, Murakawa H, Liang W. Numerical and experimental investigations onwelding residual stress in multi-pass butt-welded austenitic stainless steel pipe[J].Computational Materials Science,2008,42(2):234-244.
    [92]张春平,李萌盛,秦琳.基于ANSYS的异种钢焊接残余应力的数值模拟[J].合肥工业大学学报,2003,26(3):460-463.
    [93]余正刚,姜勇,巩建鸣,等.不同异种钢管道焊接接头残余应力的数值模拟[J].焊接学报,2009,30(8):69-76.
    [94]赵智力,杨建国,刘雪松,等.强度失配对接接头残余应力分布的有限元预测[J].焊接学报,2009,30(8):97-100.
    [95] Lee S M, Park J S, Choi Y H, et al. A residual stress analysis of a corner crack inpressurizer vent nozzle penetration weld[C]//ASME2009Pressure Vessels and PipingConference,2009:317-322.
    [96] Sisan A M, Motarjemi A. The effect of strength mis-match and residual stress in ECAof girth welds with internal circumferential cracks[C]//ASME2009Pressure Vesselsand Piping Conference,2009:1807-1813.
    [97] Xu H, Mahmoud S, Nana A, et al. Crack propagation simulation: a localdeformation-based mesh mapping method for crack modeling and a direct method forresidual stress representation in welds[C]//ASME2011Pressure Vessels and PipingConference,2011:359-366.
    [98] Ayrault D, Bonaventure A, Asserin O, et al. Numerical and experimental evaluation ofresidual stresses in dissimilar weld joints[C]//ASME2011Pressure Vessels and PipingConference,2011:1515-1522.
    [99] Ogawa K, Chidwick L O, Kingston E J, et al. Measurement of residual stresses in thedissimilar metal weld joint of a safe-end nozzle component[C]//ASME2009PressureVessels and Piping Conference,2009:529-541.
    [100] Killian D E, Mahmoud S H. Development and validation of analysis method forsimulating residual stresses in dissimilar metal pipe butt welds[C]//ASME2008Pressure Vessels and Piping Conference,2008:139-151.
    [101] Ogawa N, Muroya I, Iwamoto Y, et al. Residual stress evaluation of dissimilar weldjoint using reactor vessel outlet nozzle mock-up model: Report2[C]//ASME2009Pressure Vessels and Piping Conference,2009:353-364.
    [102] Muroya I, Iwamoto Y, Ogawa N, et al. Residual stress evaluation of dissimilar weldjoint using reactor vessel outlet nozzle mock-up model (report-1)[C]//ASME2008Pressure Vessels and Piping Conference,2008:613-623.
    [103] Deng D, Ogawa K, Kiyoshima S, et al. Prediction of residual stresses in a dissimilarmetal welded pipe with considering cladding, buttering and post weld heat treatment[J].Computational materials science,2009,47(2):398-408.
    [104] Deng D, Kiyoshima S, Ogawa K, et al. Predicting welding residual stresses in adissimilar metal girth welded pipe using3D finite element model with a simplified heatsource[J]. Nuclear Engineering and Design,2011,241(1):46-54.
    [105]陈冰川.核电用奥氏体不锈钢应力腐蚀破裂预测模型中电化学和力学性能的研究
    [D].上海:上海材料研究所,2009.
    [106] Sato Y, He X, Takeda Y, et al. Development of a stress corrosion cracking testmethodology using tube-shaped specimens[J].2007.
    [107]丁遂栋.断裂力学[M].北京:机械工业出版社,1997年.
    [108]吕战鹏,杨武.遭受应力腐蚀开裂的设备寿命预测技术[J].腐蚀科学与防护技术,1999,11(1):57-64.
    [109] Ford P. Mechanisms of environmentally-assisted cracking[J]. International Journal ofPressure Vessels and Piping,1989,40(55):343-362.
    [110] Andresen P L, Peter Ford F. Life prediction by mechanistic modeling and systemmonitoring of environmental cracking of iron and nickel alloys in aqueous systems[J].Materials Science and Engineering: A,1988,103(1):167-184.
    [111] Andresen P L. Environmentally assisted growth rate response of nonsensitized AISI316grade stainless steels in high temperature water[J]. Corrosion,1988,44(7):450-460.
    [112] Ford F P, Taylor D F, Andresen P L, et al. Corrosion-assisted cracking of stainless andlow-alloy steels in LWR environments, NP-5064M, Final Report[J]. Electric PowerResearch Institute, Palo Alto, CA,1987.
    [113] Andresen P L, Hickling J, Ahluwalia A, et al. Effects of hydrogen on stress corrosioncrack growth rate of nickel alloys in high-temperature water[J]. Corrosion,2008,64(9):707-720.
    [114] Andresen P L. Fundamental quantification of crack advance for life prediction inenergy systems[J]. GE Corp. Research and Development Center, Schenectady, NY,1996:51-99.
    [115] Rebak R B, Szklarska-Smialowska Z. The mechanism of stress corrosion cracking ofalloy600in high temperature water[J]. Corrosion Science,1996,38(6):971-988.
    [116] Taylor D F. Crevice corrosion of Alloy600in high temperature aqueousenvironments[J]. Corrosion,1979,35(12):550-559.
    [117] Congleton J, Parkins R N. Stress corrosion cracking of steel in high temperaturewater[J]. Corrosion,1988,44(5):290-298.
    [118] Ruther W E, Soppet W K, Kassner T F. Effect of temperature and ionic impurities atvery low concentrations on stress corrosion cracking of AISI304stainless steel[J].Corrosion,1988,44(11):791-799.
    [119] Shoji T, Suzuki S, Ballinger R G. Theoretical prediction of SCC growthbehavior-threshold and plateau growth rate[C]//Proc.7th Int. Conf. on EnvironmentalDegradation of Materials in Nuclear Power Systems-Water Reactors,1995,(2):881-891.
    [120] Shoji T, Lu Z, Murakami H. Formulating stress corrosion cracking growth rates bycombination of crack tip mechanics and crack tip oxidation kinetics[J]. CorrosionScience,2010,52(3):769-779.
    [121] Peng Q J, Kwon J, Shoji T. Development of a fundamental crack tip strain rate equationand its application to quantitative prediction of stress corrosion cracking of stainlesssteels in high temperature oxygenated water[J]. Journal of Nuclear Materials,2004,324(1):52-61.
    [122] Gao Y C, Hwang K C. Elastic-plastic fields in steady crack growth[J].Three-dimensional constitutive relations and ductile fracture.(A83-1847706-39)Amsterdam, North-Holland Publishing Co.,1981:417-434.
    [123] Eason E D, Pathania R, Shoji T. Evaluation of the fracture research institute theoreticalstress corrosion cracking model[C]//Proc.12th Int. Conf. on EnvironmentalDegradation of Materials in Nuclear Power Systems-Water Reactors,2005:145-153.
    [124] Lu Z, Shoji T, Xue H, et al. Deterministic formulation of the effect of stress intensityfactor on PWSCC of Ni-base alloys and weld metals[J]. Journal of Pressure VesselTechnology,2013,135(2):021402.
    [125] Shim D J, Kalyanam S, Brust F, et al. Natural crack growth analyses forcircumferential and axial PWSCC defects in dissimilar metal welds[J]. Journal ofPressure Vessel Technology,2012,134(4):051402.
    [126] Suzuki S, Shoji T, Yi Y S, et al. Theoretical SCC crack growth prediction under variousloading modes in high temperature water[C]//Proc.8th Int. Conf. on EnvironmentalDegradation of Materials in Nuclear Power Systems-Water Reactors,1997:695-703.
    [127] Xue H, Gong X, Zhao L, et al. Effect of mechanical parameter selection in Quantitativeestimation of the growth of environmentally assisted cracks at flaws in light waterreactor components with complex mechanical condition[C]//ASME2011PressureVessels and Piping Conference,2011:893-899.
    [128] Xue H, Sato Y, Shoji T. Quantitative estimation of the growth of environmentallyassisted cracks at flaws in light water reactor components[J]. Journal of Pressure VesselTechnology,2009,131(1):011404.
    [129] Xue H, Shoji T. Quantitative prediction of EAC crack growth rate of sensitized type304stainless steel in boiling water reactor environments based on EPFEM[J]. Journalof pressure vessel technology,2007,129(3):460-467.
    [130] Blouin A, Chapuliot S, Marie S. A method to characterize the fracture resistance ofdissimilar metal welds[C]//ASME2012Pressure Vessels and Piping Conference,2012:243-251.
    [131] Ancelet O, Matheron P. Development of a new measurement system for tensiletesting[C]//ASME2010Pressure Vessels and Piping Conference,2010:861-869.
    [132] Hou J, Peng Q, Takeda Y, et al. Microstructure and stress corrosion cracking of thefusion boundary region in an alloy182-A533B low alloy steel dissimilar weld joint[J].Corrosion Science,2010,52(12):3949-3954.
    [133] Peng Q, Hou J, Takeda Y, et al. Effect of chemical composition on grain boundarymicrochemistry and stress corrosion cracking in Alloy182[J]. Corrosion Science,2013,67:91-99.
    [134] ASTM Standard E399-90. Standard test method for plane strain fracture toughness ofmetallic materials. Annual Book of ASTM Standards,2002,(03.01).
    [135] Ueda Y, Shi Y, Sun S, et al. Effect of crack depth and strength mis-matching on therelation between J-integral and CTOD for welded tensile specimens (mechanics,strength&structure design)[J]. Transactions of JWRI,1997,26(1):133-140.
    [136]庄茁,张帆,岑松等. ABAQUS非线性有限元分析与实例[M].北京:科学技术出版社,2005.
    [137]陆新征,林旭川,叶列平.多尺度有限元建模方法及其应用[J].华中科技大学学报,2008,25(4):76-79.
    [138] Xue H., Ogawa K., Shoji T. Effect of welded mechanical heterogeneity on local stressand strain in stationary and growing crack tips[J]. Nuclear Engineering and Design,2009,236(5):628-640.
    [139] Gurovich B A, Kuleshova E A, Lavrenchuk O V. Comparative study of fracture inpressure vessel steels A533B and A508[J]. Journal of nuclear materials,1996,228(3):330-337.
    [140] White G A, Nordmann N S, Hickling J, et al. Development of crack growth ratedisposition curves for primary water stress corrosion cracking (PWSCC) of Alloy82,182and132weldments[J]. The Minerals, Metals and Materials Society,2005.
    [141] Fujii K, Fukuya K, Nakata N, et al. Hardening and microstructural evolution in A533Bsteels under high-dose electron irradiation[J]. Journal of nuclear materials,2005,340(2):247-258.
    [142]李庆芬.断裂力学及其工程应用[M].哈尔滨:哈尔滨工程大学出版社,2004.
    [143]方秀荣.浅小裂纹尖端力学场对核电关键结构材料SCC影响的研究[D].西安:西安科技大学,2013.
    [144]褚凯.焊接接头的裂纹尖端塑性区及多裂纹断裂模拟[D].上海:华东理工大学,2011.
    [145] Shoji T, Lu Z, Das N K, et al. Modeling stress corrosion cracking growth rates basedupon the effect of stress/strain on crack tip interface degradation and oxidation reactionkinetics[C]//ASME2009Pressure Vessels and Piping Conference,2009:1081-1100.
    [146]贺定勇,田富强.用弹塑性有限元法对焊接接头裂尖场J积分的研究[J].机械强度,2001,23(2):235-238.
    [147]康继东,张玉凤,霍立兴.关于非均质焊接接头中的J积分断裂判据[J].固体力学学报,2000,21(1):61-65.
    [148]康继东,耿雪霏.非均质焊接接头裂纹尖端场的HRR主导性与J积分断裂判据[J].焊接学报,1998,19(3):166-170.
    [149]康继东,张玉凤.平面应力条件下非均质焊接接头中J主导[J].航空动力学报,1995,10(4):343-346.
    [150]曹金凤,石亦平. ABAQUS有限元分析常见问题解答[M].北京:机械工业出版社,2009.
    [151]刘志伟. AP1000核电安全端异种金属焊接接头缺陷评定方法研究[D].上海:华东理工大学,2010.
    [152]王国涛.核电安全端异种金属焊接接头的局部力学性能及断裂行为[D].上海:华东理工大学,2013.
    [153]傅建钦,史耀武.焊接接头中的裂端应力三轴性[J].材料科学与工艺,2000,8(1):25-29.
    [154] Xue H, Li Z, Lu Z, et al. The effect of a single tensile overload on stress corrosioncracking growth of stainless steel in a light water reactor environment[J]. NuclearEngineering and Design,2011,241(3):731-738.
    [155] Zhao L Y, Xue H, Jiao K, et al. Stress corrosion cracking behavior of an Alloy182-A533B weld joint with continuous material properties[J]. Advanced MaterialsResearch,2013,716:355-359.
    [156] Faidy C. Structural integrity of bi-metallic welds in piping fracture testing andanalysis[C]//ASME2008Pressure Vessels and Piping Conference,2008:191-200.
    [157] Hayashi T, Hankinson S F, Saito T, et al. Flaw evaluation for PWR and BWRcomponent weld joints using advanced FEA modeling techniques[C]//ASME2009Pressure Vessels and Piping Conference,2009:1125-1139.
    [158] Shih C F, German M D. Requirements for a one parameter characterization of crack tipfields by the HRR singularity[J]. International Journal of Fracture,1981,17(1):27-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700