用户名: 密码: 验证码:
面内/面外统一拘束参数及其与材料及焊接接头断裂韧性的关联
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
裂尖拘束对材料与结构的断裂行为及韧性具有显著的影响,在结构完整性评定中,需要准确地纳入这种影响。拘束分为面内拘束和面外拘束,对二者各自己有一些表征参数,但对于实际结构中的三维(3D)裂纹,面内与面外拘束同时存在,如何用一个参数统一地定量表征这种复合拘束,并建立其与材料及焊接接头断裂韧性的统一关联,是结构完整性领域需要研究的重要基础性问题之一。
     本文通过数值计算、实验和理论分析相结合的方法,主要研究面内与面外裂尖拘束的统一表征参数及其与材料和焊接接头断裂韧性的统一关联,并初步探索了统一拘束参数在弹塑性结构完整性评定中的应用。研究主要结论如下:
     (1)基于裂尖前等效塑性应变(εp)等值线所围区域的面积,定义了一个新的面内与面外统一的拘束表征参数Ap。研究发现不同面内/面外拘束及其复合条件下材料的无量纲断裂韧性Jc/Jref与统一拘束参数√Ap之间存在线性关系。Jc/Jref-√Ap关联线与所选择的εp等值线无关,只取决于材料,它统一地表征了不同面内/面外裂尖拘束状态对材料断裂韧性的影响。
     (2)进一步研究发现,拘束参数Ap也可以统一地表征面内/面外几何拘束和焊接接头中的材料拘束。基于不同面内/面外/材料拘束条件下的断裂实验和Ap参数的计算,建立了核电异种金属焊接接头薄弱界面区裂纹的Jc/Jre(?)Ap统一关联线,它统一地表征了不同面内/面外拘束和材料拘束的复合作用对接头断裂韧性的影响。
     (3)通过微观实验观察揭示了面内/面外拘束对核电异种金属焊接接头断裂韧性和裂纹扩展阻力影响的机理。发现随面内拘束和面外拘束的增加,异种金属焊接接头中裂纹的断裂模式从延性断裂经由延性/脆性混合断裂转变为脆性断裂,相应的断裂韧性和裂纹扩展阻力曲线(J-R曲线)降低,裂纹扩展路径一般偏向于强度较低的材料一侧。
     (4)研究表明,面内拘束与面外拘束存在交互作用,试样中高的面内拘束增强了面外拘束效应,低的面内拘束对面外拘束不敏感。基于GTN模型的有限元数值模拟法可以用来计算获得不同面内、面外拘束条件下材料的J-R曲线和延性断裂韧性,从而可通过少量的实验结合数值模拟的方法来获得材料延性断裂时的Jc/Jref-(?)Ap关联线。
     (5)初步探索了统一拘束参数Ap在结构完整性评定中的应用。发现J-Ap复合参数J/Jref*(?)Ap)可以较准确地预测结构中3D裂纹前沿的起裂位置。用数值计算方法初步分析了J-√Ap双参数与材料Jc/Jre(?)Ap统一关联线相结合预测不同拘束状态的管道半椭圆3D表面裂纹断裂韧性与起裂载荷的方法。
As constraint significantly affect the fracture behavior and fracture toughness of materials and structures, it needs to accurately consider the constraint effect in the integrity assessment of the structures. Constraint can be divided into two types, i.e. in-plane and out-of-plane, and each of them has its own characterization parameter. However, there exists a compound of both in-plane and out-of-plane constraints for three-dimensional (3D) crack in actual engineering structures. How to quantify both types of constraints by using a unified constraint parameter and to establish its correlation with fracture toughness of materials and welded joints is one of the most important foundational problems in the structural integrity area.
     In this dissertation, by using the combined approaches of the numerical simulations, experiments and theoretical analyses, the unified characterization parameter of in-plane and out-of-plane constraint and its correlation with fracture toughness of materials and welded joints was investigated. The application of the unified constraint parameter in the elastic-plastic structural integrity assessment containing the constraint effect was preliminarily analyzed. The main work and results obtained are as following:
     (1) Based on the area surrounded by the ep isoline ahead of crack tips, a unified constraint parameter Ap which can characterize both in-plane and out-of-plane constraints is defined. There exists a sole linear relation between the normalized fracture toughness Jc/Jref and(?) regardless of in-plane or out-of-plane constraint or both. The J(?)line is independent on the selection of the εp isolines, and only dependent on material. It characterizes the effect of different in-plane and out-of-plane constraints on fracture toughness of a material.
     (2) Further studies show that, the Ap is also a unified constraint parameter which can characterize both geometry constraint (in-plane and out-of-constraint) and material constraint in the welded joints. Based on the fracture tests under different in-plane/out-of-plane and material constraints and the calculation of Ap, the unified J(?) lines of interface cracks located at the weakest region in the dissimilar metal welded joint are established. It characterizes the combining effect of in-plane/out-of-plane and material constraints on fracture toughness of welded joint.
     (3) The mechanism of both in-plane and out-of-plane constraints effects on fracture toughness and fracture rsistance of a dissimilar metal welded joint in nuclear power plant is investigated by fracture tests and microscopic observations. It is found that with increasing in-plane and out-of-plane constraints, the fracture mode of the dissimilar metal welded joint changes from ductile fracture through mixed ductile and brittle fracture to brittle fracture, and the corresponding crack growth resistance (J-R curve) decreases. The crack growth path generally towards the material sides with lower strength.
     (4) There exists interaction between the in-plane constraint and the out-of-plane constraint. The higher in-plane constraint strengthens the out-of-plane constraint effect, while the lower in-plane constraint is not sensitive to the out-of-plane constraint. The finite element simulations based on the GTN damage model can be used to obtain the J-R curve and ductile fracture toughness of a material under different in-plane and out-of-plane constraints. Thus the Jc/Jref-(?) line of a material can be obtained by a small number of tests combined with the numerical simulations based on GTN damage model.
     (5) A preliminary research in the application of the unified constraint parameter Ap in the structural integrity assessment is carried out, and it is found that the parameter (?) which is a compound of J and Ap can predict the fracture location along a3D crack front in the structures. A method combining the J-(?) two parameter with the J(?) line of a material for predicting the fracture toughness and failure load of3D circumferential surface cracks in pipes are preliminarily studied by finite element calculations.
引文
[1]李承亮,张明乾.压水堆核电站反应堆压力容器材料概述.材料导报.2008,22(9):65-68
    [2]R6:assessment of the integrity of structures containing defects, British energy generation report R/H/R6, revision 4.British Energy Ltd, Gloucester, UK.2007
    [3]British standards BS 7910:1999, Guide to methods of assessing the acceptability of flaws in fusion welded structures. London:BSI,1999
    [4]SINTAP. Structural assessment procedures for European industry, final procedure, project BE95-1426. British Steel Report, Rotherham.1999
    [5]FITNET Fitness-for-Service (FFS) Procedure. In:Kocak M, Webster S, Janosch JJ, Ainsworth RA, Koers R, editors, vol.1. Geesthacht, Germany:GKSS Research Centre; 2008. ISBN 978-3-940923-00-4
    [6]FITNET Fitness-for-Service (FFS) Annex. In:Kocak M, Hadley I, Szavai S, Tkach Y, Taylor N, editors, vol.2. Geesthacht, Germany:GKSS Research Centre; 2008. ISBN 978-3-940923-01-1
    [7]FITNET Fitness-for-Service (FFS) Case Studies and Tutorials. In:Kocak M, Laukkanen A, Gutierrez-Solana F, Cicero S, Hadley I, editors, vol.3; submitted for publication. ISBN 978-3-940923-02-8
    [8]Gutierrez-Solana F, Cicero S.FITNET FFS procedure:aunified European procedure for structural integrity assessment. Engineering Failure Analysis.2009,16(2):559-77
    [9]ASME BPVC Section XI, Rules for Inservice Inspection of Nuclear Power Plant Components. In:ASME Boiler and Pressure Vessel Code. New York:American Society of Mechanical Engineers.2002
    [10]Minami F. Method of constraint loss correction of CTOD fracture toughness for fracture assessment of steel components.Engineering Fracture Mechanics.2006; 73:1996-2020
    [11]Dodds RH, Shih CF and Anderson TL.Continuum and micromechanics treatment of constraint in fracture.International Journal of Fracture.1993,64:101-133
    [12]Huang Y, Wolfgang B.Quantification of constraint effects in elastic-plastic crack front fields.Journal of Mechanics and Physics of Solids.1998,46(2):219-241
    [13]Mostafavi M, Smith DJ, Pavier MJ. Reduction of measured toughness due to out-of-plane constraint in ductile fracture of aluminium alloy specimens.Fatigue and Fracture of Engineering Materials and Structures.2010,33:724-39
    [14]R5.Assessment procedure for the high temperature response of structures, Procedure R5, Issue 2.Gloucester:Nuclear Electric Ltd.1997
    [15]R6 Revision4, with amendments.Assessment of the integrity of structures containing defects. British Energy Generation Ltd., Gloucester, UK.2006
    [16]She CM, Guo WL.The out-of-plane constraint of mixed-mode cracks in thin elastic plates.International Journal of Solids and Structures.2007,44:3021-3034
    [17]Griffith AA. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society, London 1921, A221:163-197
    [18]Irwin GR. Fracture dynamics, in: fracturing of metals, AsM Publications.1948:147-166
    [19]Irwin GR.Fracture. Handbuch der Physic, v01. VI, Flugge, Springer.1958:551-590
    [20]Rice JR. A path independent integral and approximate analysis of strain concentration by notches and cracks.Journal of Applied Mechanics.1968,35:379-386
    [21]Hutchinson JW. Singular behaviour at the end of a tensile crack in a hardening material. Journal of the Mechanics and Physics of Solids.1968,16:13-31
    [22]Rice JR, Rosengren GF.Plane strain deformation near crack tip in a power-law hardening material.Journal of the Mechanics and Physics of solids.1968,16:1-12.
    [23]LEE BJ, Parks DM, Ahzi S. Micromechanical modeling of large plastic deformation and texture evolution in semi-crystalline polymers. Journal of the Mechanics and Physics of Solids.1993,41(10):1651-1687
    [24]Kim YJ, Seok CS, et al.Fracture properties evaluation of carbon steel piping for main steam line. Nuclear Engineering and Design.1995,158:241-251
    [25]Williams ML.On the stress distribution at the base of stationary crack.International Journal of Applied Mechanics.1957,24:111-4
    [26]Rice JR. Limitations to the small scale yielding approximation for crack tip plasticity. Journal of the Mechanics and Physics of Solids.1974,22:17-26
    [27]Dodds RH, Anderson TL, Kirk MT. A framework to correlate a/W ratio effects on elastic plastic fracture toughness. International Journal of Fracture.1991,48:1-22
    [28]Bilby BA, Cardew GE, et al.A finite element investigation of the effect of specimen geometry on the fields of stress and strain at the tips of stationary cracks. In:Size effects in fracture. London:Mechanical Engineering Publications Limited; 1986:37-46
    [29]Betegon C, Hancock JW.Two-parameter characterization of elastic-plastic crack-tip fields. International Journal of Applied Mechanics.1991,58:104-10
    [30]Hancock JW, Reuter WG, Parks DM. Constraint and toughness parameterized by T. In: Constraint effects in fracture.ASTM STP 1171.American Society for Testing and Materials.1993:1-40
    [31]Sumpter JDG. An experimental investigation of the T-stress approach.In: Constraint effect in fracture.ASTM STP 1171. American Society for Testing and Materials.1993: 492-502
    [32]Tregoning RL, Joyce JA. Application of T-stress based constraint correction to A533B steel fracture toughness data. In:Fatigue and fracture mechanics. ASTM STP 1417, Vol. 33. American Society for Testing and Materials.2002:307-27
    [33]O'Dowd NP, Shih CF. Family of crack-tip fields characterised by a triaxility parameter: Part I:Structure of fields. Journal of the Mechanics and Physics of Solids.1991, 39:989-1015
    [34]O'Dowd NP, Shih CF. Two-Parameter Fracture Mechanics:Theory and Applications. Fracture Mechanics.1994,24:21-47
    [35]O'Dowd NP. Application of two parameter approaches in elastic-plastic fracture mechanics. Engineering Fracture Mechanics.1995,52:445-65
    [36]O'Dowd NP, Shih CF. Family of crack-tip fields characterized by a triaxiality parameter-II:Fracture applications. Journal of the Mechanics and Physics of Solids.1992; 40:939-63
    [37]Pavankumar TV, Chattopadhyay J, Dutta BK, Kushwaha HS.Numerical investigations of crack-tip constraint parameters in two-dimensional geometries.International Journal of Pressure Vessels and Piping.2000,77(6):345-355
    [38]Neimitz A, Dzioba I, Galkiewicz J, Molasy R.A study of stable crack growth using experimental methods, finite elements and fractography. Engineering Fracture Mechanics.2004,71:1325-55
    [39]Cravero S, Ruggieri C. Correlation of fracture behavior in high pressure pipelines with axial flaws using constraint designed test specimens-PartI:Plane strain analyses. Engineering Fracture Mechanics.2005,72:1344-60
    [40]Nevalainen M, Dodds RH. Numerical investigation of 3-D constraint effects on brittle fracture in SE (B) and C (T) specimens.International Journal of Fracture.1995, 74:131-161
    [41]Joyce JA, Hackett EM, Roe C.Effect of crack depth and mode of loading on the J-R curve behavior of a high-strength steel.In:Constraint effects in fracture. ASTM STP 1171, American Society for Testing and Materials.1993:239-63
    [42]Joyce JA, Link RE.Application of two-parameter elastic-plastic fracture mechanics to analysis of structures.Engineering Fracture Mechanics.1997,57:431-46
    [43]Yang S. Higher order asymptotic crack-tip fields in a power-law hardening material. Ph. D. Dissertation, University of South Carolina, Columbia, South Carolina,1993
    [44]Yang S, Chao YJ, Sutton MA.Higher-order asymptotic fields in a power-law hardening material.Engineering Fracture Mechanics.1993; 45:1-20
    [45]Chao YJ, Yang S, Sutton MA.On the fracture of solids characterized by one or two parameters:theory and practice. Journal of the Mechanics and Physics of Solids.1994, 42:629-647
    [46]Chao YJ, Zhu XK. Constraint-modified J-R curves and its applications to ductile crack growth. International Journal of Fracture.2000,106:135-60
    [47]Lam PS, Chao YJ, Zhu XK, Kim Y, Sindelar RL. Determination of constraint-modified J-R curves for carbon steel storage tanks.Journal Pressure Vessel Technology.2003, 125:136-43
    [48]Zhu XK, Leis BN. Application of constraint-corrected J-R curve to fracture analysis of pipe lines. Journal of Pressure Vessel Technology.2006; 128:581-9.
    [49]Guo WL. Elasto-plastic three-dimensional crack border field-I.Singular structure of the field.Engineering Fracture Mechanics.1993a,46:93-104
    [50]Guo WL. Elasto-plastic three-dimensional crack border field-II.Asymptotic solution for the feld.Engineering Fracture Mechanics.1993b,46:105-113
    [51]Guo WL. Elasto-plastic three-dimensional crack border field-III.Fracture parameters.Engineering Fracture Mechanics.1995,51:51-71
    [52]Guo WL. Three-dimensional analysis of plastic constraint for through-thickness cracked bodies. Engineering Fracture Mechanics.1999,62:383-407
    [53]Kong XM, Schluter N, Dahl W. Effect of triaxial stress on mixed mode fracture. Engineering Fracture Mechanics.1995,52:379-85
    [54]Yuan H, Brocks W. Quantification of constraint effects in elastic-plastic crack front fields. Journal of the Mechanics and Physics of Solids.1998,46(2):219-241
    [55]Joyce JA, Link RE. Effects of constraint on upper shelf fracture toughness. In:Fatigue and fracture mechanics.ASTM STP1256, vol.26.American Society for Testing and Materials.1995:142-77
    [56]Huang Y, Wolfgang B. Quantification of constraint effects in elastic-plastic crack front fields.Journal of Mechanics and Physics of Solids.1998,46(2):219-241
    [57]Huang, Y, Guo, YL and Alfred C. Quantification of crack constraint effects in an austenitic steel.International Journal of Fracture.1995,71:273-291
    [58]Kim Y, Zhu XK and Chao YJ.Quantification of constraint on elastic-plastic 3D crack front by the J-A2 three-term solution.Engineering Fracture Mechanics.2001,68:895-914
    [59]Kim Y, Zhu XK and Chao YJ. Effect of specimen size and crack depth on 3D crack-front constraint for SENB specimens.Engineering Fracture Mechanics.2003,40:6267-6284
    [60]Kim YJ, Kim JS, Cho SM and Kim YJ.3-D constraint effects on J testing and crack tip constraint in M (T), SE (B), SE (T) and C (T) specimens:numerical study.Engineering Fracture Mechanics.2004,71:1203-1218
    [61]Guo W. Three-dimensional analyses of plastic constraint for through-thickness cracked bodies. Engineering Fracture Mechanics.1999,62:383-407
    [62]Newman JC, Bigelow CA. Three-dimensional elastic-plastic finite-element analyses of constraint variations in cracked bodies. Engineering Fracture Mechanics.1993,46:1-13
    [63]Kim Y, Zhu XK and Chao YJ. Effect of specimen size and crack depth on 3D crack-front constraint for SENB specimens.Engineering Fracture Mechanics.2003,40:6267-6284
    [64]Hebel J, Hohe J, et al. Experimental and numerical analysis of in-plane and out-of-plane crack tip characterization by secondary fracture parameters. International Journal of Fracture.2007,146:173-188
    [65]Guo WL. Recent advances in three-dimensional fracture mechanics.Key Engineering Materials.2000,183:193-198
    [66]Guo WL, Pitt SD, Jones R. Three-dimensional strength assessment for damage tolerant structures. International Conference on Strength Theory.1998
    [67]张斌.材料结构宏观三维断裂和微观破坏行为研究.南京航空航天大学.博士学位论文.2005
    [68]Zhao J, Guo W, She C.The in-plane and out-of plane stress constraint factors and K-T-Tz description of stress field near the border of a semielliptical surface crack. International Journal of Fatigue.2007,29:435-443
    [69]Zhao J, Guo W, She C. The three parameter description of stress field near the border of an embedded elliptical crack.Acta Mechanica.2007,190:29-44
    [70]Zhao J, Guo W, She C, Meng B.Three dimensional K-Tz stress fields around the embedded center elliptical crack front in elastic plates. Acta Mechanica Sinica.2006, 22(2):148-155
    [71]Zhao J, Guo W, She C.The in plane and out of plane stress constraint factors and K-T-Tz description of stress field near the border of a quarter elliptical corner crack.Fatigue and Fracture of Engineering Materials and Structures.2007,30(8):673-681
    [72]Zhao J. Three-parameter approach for elastic-plastic stress field of an embedded elliptical crack.Engineering Fracture Mechanics.2009,76:2429-2444
    [73]Clausmeyer H, Kussmaul K, Roos E. Influence of stress state on the failure behaviors of cracked components made of steel. Appl Mech Rev.1991,44:77-92
    [74]Anderson TL, Dodds RH. Specimen size requirements for fracture toughness testing in the transition region. Journal of Testing and Evaluation.1991,19:123-34
    [75]Dodds RH, Shih CF, Anderson TL.Continuum and micromechanics treatment of constraint in fracture.International Journal of Fracture.1993,64:101-33
    [76]Mostafavi M, Pavier MJ, Smith DJ. Unified measure of constraint.Manchester, UK: ESIA10.2009
    [77]Mostafavi, M., Smith, D. J., Pavier, M.J. Fracture of aluminium alloy 2024 under biaxial and triaxial loading.Engineering Fracture Mechanics.2011,78:1705-1716
    [78]Mostafavi, M, Smith, DJ, Pavier, MJ.A micromechanical fracture criterion accounting for in-plane and out-of-plane constraint.Computational Materials Science.2011,50: 2759-2770
    [79]Shlyannikov, VN, Boychenko, NV, Tartygasheva, AM.In-plane and out-of-plane crack-tip constraint effects under biaxial nonlinear deformation.Engineering Fracture Mechanics.2011,78:1771-1783
    [80]Burstow MC, Howard IC, Ainsworth RA. The influence of constraint on crack tip stress fields in strength mismatched welded joints.Journal of the Mechanics and Physics of Solids.1998,46:845-872
    [81]Betegon C, Penuelas I. A constraint based parameter for quantifying the crack tip stress fields in welded joints.Engineering Fracture Mechanics.2006,73:1865-1877
    [82]PINEAU A. Development of the local approach to fracture over the past 25 years:theory and applications. International Journal of Fracture.2006,138:139-166
    [83]Ainworth RA. R6-Revision 4:Assessment of the Integrity of Structure Containing Defect. London:British Energy Generation Ltd.2000
    [84]Beremin FM. A local approach to cleavage fracture of nuclear pressure vessel steel.Metallurgical Transactions A.1983,14A:2277-2287
    [85]张国尚,荆洪阳等.焊接接头脆性断裂评定的局部法研究进展.焊接接头脆性断裂评定的局部法研究进展.2003,20(7):43-48
    [86]Gurson, A.L.Continuum theory of ductile rupture by void nucleation and growth:part I yield criteria and flow rules for porous ductile media. Journal of Materials Science & Technology.1977,99:2-15
    [87]Tvergaard V.On localization in ductile materials containing spherical voids.International Journal of Fracture.1982,18:157-169
    [88]Tvergaard V, Needleman A. Anlysis of the cup-cone fracture in a round tensile bar.Acta Metall.1984,32:157-169
    [89]Ostby E, Thaulow C, Zhang ZL. Numerical simulation of specimen size and mismatch effects in ductile crack growth-Part I:tearing resistance and crack growth paths.Engineering Fracture Mechanics.2007,74:1771-1791
    [90]Negre, P, Steglich, D, Brocks, W. Crack extension at an interface:prediction of fracture toughness and simulation of crack path deviation. International Journal of Fracture.2005, 134:209-229
    [91]Dutta BK, Guin S, Sahu MK, Samal MK.A phenomenological form of the q2 parameter in the Gurson model.International Journal of Pressure Vessels and Piping.2008, 85:199-210
    [92]Samal MK, Balani K, Seidenfuss M, Roos E. An experimental and numerical investigation of fracture resistance behaviour of a dissimilar metal welded joint. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science.2009,223:1507-1523
    [93](?)stby E, Thaulow C, Zhang ZL. Numerical simulations of specimen size and mismatch effects in ductile crack growth-Part I:Tearing resistance and crack growth paths.Engineering Fracture Mechanics.2007,74(11):1770-1792
    [94]Burstowa MC, Beardsmore DW. The prediction of constraint-dependent R6 failure assessment lines for a pressure vessel steel via micro-mechanical modelling of fracture.International Journal of Pressure Vessels and Piping.2003,80:775-785
    [95]Xu J, Zhang ZL, Ostby E, et al. Constraint effect on the ductile crack growth resistance of circumferentially cracked pipes.Engineering Fracture Mechanics.2010,77:671-684
    [96](?)stby E, Thaulow C, Zhang ZL. Numerical simulations of specimen size and mismatch effects in ductile crack growth-Part I:Tearing resistance and crack growth paths.Engineering Fracture Mechanics.2007,74:1770-1792
    [97](?)stby E, Thaulow C, Zhang ZL. Numerical simulations of specimen size and mismatch effects in ductile crack growth-Part II:Near-tip stress fields.Engineering Fracture Mechanics.2007,74:1793-1809
    [98]Xu J, Zhang ZL,(?)stby E, et al.Effects of crack depth and specimen size on ductile crack growth of SENT and SENB specimens for fracture mechanics evaluation of pipe line steels. International Journal of Pressure Vessels and Piping.2009,86:787-797
    [99]Nikzad N, Farid T. Ductile crack growth & constraint in pipelines subject to combined loadings. Engineering Fracture Mechanics.2011,78(9):2010-2028
    [100]Wang HT, Wang GZ, Xuan FZ, Tu ST. Numerical investigation of ductile crack growth behavior in a dissimilar metal welded joint.Nuclear Engineering and Design.2011, 241:3234-3243
    [101]Cicero S, Ainsworth RA.Engineering approaches for the assessment of low constraint fracture conditions:A critical review.Engineering Fracture Mechanics.2010,77: 1360-1374
    [102]Penuelas I, Betegon C, Rodriguez C.A ductile failure model applied to the determination of the fracture toughness of welded joints.Numerical simulation and experimental validation.Engineering Fracture Mechanics.2006,73:2756-2773
    [103]ASTM E1820-08a. Standard test method for measurement of fracture toughness.Philadelphia:American Society for Testing and Materials.2008
    [104]Benseddiq N, Imad A.A ductile fracture analysis using a local damage model.International Journal of Pressure Vessels and Piping.2008,85:219-227
    [105]王海涛,王国珍,轩福贞,涂善东.一种高韧性材料的J-R阻力曲线的测试方法.中国.CN102353595A.2012-02-15
    [106]Wang GZ, Liu XL, Xuan FZ, Tu ST.Effect of constraint induced by crack depth on creep crack-tip stress field in CT specimens.International Journal of Solids and Structures.2010,47:51-57
    [107]Zhang ZL, Thaulow C,(?)degard J.A complete Gurson model approach for ductile fracture.Engineering Fracture Mechanics.2000,67:155-168
    [108]王海涛.核电安全端异种金属焊接接头的局部力学性能与断裂行为.华东理工大学.博士学位论文.2013
    [109]Irwin GR, Kies JA, Smith HL.Fracture strengths relative to onset and arrest of crack propagation.Process American Society for Testing and Materials.1958,58:640-60
    [110]Garwood SJ.Effect of specimen geometry on crack growth resistance.In:Fracture mechanics.ASTM STP 677.American Society for Testing and Materials.1979:11-532
    [111]McCabe DE, Landes JD, Ernst HA. An evaluation of the JR-curve method for fracture toughness characterization.In:Elastic-plastic fracture. Fracture resistance curves and engineering applications. ASTM STP 803, vol.Ⅱ. American Society for Testing and Materials.1983:1-562-Ⅱ-581
    [112]Towers OL, Garwood SJ. Influence of crack depth on resistance curves for three-point bend specimens in HY130. In: Fracture mechanics. ASTM STP 905, vol.7.American Society for Testing and Materials.1986:454-84.
    [113]Eisele U, Roos E, Seidenfuss M, Silcher H. Determination of J-integral-based crack resistance curves and initiation values for the assessment of cracked large-scale specimens. In:Fracture mechanics:twenty-second symposium.ASTM STP 1131, vol. I. American Society for Testing and Materials.1992:37-59.
    [114]Thesis TJ, Bryson JW.Influence of crack depth on the fracture toughness of reactor pressure vessel steel.In:Hackett EM, Schwalbe K-H, Dodds Jr RH, editors. Constraint effect in Fracture, ASTM STP1171, Indianapolis, Philadelphia, PA:American Society for Testing and Materials.1993:104-19
    [115]Kirk MT, Koppenhoefer KC, Shih CF. Effect of constraint on specimen dimensions needed to obtain structurally relevant toughness measures, Constraint Effects in Fracture, ASTM STP1171, American Society for Testing and Materials, Philadelphia. 1993:79-104
    [116]Sorem WA, Dodds RH, Rolfe ST. Effect of crack depth on elastic plastic fracture toughness.International Journal of Fracture.1991,47:105-26
    [117]Dodds RH, Anderson TL, Kirk MT.A frame work to correlate a/W ratio effects on elastic-plastic fracture toughness (Jc).International Journal of Fracture.1991,48:1-22
    [118]Ruggieri C, Dodds RH.A transferability model for brittle fracture including constraint and ductile tearing effects:a probabilistic approach. International Journal of Fracture.1996,79:309-40
    [119]PWR Material Realiability Project, Interim Alloy 600 Safety Assessment for U.S. PWR Plants, Part 1:Alloy82/182 pipe butt welds. EPRI Report TP-1001491,2001
    [120]Celin R, Tehovnik F.Degradation of A Ni-Cr-Fe Alloy in a Pressurised water nuclear power plant.Materials Technology.2011,45:151-157
    [121]Jenssen A, Norrgard K, Lagerstron J. Assessment of cracking in dissimilar metal welds, Proc. of Tenth Int. Symp.On Envionmental Degradation of Materials in Nuclear Power Systems-Water Reactors.USA:NACE International.2001:CD-ROM
    [122]Farley S.An Overview of Non Destructive Inspection Service in Nuclear Power Plants.International Conference Nuclear Energy for New Europe.Portoraz, Slovenia. 2004
    [123]Wang HT, Wang GZ, Xuan FZ, Tu ST. Fracture mechanism of a dissimilar metal welded joint in nuclear power plant. Engineering Failure Analysis.2013,28:134-148
    [124]Wang HT, Wang GZ, Xuan FZ, Tu ST.An experimental investigation of local fracture resistance and crack growth paths in a dissimilar metal welded joint.Materials and Design.2013,44:179-189
    [125]Kocak M. Structural Integrity of welded structures:Process-Property-Performance (3P) Relationship.The 63rd Annual Assembly & International Conference of the International Institute of Welding.Istanbul, Turkey.2010
    [126]Wang GZ, Chen JH, Wang JG.On measurement and meaning of the cleavage fracture stress in steel.International Journal of Fracture.2002,118:211-227
    [127]Chen JH, Wang Q, Wang GZ, Li Z. Fracture behavior at crack tip--a new framework for cleavage mechanism of steel.Acta Materialia.2003,51:1841-1855
    [128]Wang GZ, Wang YL.Effects of loading rate, notch geometry and loading mode on the local cleavage fracture stress of a C-Mn steel. International Journal of Fracture.2007, 146:105-121
    [129]Wang HT, Wang GZ, Xuan FZ, Liu CJ, Tu ST. Local mechanical properties and microstructures of Alloy52M dissimilar metal welded joint between A508 ferritic steel and 316L stainless steel.Advanced Materials Research.2012,509:103-110
    [130]Wang HT, Wang GZ, Xuan FZ, Tu ST. Local mechanical properties of a dissimilar metal welded joint in nuclear power systems. Materials Science and Engineering A. 2013,568:108-117
    [131]Leach AM, Daniewicz SR, NewmanJr JC. A new constraint based fracture criterion for surface cracks.Engineering Fracture Mechanics.2007,74:1233-1242
    [132]李静媛,唐正华.TiS夹杂物对D6AC超高强度钢强韧性的影响.成都科技大学学 报.1990,5:89-98
    [133]Zhu XK, Lam PS, Chao YJ. Application of normalization method to fracture resistance testing for stora tank A285 carbon steel. International Journal of Pressure Vessels and Piping,2009,86:669-676

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700