用户名: 密码: 验证码:
汽轮机转子钢近门槛值区的裂纹扩展与超高周疲劳行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疲劳失效作为威胁设备可靠性的主要因素,一直是工程技术领域的研究热点和难点。近年来,过程工业领域高参数(高温、高压)、大型化、长周期和高风险的发展新趋势,对机械装备的寿命可靠性提出了挑战,使早期破坏预测和长寿命设计成为本领域研究的新热点。本文以先进火电汽轮机转子和核电焊接转子为对象,围绕微结构影响下的疲劳破坏行为问题,从理论分析、数值模拟和实验研究三个层面,系统研究了近门槛值区的疲劳裂纹扩展和超高周疲劳行为。
     主要研究内容和结论如下:
     (1)近门槛值区疲劳裂纹的扩展与材料微结构密切相关,以高低压一体化汽轮机转子钢25Cr2NiMo1V为对象,试验研究了微组织不同的高压端(HP)与低压端(LP)材料近门槛值区疲劳裂纹扩展行为,基于微观分析手段阐明了微结构差异对近门槛值区裂纹扩展和断裂模式的影响。首次发现:裂纹尖端循环塑性区和原始奥氏体晶粒尺寸相等,可作为辉纹型和晶体学型两种疲劳裂纹扩展模式的判定条件,进而基于循环塑性区理论较好解释了面型断裂的形成机制。率先阐明了不同微组织的疲劳抗力及其对裂纹闭合的作用,为进一步建立近门槛值区疲劳裂纹扩展模型奠定了基础。
     (2)近门槛值区疲劳裂纹扩展影响因素复杂,尚缺乏统一的裂纹扩展描述模型,以汽轮机转子钢25Cr2Ni2MoV为对象,试验研究了不同应力比下近门槛值区疲劳裂纹扩展行为,基于等效驱动力模型从理论上阐明了疲劳裂纹扩展的控制机制。首次发现:近门槛值区疲劳裂纹扩展受恒载等效驱动机制和裂纹闭合共同控制,而裂纹闭合同应力比和疲劳裂纹扩展速率有关。在此基础上阐明了应力比影响裂纹闭合的机理,很好地诠释了裂纹闭合同裂纹扩展控制参量转变的关系,实现了裂纹闭合理论与裂纹扩展驱动机制的统一。
     (3)以汽轮机转子钢焊接接头为对象,系统开展了温度影响下的超高周疲劳等强度试验研究,主要包括:
     ◆进行了焊接接头不同部位的纳米压痕和显微硬度试验,建立了纳米硬度和显微硬度的关系;进一步以板条马氏体宽度为特征组织尺寸,建立了特征组织尺寸与显微硬度的关系,为焊接接头微区的强度估算提供了依据。
     ◆开展了服役温度范围(200-370°C)内的拉伸试验,发现了焊接接头最薄弱区域同温度的相关性;基于焊缝金属冲击试验结果,阐明了多层焊接工艺改善冲击性能的微观机制,为评价焊接接头强度性能和优化焊接工艺提供了依据。
     ◆进行了服役温度下焊接接头的超高周疲劳试验,首次获得了370°C下低强度焊缝金属的双线性应力-寿命关系,系统分析了温度和试样位置影响超高周疲劳行为的机理,为了解焊接结构超长寿命服役性能提供了依据。
     (4)超高周疲劳破坏同材料微缺陷密切相关,基于中温焊接接头的超高周疲劳试验结果,系统研究了裂纹萌生的转变机制和疲劳破坏机理,主要包括:
     ◆基于微观分析手段,发现了370°C下大量裂纹萌生于内部夹杂物、气孔和不连续组织,分析了内部裂纹的萌生与扩展特性,为了解低强钢疲劳的内部破坏机制提供了支持。
     ◆开展了微缺陷处应力集中的有限元分析,发现了内部破坏受缺陷尺寸和位置共同影响,阐明了缺陷尺寸与分布的关系,为确定内部裂纹萌生位置和判定临界夹杂尺寸奠定了基础。
     ◆基于数值模拟方法,阐明了高温下材料基体软化和表面氧化提高内部裂纹萌生概率的机理,为了解温度促进疲劳内部破坏提供了依据。
     ◆基于残余应力测试结果和三维有限元模拟,阐明了残余应力及其演化在裂纹萌生模式转变中的作用,为评定制造工艺对疲劳寿命的影响奠定了基础。
     ◆建立了基于应力水平、夹杂物尺寸和位置的超高周疲劳寿命预测模型,提出了新的寿命控制参量,为结构超长寿命预测奠定了基础。
Fatigue failure is a major factor threatening reliability of equipments, and its investigation has always become a hot but difficult topic in both engineering and technical fields. Recently, many process indurstries work at extreme conditions such as high temperature, high pressure, and thus undergo scale enlargerment, service life extension and higher risk. This new developing trend challenges the life and reliability of structures and components, as a result, failure prediction at early stage and long life design become new hot spots for study. In this work, by focusing on effect of microstructure on fatigue behavior, near-threshold fatigue crack growth (FCG) mechanisms of advanced steam turbine rotor steels in fossil power plant and very high cycle fatigue (VHCF) behavior of welded rotors in nuclear power plant were systematically investigated in terms of theoretical analyses, numerical simulations and experiments.
     The main research contents and conclusions are listed as follows:
     (1) It is the fact that the near-threshold FCG is strongly influenced by microstructure. For the high-low-pressure integral steam turbine rotor steel 25Cr2NiMolV, the microstructures in high pressure (HP) and low pressure (LP) parts are different. The microstructure dependence of the near-threshold FCG and fracture mode was illustrated by fatigue tests and microscopic analyses. It was found for the first time that the striation and crystallographic mode of crack propagation could be determined from the cyclic plastic zone size at crack tip being equivalent to prior austenitic grain size. Furthermore, the formation mechanism of surface faceted fracture was also correlated to the theory of the cyclic plastic zone. In addition, fatigue resistance of one specific microstructure and its contribution to crack closure were elucidated. These findings lay great foundations for the establishment of FCG models in the near-threshold regime.
     (2) It is still short of generalized FCG models in the near-threshold regime due to its complex influencing factors. The near-threshold FCG behavior of rotor steel 25Cr2Ni2MoV at different load ratios was investigated experimentally, and the FCG driving mechanism was theoretically analyzed based on equivalent driving force model. It was found for the first time that the crack growth process was determined by combined effects of equvalent driving force at constant amplitude loading and crack closure, whereas the crack closure was a function of both load ratio and FCG rate. Then the mechanism of the effect of load ratio on the crack closure was clarified, and the crack closure phenomenon was further related with the transitioin of driving forces in crack advance. These findings are beneficial to unify crack closure theory and crack growth driving parameters in the near-threshold regime.
     (3) A series of strength performance tests especially VHCF experiments were conducted by using welding joint in steam turbine rotors, which include:
     ◆Based on the nano-and micro-hardness tests in the welding joint, the relationship between nano-hardness and micro-hardness was established. Lath width of the tempered martensites was selected as the characteristic microstructure size for correlating the micro-hardness, and therefore gave us confidence for the estimation of strength distribution in local zones.
     ◆It was found that the location for the lowest strength in the welding joint was temperature dependent by tensile tests at service temperature range (200-370℃), and the mechanism of improving impact properties by multilayer welding technique was illuminated by impact tests at weld metal. These work can provide important information for evaluating the performance of welding joint and optimization of welding process.
     ◆It was reported for the first time the duplex shape of stress-life (S-N) curves in the lower strength welding joint at service temperature in the VHCF regime. And factors affecting VHCF behavior were comprehensively analyzed by paying special attention to the temperature and specimen location. These findings are valuable for understanding the long life service behavior of welded structures in power plant.
     (4) It is known that fatigue failure in the very high cycle regime is strongly related to micro-defects. Based on the VHCF results at moderate temperature, the crack initiation transition from surface to interior and fatigue failure mechanisms were systematically investigated, which include:
     ◆It was found that cracks were always initiated from interior inclusions, porosities and discontinuous microstructures by microscopic observations. And then internal crack initiation and propagation behavior was analyzed. These can help understand the mechanism of fatigue failure from subsurface in lower strength steels.
     ◆Stress concentration behavior at micro-defects were performed by finite element analyses, and it was found that interior failure was affected by both defect size and location. Then the relationship between defect size and distribution was illustrated. These work lay great foundations for defining fracture location from subsurface and estimating critical inclusion size in materials.
     ◆The mechanisms of higher crack initiation potential in internal material at higher temperature were clarified by numerical simulations of matrix softening and surface oxidation, which can provide important information for understanding the role of temperature in promoting interior failure.
     ◆The role of residual stress and its evolution in the transition behavior of crack initiation modes were illuminated by both residual stress test and 3-D finite element modelling, which can provide a basis for evaluating the effect of manufacturing process on fatigue life.
     ◆The VHCF life prediction model involving fatigue load, inclusion size and location was revised, and a new life controlling parameter was proposed. These can lay the foundwork for life prediction of engineering structrures in ultralong life regime.
引文
[1]史进渊,杨宇,孙庆,崔琦,张兆鹤.超超临界汽轮机技术研究的新进展.动力工程.2003,23(2):2252-2257
    [2]徐大懋.加速发展核电——中国能源结构调整的必由之路.中国能源.2005,(8):6-9
    [3]Ryotaro M, Yoshinori T, Takashi N. Development of welded rotors for high-temperature steam turbines. in:Proceedings of the ASME power conference,2005, pp.617-623
    [4]上海汽轮机厂,清华大学,哈尔滨焊接研究所,中国科学院金属研究所,上海汽轮机锅炉研究所.电站设备大型转子焊接制造技术.机械工业出版社,北京,2009
    [5]Bhaduri A K, Albert S K, Ray S K, Rodriguez P. Recent trends in repair and refurbishing of steam turbine components. Sadhana.2003,28 (3-4):395-408
    [6]轩福贞.机械结构的全寿命预测与安全保障.世界科学.2011,(5):50-51
    [7]Murakami Y, Yokoyama N N, Nagata J. Mechanism of fatigue failure in ultralong life regime. Fatigue & Fracture of Engineering Materials & Structures.2002,25 (8-9): 735-746
    [8]Marines I, Bin X, Bathias C. An understanding of very high cycle fatigue of metals. International Journal of Fatigue.2003,25 (9):1101-1107
    [9]Sonsino C M. Course of SN-curves especially in the high-cycle fatigue regime with regard to component design and safety. International Journal of Fatigue.2007,29 (12): 2246-2258
    [10]Chandran K S R, Chang P, Cashman G T. Competing failure modes and complex S-N curves in fatigue of structural materials. International Journal of Fatigue.2010,32 (3): 482-491
    [11]Yamada M, Miyazaki M, Watanabe O. Development of Integral High-Pressure-Low-Pressure Combination Rotor Forgings. in, ASTM STP 903,1986, pp. 59-73
    [12]Yamada M, Tsuda Y, Tanaka Y. HLP Single Cylinder Steam Turbine Rotor Forgings for Combined Cycle Power Plants. in:Robert Ⅰ.Jaffee Memorial Symposium on clean Materials Technology, ASM Materials Week,1992, pp.161-168
    [13]范华,钟杰,杨功显.高低压一体化整锻转子材料的力学性能研究.东方气轮机.2005,(2):34-43
    [14]Potthast E, Viswanathan R, Wiemann W. Advanced 2% CrMoNiWV steel for combination rotors.in:The 11th international forgemasters meeting, Terni, Italy,1991, pp. Ⅸ-8
    [15]Fukui Y, Shiga M, Kaneko R. Development of Super-clean 0.2Mn-1.8Ni-Cr-Mo-V Steel Rotor for HP-LP Steam Turbine. in:Robert I.Jaffee Memorial Symposium on Clean Materials Technology, ASM Materials Week,1992, pp.249-257
    [16]Tsuchiyama, Tomohiro, Okamura. Development and production of new HP-LP combined turbine rotor of 2CrMoNiV steel. Research and Development.1993,43 (3):87-90
    [17]王思玉.高低压一体整锻转子及分区热处理.上海汽轮机.1999,(4):23-30
    [18]Tanaka Y, Watanabe O, Kaplan A. Production and Properties of a Super-clean 2.5%Ni-CrMoV High Pressure/Low Pressure Rotor Shaft. in:Robert I.Jaffee Memorial Symposium on Clean Materials Technology, ASM,1992, pp.169-180
    [19]Tsukasa A, Yasuhiko T, Tohru I. Manufacturing and properties of newly developed 9%CrMoVNiNbN high-pressure low-pressure rotor shaft forging. ASTM Special Technical Publication.1997,1259:330-343
    [20]Suresh S. Fatigue of Materials. Cambridge University Press,1998
    [21]Bathias C. There is no infinite fatigue life in metallic materials. Fatigue & Fracture of Engineering Materials & Structures.1999,22 (7):559-565
    [22]Wang Q Y, Berard J Y, Dubarre A, Baudry G, Rathery S, Bathias C. Gigacycle fatigue of ferrous alloys. Fatigue & Fracture of Engineering Materials & Structures.1999,22 (8): 667-672
    [23]Schijve J. Fatigue of structures and materials in the 20th century and the state of the art. International Journal of Fatigue.2003,25 (8):679-702
    [24]Gough H J. Crystalline structure in relation to failure of metals, especially by fatigue. in: Edgar Marburg lecture, Proceedings of ASTM,1933, pp.3-114
    [25]Orowan E. Theory of the fatigue of metals. Proc Roy Soc.1939, A171:79-106
    [26]Stroh A N. The formation of cracks as a result of plastic flow. Proc Roy Soc.1955, A223: 404
    [27]Forsyth P J E. The application of 'fractography' to fatigue failure investigations. Roy Aircraft Est, Tech Note Met.1957:257
    [28]Ryder D A. Some quantitative information obtained from the examination of fatigue fracture surfaces. Roy Aircraft Est, Tech Note Met.1958:288
    [29]Cottrell A H, Hull D. Extrusion and intrusion by cyclic slip in copper. Proc Roy Soc. 1957, A242:211-213
    [30]Mott N F. A theory of the origin of fatigue cracks. Acta Materialia.1958,6 (3):195-197
    [31]Forsyth P J E. The physical basis of metal fatigue. Blackie and Son, London,1969
    [32]Suresh S. Fatigue of materials. Second Edition ed., Cambridge University Press, Cambridge,1991
    [33]Mughrabi H. Cyclic slip irreversibilities and the evolution of fatigue damge. Metallurgical and Materials Transactions A.2009,40 (6):1257-1279
    [34]Laird C, Smith G C. Crack propagation in high stress fatigue. Philosophical Magazine. 1962,7 (77):847-857
    [35]Laird C. The influence of metallurgical structure on the mechanism of fatigue crack propagation. in:Proceedings of Fatigue Crack Propagation, ASTM STP, Philadelphia, 1967, pp.131-168
    [36]Newman.Jr J C. The merging of fatigue and fracture mechanics concepts:a historical perspective. Progress in Aerospace Sciences.1998,34 (5-6):347-390
    [37]Paris P C, Gomez M P, Anderson W E. A rational analytic theory in engineering. The Trend in Engineering.1961,13:9-14
    [38]Paris P C, Erdogan F. A critical analysis of crack propagation laws. Journal of Basic Engineering.1963,85 (4):528-534
    [39]Donaldson D R, Anderson W E. Crack propagation behavior of some aircraft materials. in:Proceedings of the crack propagation sysposium, Cranfield College of Aeronautics, 1962, pp.375-441
    [40]Forman R G, Kearney V E, Engle R M. Numerical analysis of crack propagation in cyclic-loaded structures. Journal of Basic Engineering.1967,89 (3):459-464
    [41]Walker K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum. in, ASTM STP 462,1970, pp.1-14
    [42]Krupp U. Fatigue crack propagation in metals and alloys-microstructural aspects and modelling concepts. Wiley-VCH, Weinheim,2007
    [43]EL.Haddad M H, Topper T H, Smith K N. Prediction of non propagating cracks. Engineering Fractrue Mechanics.1979,11 (3):573-584
    [44]Pearson S. Initiation of fatigue cracks in commercial aluminium alloys and the subsequent propagation of very short cracks. Engineering Fractrue Mechanics.1975,7 (2):235-247
    [45]Chapetti M D. Application of a threshold curve model to high-cycle fatigue behavior of small cracks induced by foreign-object damge in Ti-6Al-4V. International Journal of Fatigue.2005,27 (5):493-501
    [46]Kitagawa H, Takahashi S. Applicability of fracture mechanics to very small cracks or cracks in the early stage. in:Proceedings of the second international conference on mechanical behavior of metals, ASM,1976, pp.627-631
    [47]Venkateswaran P, Sundara.Raman S G, Pathak S D. Generation of stress vs. crack length plots for a ferritic steel weld metal based on Kitagawa-Takahashi approach. Materials Letters.2005,59 (4):495-498
    [48]Ciavarella M, Monno F. On the possible generaliazations of the Kitagawa-Takahashi diagram and of the El Haddad equation to finite life. International Journal of Fatigue. 2006,28 (12):1826-1837
    [49]Peters J O, Boyce B L, Chen X, McNaney J M, Hutchinson J W, Ritchie R O. On the application of the Kitagawa-Takahashi diagram to foreign-object damage and high-cycle fatigue. Engineering Fractrue Mechanics.2002,69 (13):1425-1446
    [50]Chapetti M D. Fatigue assessment using an integrated threshold curve method-applications. Engineering Fractrue Mechanics.2008,75 (7):1854-1863
    [51]Murakami Y. Metal fatigue-effects of small defects and nonmetallic inclusions. Elsevier, 2002
    [52]Elber W. The significance of fatigue crack closure. in:Damage tolerance in aircraft structures, ASTM STP 486, Canada,1970, pp.230-242
    [53]Taylor D. Fatigue thresholds. Butterworths, London,1989
    [54]Ritchie R O. Influence of microstructure on near-threshold fatigue-crack propagation in ultra-high strength steel. Metal Science.1977,11 (8-9):368-381
    [55]Ritchie R O. Near-threshold fatigue crack propagation in steels. International Metals Reviews.1979,24 (5-6):205-230
    [56]Taylor D. Fatigue thresholds:their applicability to engineering situations. International Journal of Fatigue.1988,10 (2):67-79
    [57]A.Lados D, Apelian D, Donald J K. Fatigue crack growth mechanisms at the microstructure scale in Al-Si-Mg cast alloys:Mechanisms in the near-threshold regime. Acta Materialia.2006,54 (6):1475-1486
    [58]Kim Y, Kwon J, Lee H, Jang W, Choi J, Kim S. Effect of microstructure on fatigue crack propagation and S-N fatigue behaviors of TMCP steels with yield strengths of approximately 450 MPa. Metallurgical and Materials Transactions A.2010,42 (4): 986-999
    [59]Collini L. Fatigue crack growth resistance of ECAPed ultrafine-grained copper. Engineering Fracture Mechanics.2010,77 (6):1001-1011
    [60]McEvily A J, Ritchie R O. Crack closure and the fatigue-crack propgation threshld as a function of load ratio. Fatigue & Fracture of Engineering Materials & Structures.1998, 21 (7):847-855
    [61]Stanzl-Tschegg S E, Plasser O, Tschegg E K, Vasudevan A K. Influence of microstructure and load ratio on fatigue threshold behavior in 7075 aluminum alloy. International Journal of Fatigue.1999,21 (S1):S255-S262
    [62]Yamada Y, Newman.Jr J C. Crack closure under high load-ratio conditions for Inconel-718 near threshold behavior. Engineering Fracture Mechanics.2009,76 (2): 209-220
    [63]Salivar G C, Haake F K. A comparison of test methods for the determination of fatigue crack growth rate threshold in titanium at elevated temperature. Engineering Fracture Mechanics.1990,37 (3):505-517
    [64]H.Kelestemur M, K.Chaki T. The effect of various atmospheres on the threshold fatigue crack growth behavior of AISI 304 stainless steel. International Journal of Fatigue.2001, 23 (2):169-174
    [65]Carboni M. Strain-gauge compliance measurements near the crack tip for crack closure evaluation:Applicability and accuracy. Engineering Fractrue Mechanics.2007,74 (4): 563-577
    [66]Andersson M, Persson C, Melin S. Experimental and numerical investigation of crack closure measurements with electrical potential drop technique. International Journal of Fatigue.2006,28 (9):1059-1068
    [67]Carroll J, Efstathiou C, Lambros J, Sehitoglu H, Hauber B, Spottswood S, Chona R. Investigation of fatigue crack closure using multiscale image correlation experiments. Engineering Fractrue Mechanics.2009,76 (15):2384-2398
    [68]Chang H, Han E H, Wang J Q, Ke W. Acoustic emission study of fatigue crack closure of physical short and long cracks for aluminum alloy LY12CZ. International Journal of Fatigue.2009,31 (3):403-407
    [69]Rokhlin S I, Kim J Y. In situ ultrasonic measurement of crack closure. International Journal of Fatigue.2003,25 (1):51-58
    [70]Zhang X P, Wang C H, Ye L, Mai Y W. A study of the crack wake closure/opening behaviour of short fatigue cracks and its influence on crack growth. Material Science and Engineering A.2005,406 (1-2):195-204
    [71]Lugo M, Daniewicz S R, Newman.Jr J C. A mechanics based study of crack closure measurement techniques under constant amplitude loading International Journal of Fatigue.2011,33 (2):186-193
    [72]Solanki K, Daniewicz S R, Newman.Jr J C. A new methodology for computing crack opening values from finite element analyses. Engineering Fractrue Mechanics.2004,71 (7-8):1165-1175
    [73]Zapatero J, Moreno B, Gonzalez-Herrera A. Fatigue crack closure determination by means of finite element analysis. Engineering Fractrue Mechanics.2008,75 (1):41-57
    [74]Solanki K, Daniewicz S R, Newman. Jr J C. Finite element analysis of plasticity-induced fatigue crack closure:an overview. Engineering Fractrue Mechanics.2004,71 (2): 149-171
    [75]Herz E, Hertel O, Vormwald M. Numerical simulation of plasticity induced fatigue crack opening and closure for autofrettaged intersecting holes. Engineering Fractrue Mechanics.2011,78 (3):559-572
    [76]Rodrigues D M, Antunes F V. Finite element simulation of plasticity induced crack closure with different material constitutive models. Engineering Fractrue Mechanics. 2009,76 (9):1215-1230
    [77]Gastro A, Potirniche G P. Multi-mechanism crack closure simulations in various steels. International Journal of Fatigue.2010,32 (11):1764-1773
    [78]NASGRO Reference Manual - Version 4.02, NASA Johnson Space Center and Southwest Research Institute,2002.
    [79]赵永翔,高庆,张斌,刁克军.轨道车辆轮对的关键力学问题及研究进展.固体力学学报.2010,31(6):716-730
    [80]Newman.Jr J C. FASTRAN Ⅱ-A fatigue crack growth structural analysis program, NASA TM-104159,1992.
    [81]AFGROW Reference Manual - Version 4.0, Wright-Patterson Air Force Base, AFRL/VASM,2003.
    [82]Paris P C, Tada H, Donald J K. Service load fatigue damage-a historical perspective. International Journal of Fatigue.1999,21 (S1):S35-S46
    [83]Kujawski D. Utilization of partial crack closure for fatigue crack growth modeling. Engineering Fractrue Mechanics.2002,69 (12):1315-1324
    [84]Sadananda K. Factors governing near-threshold fatigue crack growth, in:2nd International Conference on Fatigue and Fatigue Thresholds, Engineering Materials Advisory Services Ltd, Birmingham, England,1984, pp.543-553
    [85]Sadananda K, Vasudevan A K. Fatigue crack growth mechanisms in steels. International Journal of Fatigue.2003,25 (9-11):899-914
    [86]Sadananda K, Vasudevan A K. Fatigue crack growth behavior of titanium alloys. International Journal of Fatigue.2005,27 (10-12):1255-1266
    [87]Kwofie S. Equivalent stress approach to prediction the effect of stress ratio on fatigue threshold stress intensity range. International Journal of Fatigue.2004,26 (3):299-303
    [88]Kwofie S, Rahbar N. An equivalent driving force model for crack growth prediction under different stress ratios. International Journal of Fatigue.2011,33 (9):1199-1204
    [89]李守新,翁宇庆,惠卫军,杨振国.高强度钢超高周疲劳性能----非金属夹杂物的影响.冶金工业出版社,北京,2010
    [90]Naito T, Ueda H, Kikuchi M. Observation of Fatigue Fracture Surface of Carburized Steel. Journal of the Society of Materials Science, Japan.1983,32 (361):1162-1166
    [91]Asami K, Emura H. Fatigue Strength Characteristics of High-Strength Steel JSME international journal. Ser.1, Solid mechanics, strength of materials.1990,33-1 (3): 367-374
    [92]Nie Y H,Fu W T, Hui W J, Dong H, Weng Y Q. Very high cycle fatigue behavior of 2000-MPa ultra-high-strength spring steel with bainite-martensite duplex microstructure. Fatigue & Fracture of Engineering Materials & Structures.2009,32 (3):189-196
    [93]Bayraktar E, Garcias I M, Bathias C. Failure mechanisms of automotive metallic alloys in very high cycle fatigue range. International Journal of Fatigue.2006,28 (11): 1590-1602
    [94]Zhu X, Shyam A, Jones J W, Mayer H, Lasecki J V, Allison J E. Effect of microstructure and temperature on fatigue behavior of E319-T7 cast aluminum alloy in very long life cycles. International Journal of Fatigue.2006,28 (11):1566-1571
    [95]Chai G. The formation of subsurface non-defect fatigue crack origins. International Journal of Fatigue.2006,28 (11):1533-1539
    [96]Miao J, M.Pollock T, Jones J W. Crystallographic fatigue crack initiation in nickel-based superalloy Rene 88DT at elevated temperature. Acta Materialia.2009,57 (20): 5964-5974
    [97]Lukas P, Kunz L. Specific features of high-cycle and ultra-high-cycle fatigue. Fatigue & Fracture of Engineering Materials & Structures.2002,25 (8-9):747-753
    [98]Mughrabi H. On 'multi-stage' fatigue life diagrams and the relevant life-controlling mechanisms in ultrahigh-cycle fatigue. Fatigue & Fracture of Engineering Materials & Structures.2002,25 (8-9):755-764
    [99]Mughrabi H. On the life-controlling microstructural fatigue mechanisms in ductile metals and alloys in the gigacycle regime. Fatigue & Fracture of Engineering Materials & Structures.1999,22 (7):633-641
    [100]Sohar C R, Betzwar-Kotas A, Gierl C, Weiss B, Danninger H. Gigacycle fatigue behavior of a high chromium alloyed cold work tool steel. International Journal of Fatigue.2008,30 (7):1137-1149
    [101]Tanaka K, Mura T. A dislocation model for fatigue crack initiation. Journal of Applied Mechanics.1981,48 (3):97-102
    [102]Tanaka K, Mura T. A theory of fatigue crack initiation at inclusions. Metallurgical Transactions A.1982,13 (1):117-123
    [103]Chang R, Morris W L, Buck O. Fatigue crack nucleation at intermetallic particles in alloys--A dislocation pile-up model. Scripta Metallurgica.1979,13 (3):191-194
    [104]Morris W L, James M N. Statistical aspect of fatigue crack nucleation from particles. Metallurgical and Materials Transactions A.1980,11 (5):850-851
    [105]Murakami Y, Kodama S, Konuma S. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I:Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions. International Journal of Fatigue.1989,11 (5):291-298
    [106]Takai K, Honma Y, Izutsu K, Nagumo M. Identification of trapping sites in high-strength steels by secondary ion mass spectrometry for thermally desobed hydrogen. Journal of Japan Institute of Metals.1996,60 (12):1155-1162
    [107]Shiozawa K, Morii Y, Nishino S, Lu L. Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime. International Journal of Fatigue.2006,28 (11):1521-1532
    [108]Shiozawa K, Lu L T, Ishihara S. S-N curve characteristics and subsurface crack initiation behaviour in ultra-long life fatigue of a high carbon-chromium bearing steel. Fatigue & Fracture of Engineering Materials & Structures.2001,24 (12):781-790
    [109]Shiozawa K, Lu L. Very high-cycle fatigue behavior of shot-peened high-carbon-chromium bearing steel. Fatigue & Fracture of Engineering Materials & Structures.2002,25 (8-9):813-822
    [110]Sakai T, Takeda M, Shiozawa K, Ochi Y, Nakajima M, Nakamura T, Oguma N. Experimental reconfirmation of characteristic S-N property for high carbon chromium bearing steel in wide life region in rotating bending. Journal of Society of Materials Science.2000,49 (7):779-785
    [111]Liu Y B, Yang Z G, Li Y D, Chen S M, Li S X, Hui W J, Weng Y Q. On the formation of GBF of high-strength steels in the very high cycle fatigue regime. Material Science and Engineering A.2008,497 (1-2):408-415
    [112]Furuya Y, Hirukawa H, Hayakawa M. Gigacycle fatigue properties of hydrogen-charged JIS-SCM440 low-alloy steel under ultrasonic fatigue testing. Metallurgical and Materials Transactions A.2010,41 (9):2248-2256
    [113]Nakamura T, Oguma H, Shinohara Y. The effect of vacuum-like environment inside sub-surface fatigue crack on the formation of ODA fracture surface in high strength steel. Procedia Engineering.2010,2 (1):2121-2129
    [114]Wang Q Y, Berard J Y, Rathery S, Bathias C. High-cycle fatigue crack initiation and propagation behaviour of high-strength sprin steel wires. Fatigue & Fracture of Engineering Materials & Structures.1999,22 (8):673-677
    [115]Ranc N, Wagner D, Paris P C. Study of thermal effects associated with crack propagation during very high cycle fatigue tests. Acta Materialia.2008,56 (15): 4012-4021
    [116]Sakai T, Lian B, Takeda M, Shiozawa K, Oguma N, Ochi Y, Nakajima M, Nakamura T. Statistical duplex S-N characteristics of high carbon chromium bearing steel in rotating bending in very high cycle regime. International Journal of Fatigue.2010,32 (3): 497-504
    [117]Chandran K S R. Duality of fatigue failures of materials caused by Poisson defect statistics of competing failure modes. Nature Materials.2005,4:303-308
    [118]Cashman G T. A review of competing modes fatigue behavior. International Journal of Fatigue.2010,32 (3):492-496
    [119]Qian G, Zhou C, Hong Y. Experimental and theoretical investigation of environmental media on very-high-cycle fatigue behavior for a structural steel. Acta Materialia.2011, 59 (4):1321-1327
    [120]Yu Y, Gu J L, Shou F L, Xu L, Bai B Z, Liu Y B. Competition mechanism between microstructure type and inclusion level in determining VHCF behavior of bainite/martensite dual phase steels International Journal of Fatigue.2011,33 (3): 500-506
    [121]Knobbe H, Koster P, Krupp U, Christ H-J, Fritzen C-P. Microstructural aspects of duplex steel during high cycle and very high cycle fatigue. Journal of Physics: Conference Series.2010,240 (1):012061
    [122]Huang J, Spowart J E, Jones J W. The role of microstructural variability on the very high-cycle fatigue behavior of discontinuously-reinforced aluminum metal matrix composites using ultrasonic fatigue. International Journal of Fatigue.2010,32 (8): 1243-1254
    [123]Akiniwa Y, Miyamoto N, Tsuru H, Tanaka K. Notch effect on fatigue strength reduction of bearing steel in the very high cycle regime. International Journal of Fatigue.2006,28 (11):1555-1565
    [124]Berger C, Pyttel B, Trossmann T. Very high cycle fatigue tests with smooth and notched specimens and screws made of light metal alloys. International Journal of Fatigue.2006, 28(11):1640-1646
    [125]Qian G, Hong Y, Zhou C. Investigation of high cycle and Very-High-Cycle Fatigue behaviors for a structural steel with smooth and notched specimens. Engineering Failure Analysis.2010,17 (7-8):1517-1525
    [126]Furuya Y. Size effects in gigacycle fatigue of high-strength steel under ultrasonic fatigue testing. Procedia Engineering.2010,2 (1):485-490
    [127]Ochi Y, Matsumura T, Masaki K. High-cycle rotating bending fatigue property in very long-life regime of high-strength steels. Fatigue & Fracture of Engineering Materials & Structures.2002,25 (8-9):823-830
    [128]Xue H Q, Bathias C. Crack path in torsion loading in very high cycle fatigue regime. Engineering Fractrue Mechanics.2010,77 (11):1866-1873
    [129]Petit J, Sarrazin-Baudoux C. An overview on the influence of the atmosphere environment on ultra-high-cycle fatigue and ultra-slow fatigue crack propagation. International Journal of Fatigue.2006,28 (11):1471-1478
    [130]Kobayashi H, Todoroki A, Oomura T, Sano T, Takehana T. Ultra-high-cycle fatigue properties and fracture mechanism of modified 2.25Cr-1Mo steel at elevated temperatures. International Journal of Fatigue.2006,28 (11):1633-1639
    [131]Tokaji K, Ko H-N, Nakajima M, Itoga H. Effects of humidity on crack initiation mechanism and associated S-N characteristics in very hgh strength steels. Materials Science and Engineering A.2003,345 (1):197-206
    [132]Shiozawa K, Murai M, Shimatani Y, Yoshimoto T. Transition of fatigue failure mode of Ni-Cr-Mo low-alloy steel in very high cycle regime. International Journal of Fatigue. 2010,32 (3):541-550
    [133]Zhang J W, Lu L T, Shiozawa K, Cui G D, Zhang W H. Fatigue properties of oxynitrocarburized medium carbon railway axle steel in very high cycle regime. International Journal of Fatigue.2010,32 (11):1805-1811
    [134]Shimatani Y, Shiozawa K, Nakada T, Yoshimoto T, Lu L. The effect of the residual stresses generated by surface finishing methods on the very high cycle fatigue behavior of matrix HSS. International Journal of Fatigue.2011,33 (2):122-131
    [135]闫桂玲,王弘,高庆.热处理工艺对50钢超高周疲劳性能的影响.材料热处理学报.2007,28(2):81-84
    [136]张永健,惠卫军,项金钟,董瀚,翁宇庆.晶粒尺寸对42CrMoVNb钢超高周疲劳性能的影响.金属学报.2009,45(7):880-886
    [137]Szczepanski C J, Jha S K, Larsen J M, Jones J W. Microstructural influences on very-high-cycle fatigue crack initiation in Ti-6246. Metallurgical and Materials Transactions A.2008,39 (12):2841-2851
    [138]Krupp U, Knobbe H, Christ H-J, Koster P, Fritzen C-P. The significance of microstructural barriers during fatigue of a duplex steel in the high- and very-high-cycle-fatigue (HCF/VHCF) regime. International Journal of Fatigue.2010,32 (6):914-920
    [139]Stanzl-Tschegg S E. Mechanisms of strain localization, crack initiation and fracture of polycrystalline copper in the VHCF regime. International Journal of Fatigue. B Schonbauer,32 (6):886-893
    [140]Miller K J, O'Donnell W J. The fatigue limit and its elimination. Fatigue & Fracture of Engineering Materials & Structures.1999,22 (8):545-557
    [141]Stanzl-Tschegg S E. Fracture mechanisms and fracture mechanics at ultrasonic frequencies. Fatigue & Fracture of Engineering Materials & Structures.2002,22 (8-9): 567-579
    [142]Sakai T, Sato Y, Oguma N. Characteristic S-N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue. Fatigue & Fracture of Engineering Materials & Structures.2002,25 (8-9):765-773
    [143]Pyttel B, Schwerdt D, Berger C. Very high cycle fatigue - Is there a fatigue limit? International Journal of Fatigue.2011,33 (1):49-58
    [144]Ebara R. The present situation and future problems in ultrasonic fatigue testing-Mainly reviewed on environmental effects and materials'screening International Journal of Fatigue.2006,28 (11):1465-1470
    [145]Liu Y B, Li S X, Yang Z G, Li Y D, Yu Y, Gu J L, Bai B Z, Cai G X. Thermal effect of bainite/martensite duplex-phase steel under ultrasonic fatigue testing. Journal of Materials Science.2010,45 (10):2553-2557
    [146]Mayer H, Haydn W, Schuller R, Issler S, Bacher-Hochst M. Very high cycle fatigue properties of bainitic high carbon - chromium steel under variable amplitude conditions International Journal of Fatigue.2009,31 (8-9):1300-1308
    [147]Tanaka K, Akiniwa Y. Fatigue crack propagation behavior derived from S - N data in very high cycle regime. Fatigue & Fracture of Engineering Materials & Structures.2002, 25 (8-9):775-784
    [148]Lawson L, Chen E Y, Meshii M. Near-threshold fatigue:a review. International Journal of Fatigue.1999,21 (S1):15-34
    [149]Lados D A, Apelian D, Donald J K. Fatigue crack growth mechanisms at the microstructure scale in Al-Si-Mg cast alloys:Mechanisms in the near-threshold regime. Acta Materialia.2006,54 (6):1475-1486
    [150]Fonte M D, Romeiro F, Freitas M D, Stanzl-Tschegg S E, Tschegg E K, Vasudevan A K. The effect of microstructure and environment on fatigue crack growth in 7049 aluminium alloy at negative stress ratios. International Journal of Fatigue.2003,25 (9-11):1209-1216
    [151]Lados D A, Apelian D. Relationships between microstructure and fatigue crack propagation paths in Al-Si-Mg cast alloys. Engineering Fractrue Mechanics.2008,75 (3-4):821-832
    [152]Petit J. Near-threshold fatigue crack path in Al-Zn-Mg alloys. Fatigue & Fracture of Engineering Materials & Structures.2005,28 (1-2):149-158
    [153]Liaw P K, Lea T R, Logsdon W A. Near-threshold fatigue crack growth behavior in metals. Acta Metallurgica.1983,31 (10):1581-1587
    [154]Balsone S J, Larsen J M, Maxwell D C, Jones J W. Effects of microstructure and temperature on fatigue crack growth in the TiAl alloy Ti-46.5Al-3Nb-2Cr-0.2W. Material Science and Engineering A.1995,192-193 (Part 1):457-464
    [155]Chaswal V, Sasikala G, Ray S K, Mannan S L, Raj B. Fatigue crack growth mechanism in aged 9Cr-1Mo steel:threshold and Paris regimes. Material Science and Engineering A. 2005,395 (1-2):251-264
    [156]Liaw P K, Saxena A, Swaminathan V P, Shih T T. Influence of temperature and load ratio on near-threshold fatigue crack growth behavior of CrMoV steels. in:D. Davidson, S. Suresh (Eds.) International Symposium on Fatigue Crack Growth Threshold Concepts, Philadelphia, Pennsylvania,1983, pp.205-223
    [157]Poon C, Vitale D, Singh M, Hoeppner D. Fatigue crack propagation behavior of rotor and wheel materials used in steam turbines. International Journal of Fatigue.1983,5 (2): 87-93
    [158]Kadoya Y M, R. Kawai. Development of high- and low-temperature rotor forgings for high temperature steam turbine. Journal of the Iron and Steel Institute of Japan.2001,87 (8):564-569
    [159]Tsuchiyama T, Okamura M, Miyakawa M, Matsumura K. Development and production of new HP-LP combined turbine rotor of 2CrMoNiV steel. Research and Development Kobe Steel Engineering Reports.1993,43 (3):87-90
    [160]Tanaka Y, Azuma T, Miki K. Development of steam turbine rotor forging for high temperature application. in:Proceedings of the Fourth International Conference on Advances in Materials Technology for Fossil Power Plants, Hilton Head Island, South Carolina,2005, pp.520-534
    [161]Zhu M L X F Z, Mei L B, Wang S Y. Development of High-Low-Pressure Combined Rotor Materials and Properties for the Advanced Steam Turbine. Power Engineering. 2008, (5):
    [162]Liaw P K, Saxena A, Swaminathan V P, Shih T T. Influence of temperature and load ratio on near-threshold fatigue crack growth behavior of CrMoV steels, in:S.S. David Davidson (Ed.) International Symposium on Fatigue Crack Growth Threshold Concepts, Philadelphia, Pennsylvania,1983,
    [163]Vibhor Chaswal G S, S.K. Ray, S.L. Mannan, Baldev Raj. Fatigue crack growth mechanism in aged 9Cr-1Mo steel threshold and Paris regimes. Material Science and Engineering A.2005,395 (1-2):251-264
    [164]刘庆潭50CrMoA钢界限应力强度因子幅度ΔKth的测定分析.铁道学报.1999,21(1):80-82
    [165]邢丽贤,张颖智,林吉忠.车轮钢疲劳及断裂试验研究.in:中国铁道学会铁路用钢可靠性及寿命学术研讨会,中国铁道学会,包头,1998,pp.51-56
    [166]Miller M S, Gallagher J P. An analysis of several fatigue crack growth rate description in fatigue crack measurement and data analysis. ASTM STP738.1981:340-356
    [167]徐人平,段小建,詹肇麟.理论门槛值的研究.强度与环境.1995,(4):12-16
    [168]王永廉,吴永瑞.一个适用性广泛的疲劳裂纹扩展速率表达式.航空学报.1987,8 (4):191-197
    [169]侯福均,吴祈宗.基于人工神经网络的50CrMoA钢应力强度因子幅度门槛值ΔKth的预报.中国铁道科学.2003,24(3):130-132
    [170]郑新侠,李小燕.结构钢疲劳裂纹扩展门槛值预测的新方法.西安石油学院学报(自然科学版).2003,18(3):50-54
    [171]Chen D L, Weiss B, Stickler R. Effect of stress ratio and loading condition on the fatigue threshold. International Journal of Fatigue.1992,14 (5):325-329
    [172]Forth S C, Newman.Jr J C, Forman R G. On generating fatigue crack growth thresholds. International Journal of Fatigue.2003,25 (1):9-15
    [173]Bush R W, Donald J K, Bucci R J. Pitfalls to avoid in threshold testing and its interpretation. in:Fatigue crack growth thresholds, endurance limits and design, ASTM STP 1372,2000, pp.269-284
    [174]Newman J A, Riddell W T, Piascik R S. Effects of Kmax on fatigue crack growth threshold in aluminum alloys. in:Fatigue crack growth thresholds, endurance limits and design, ASTM STP 1372,2000, pp.63-67
    [175]McEvily A J, Minakawa K. On the effect of microstructure on crack closure in the near-threshold region. in:7th International Conference on Strength of Metals and Alloys, Pergamon Press, Quebec, Canada,1986, pp.1358-1392
    [176]Lindley T, Richards C. The relevance of crack closure to fatigue crack propagation. Material Science and Engineering.1974,14 (3):281-293
    [177]Liaw P K, Saxena A, Swaminathan V P, Shih T T. Effects of load ratio and temperature on the near-threshold fatigue crack propagation behavior in a CrMoV steel. Metallurgical Transactions A.1983,14 (8):1631-1640
    [178]Ravichandran K S, Dwarakadasa E S. Effects of tempered structure on the near threshold fatigue crack growth behavior of a coarse grained high strength steel. Engineering Fracture Mechanics.1987,28 (4):435-444
    [179]Ravichandran K S, Dwarakadasa E S, Kishore R. Some considerations on the occurence of intergranular fracture during fatigue crack growth in steels. Material Science and Engineering.1986,83 (1):L11-L16
    [180]Ravichandran K S, Venkatarao H C, Dwarakadasa E S, Krishnadasnair C G. Microstructural Effects and Crack Closure during Near Threshold Fatigue Crack Propagation in a High Strength Steel. Metallurgical and Materials Transactions A.1987, 18 (6):865-876
    [181]Clark G. Fatigue at low growth rates in a maraging steel. Fatigue & Fracture of Engieering Materials & Structures.1986,9 (2):131-142
    [182]Bulloch J H. Fatigue threshold in steels-Mean stress and microstructure influences. International Journal of Pressure Vessels and Piping.1994,58 (1):103-127
    [183]Irving P E, Kurzfeld A. Measurements of intergranular failure produced during fatigue crack growth in quenched and tempered steels. Metal Science.1978,12 (11):495-502
    [184]Ritchie R O, Suresh S. Some Considerations on Fatigue Crack Closure at Near-Threshold Stress Intensities Due to Fracture Surface Morphology. Metallurgical Transactions A.1982,13 (5):937-940
    [185]Heldt J, Kaesche H. Effect of absorbed hydrogen on the microstructure in the vicinity of near-threshold fatigue cracks in low-alloy steel. in:R.S. Piascik, J.C. Newman, N.E. Dowling (Eds.) The Twenty-Seventh International Symposium on Fatigue and Fracture Mechanics, ASTM STP 1296, Williamsburg, Virginia,1997, pp.338-351
    [186]Horn R M, Ritchie R O. Mechanisms of Tempered Martensite Embrittlement in Low Alloy Steels. Metallurgical and Materials Transactions A.1978,9 (8):1039-1053
    [187]Ritchie R O. Influence of Impurity Segregation on Temper Embrittlement and on Slow Fatigue Crack Growth and Threshold Behavior in 300-M High Strength Steel. Metallurgical and Materials Transactions A.1977,8 (7):1131-1140
    [188]Prawoto Y. Designing steel microstructure based on fracture mechanics approach. Materials Science and Engineering A.2009,507 (1-2):74-86
    [189]Hans-Joachim G, Johanna S. Influence of Kmax and R on fatigue crack growth-A 3D-model. Advanced Engineering Materials.2010,12 (4):283-287
    [190]Newman.Jr J C. A crack opening stress equation for fatigue crack growth. International Journal of Fracture.1984,24 (4):R131-R135
    [191]Yamada Y, Newman.Jr J C. Crack-closure behavior of 2324-T39 aluminum alloy near-threshold conditions for high load ratio and constant Kmax tests. International Journal of Fatigue.2009,31 (11-12):1780-1787
    [192]Yamada Y, Newman.Jr J C. Crack closure under high load ratio and Kmax test conditions. Procedia Engineering.2010,2(1):71-82
    [193]Shige T, Itou S, Magoshi R, ichimura T, Kondou Y. Development of large-capacity, highly efficient welded rotor for steam turbines. Technical Review.2001,38 (1):6-11
    [194]Kang H T. Fatigue prediction of spot welded joints using equivalent structural stress. Materials & Design.2007,28 (3):837-843
    [195]Xuan F Z, Wang Z F, Tu S T. Creep finite element simulation of multilayered system with interfacial cracks. Materials & Design.2009,30 (3):563-569
    [196]Ma T J, Li Y Y, Yang S Y. Impact toughness and fracture analysis of linear friction welded Ti-6A1-4V alloy joints. Materials & Design.2009,30 (6):2128-2132
    [197]Kim Y J, Schwalbe K H. Mismatch effect on plastic yield loads in idealised weldments Ⅱ. Heat affected zone cracks. Engineering Fractrue Mechanics.2001,68 (2):183-199
    [198]Xuan F Z, Tu S T, Wang Z D. Time-dependent fracture and defect assessment of welded structures at high temperature. Journal of Pressure Vessel Technology.2006,128 (4): 556-565
    [199]Jiang W C, Gong J M, Tu S D. A comparison of brazed residual stress in plate-fin structure made of different stainless steel. Materials & Design.2009,30 (1):23-27
    [200]Kikuchi M. Ductile crack growth behavior of welded plate. International Journal of Fracture.1996,78 (3-4):347-362
    [201]Sugimura Y, Grondin L, Suresh S. Fatigue crack growth at arbitrary angles to bimaterial interfaces. Scripta Metallurgica et Materialia.1995,33 (12):2007-2012
    [202]Ritchie R O. On the interaction of cracks with bimaterial interfaces. Materials Science. 1996,32(1):107-119
    [203]He M Y, Evans A G. Crack deflection at an interface between dissimilar elastic materials:role of residual stresses. International Journal of Solids and Structures.1994, 31 (24):3443-3455
    [204]Wang B, Siegmund T. Simulation of fatigue crack growth at plastically mismatched bi-material interfaces. International Journal of Plasticity.2006,22 (9):1586-1609
    [205]Kou S. Welding metallurgy. in, John Wiley & Sons, Hoboken, New Jersey,2003, pp. 466
    [206]El-Banna E M, Nageda M S, El-Saadat M M A. Study of restoration by welding of pearlitic ductile cast iron. Materials Letters.2000,42 (5):311-320
    [207]Furuya H, aihara S, Morita K. A new proposal of HAZ toughness evaluation method-Part 1:HAZ toughness of structural steel in multilayer and single-layer weld joints. Welding Journal.2007,86 (1):1S-8S
    [208]Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research.1992,7 (6):1564-1583
    [209]Cardoso P H S, Kwietniewski C, Porto J P, Reguly A, Strohaecker T R. The influence of delta ferrite in the AISI 416 stainless steel hot workability. Material Science and Engineering A.2003,351 (1-2):1-8
    [210]Qian L, Li M, Zhou Z, Yang H, Shi X. Comparison of nano-indentation hardness to microhardness. Surface & Coatings Technology.2005,195 (2-3):264-271
    [211]Mencin P, Tyne C J V, Levy B S. A method for measuring the hardness of the surface layer on hot forging dies using a nanoindenter. Journal of Materials Engineering and Performance.2009,18 (8):1067-1072
    [212]Poondla N, Srivatsan T S, Patnaik A, Petraroli M. A study of the microstructure and hardness of two titanium alloys:Commercially pure and Ti-6Al-4V. Journal of Alloys and Compounds.2009,486 (1-2):162-167
    [213]Tabor D. The hardness and strength of metals. Journal of Inst Metals.1951,79:1-18
    [214]Moteff J, Bhargava R K, Mccullough W L. Correlation of the hot-hardnes with the tensile strength of 304 stainless steel to temperatures of 1200℃ Metallurgical and Materials Transactions A.1975,6(4):1101-1104
    [215]Cahoon J R. An improved equation relating hardness to ultimate strength. Metallurgical Transactions.1971,3:3040
    [216]Cahoon J R, Broughton W H, Kutzak A R. The determination of yield strength from hardness measurements. Metallurgical Transactions.1971,2:1979-1983
    [217]Pavlina E J, Tyne C J V. Correlation of yield strength and tensile strength with hardness for steels. Journal of Materials Engineering and Performance.2008,17 (6):888-893
    [218]Challenger K D, Moteff J. A correlation between strain hardening parameters and dislocation substructure in austenitic stainless steels. Scripta Matallurgica.1972,6 (2): 155-160
    [219]Liu H, Fujii H, Maeda M, Nogi K. Tensile fracture location characterizations of friction stir welded joints of different aluminum alloys. Journal of Materials Science and Technology.2004,20 (1):103-105
    [220]Liu H J, Fujii H, Maeda M, Nogi K. Tensile properties and fracture locations of friction-stir-welded joints of 2017-T351 aluminum alloy. Journal of Materials Processing Technology.2003,142 (3):692-696
    [221]Byun T S, Hashimoto N, Farrell K. Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels. Acta Materialia.2004,52 (13): 3889-3899
    [222]Kawagoishi N, Chen Q, Nistitani H. Fatigue strength of Inconel 718 at elevated temperatures. Fatigue & Fracture of Engineering Materials & Structures.2000,23 (3): 209-216
    [223]Uematsu Y, Akita M, Nakajima M, Tokaji K. Effect of temperature on high cycle fatigue behavior in 18Cr-2Mo ferritic stainless steel. International Journal of Fatigue. 2008,30 (4):642-648
    [224]SchUtze M. Assessment of the limits to the protective effect of oxide scales in high temperature technology, set by deformation of the substrate material. International Journal of Pressure Vessels & Piping.1991,47 (3):293-315
    [225]Zimmermann M, StOcker C, Christ H-J. On the effects of particle strengthening and temperature on the VHCF behavior at high frequency. International Journal of Fatigue. 2011,33(1):42-48
    [226]Przybyla C, Prasannavenkatesan R, Salajegheh N, L.McDowell D. Microstructure-sensitive modeling of high cycle fatigue. International Journal of Fatigue. 2010,32 (3):512-525
    [227]Li W, Sakai T, Li Q, Lu L T, Wang P. Reliability evaluation on very high cycle fatigue property of GCr15 bearing steel. International Journal of Fatigue.2010,32 (7): 1096-1107
    [228]Zhao A, Xie J, Sun C, Lei Z, Hong Y. Prediction of threshold value for FGA formation. Material Science and Engineering A.2011,528 (22-23):6872-6877
    [229]Murakami Y, Nomoto T, Ueda T. On the mechanism of fatigue failure in the superlong life regime (N>107 cycles), Part I:influence of hydrogen trapped by inclusions. Fatigue & Fracture of Engineering Materials & Structures.2000,23 (11):893-902
    [230]Zhang J W, Lu L T, Shiozawa K, Zhou W N, Zhang W H. Effect of nitrocarburizing and post-oxidation on fatigue behavior of 35CrMo alloy steel in very high cycle fatigue regime. International Journal of Fatigue.2011,33 (7):880-886
    [231]Oguma H, Nakamura T. The effect of microstructure on very high cycle fatigue properties in Ti-6Al-4V. Scripta Materialia.2010,63 (1):32-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700