用户名: 密码: 验证码:
PDMS微槽道内微加热片表面流动沸腾特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微机电技术特别是MEMS加工技术的发展为微尺度相变换热的研究提供了很大的方便。微通道或受限空间内可控微气泡的快速核化、生长和塌陷产生的驱动力已经被应用于热喷墨打印、气泡微泵、微阀以及微混合器等器件的设计中,对建造生物微分析系统(μ-TAS)和芯片实验室(Lab on a chip)起到非常重要的作用,具有广阔的应用前景。
     本文实验和理论研究了在恒定加热和脉冲加热两种条件下PDMS玻璃微槽内FC-72液体的流动沸腾特征以及光滑Pt微加热片上的气泡核化生长行为。研究发现无论是在恒定加热或者较快的脉冲加热下,光滑Pt微加热片上非常湿润液体FC-72的气泡核化都需要很高的过热度,核化在加热片中心最高温度位置处开始并且该温度最大值可以通过经典动力学成核理论进行预测。恒定加热条时铂微加热片上的沸腾曲线只存在膜态沸腾和部分过渡沸腾区域,在初始气泡形成以后沸腾可以在低于起始核化温度下继续进行。
     流动沸腾中微加热片上生长的蒸气泡会周期性脱落,在微通道内形成泡状流,弹状流和环状流等流型,在500μm宽度通道内出现了300μm宽度通道内没有出现的双气柱气泡脱落现象。气泡的脱落位置以及脱落频率随加热量增大而增大,在高过冷度下脱落频率增快,脱落位置更加靠近加热片。
     核化在脉冲加热开始后一段时间开始,在脉冲加热结束后仍然能够持续直到表面过热度低于约50oC。脉冲加热下微通道内气泡的生长特征主要可以分为:典型单气泡生长,薄蒸气膜连接气泡,极小气泡喷射以及长气泡的两倍周期生长运动等特征。在单气泡初始核化生成时候能产生一个很强的冲击波,可以应用于微制动器的设计中。气泡在核化形成初期的2ms内是惯性控制生长,其生长速率有个阻尼振荡的过程,而在2ms以后开始逐渐转入传热控制阶段,随着加热热流密度增加气泡生长速度变大,而过冷度增加以及流量的增大则对气泡生长有限制作用,流量减小能将惯性控制阶段缩短。
     结合Fluent软件和VOF两相模型,建立了一个数值模型对微通道内微加热片上的脉冲加热气泡动力学进行模拟。计算结果和实验结果比较符合,但是不能很好的描述一些特殊现象,需要发展一个更精细的模型来进行模拟。
The development of MEMS technologies has greatly facilitated the study ofmicroscale phase change and heat transfer mechanisms. The rapid controlledbubble nucleation, growth and collapse in microchannels and confined spacescan generate powerful driving forces. These forces have been used to designthermal ink-jet printers, micro-bubble pumps, micro-valves and micro-mixerdevices. These mechanisms also play very important roles in biologicalmicro-analysis systems (μ-TAS) and lab-on-a-chip devices with many possibleapplications.
     This project experimentally and theoretically studied the flow boilingcharacteristics of FC-72in PDMS-glass microchannels with constant or pulsedheating. The bubble behavior on a smooth platinum microheater was alsostudied. The study showed that high wall superheats were required fornucleation of FC-72bubbles on the smooth Pt microheater for both constantheating and rapid pulsed heating. A bubble first nucleated at the center of theheater at the maximum temperature location with the nucleation temperaturewell predicted by the classical kinetics of nucleation theory. The boiling curveon the Pt microheater for constant heating had only a film boiling region andpart of the transition boiling region. Boiling could be maintained at walltemperatures less than the nucleation temperature after an initial bubble formedon the heater.
     The growing vapor bubble on the microheater periodically departed andflowed down in the microchannel to generate bubbly flow, slug flow and annularflow in the microchannel. A special bubble departure mode with two vaporcolumns was observed in the500μm wide microchannel. The departure positionand frequency increased as the heating increased, with higher subcoolingscausing a higher departure frequencies and departures closer to the heater.
     Boiling started a short time after the heating pulse started. The boiling thencontinued after the end of the heating pulse until the surface superheat was lessthan about50.0oC. The bubble growth characteristics with pulsed heating in the microchannel can be divided into typical single bubble growth, a thin vapor filmconnected to the bubble, a very small bubble jet and an elongated bubble at theflow rates when the bubble was shed at half the frequency of the heating pulse.The rapid initial bubble growth at nucleation produced a strong shock wavewhich could be useful for the design of micro-actuators. The initial bubblegrowth was inertia control growth for about2.0ms with the growth rate thenfollowing a damped oscillation process. The bubble growth mode thentransitioned to heat transfer controlled growth.
     A3-D numerical model was developed in Fluent using the VOF two-phasemodel to simulate the bubble dynamics in the microchannel for pulsed heating.The numerical results agree reasonably well with the observations, but do notaccurately describe some of the complex special phenomena; thus, moresophisticated models are needed to accurately simulate the bubble dynamics.
引文
[1] Thome J R. Boiling in microchannels: a review of experiment and theory. Int J HeatFluid Fl,2004,25:128-139.
    [2] Basu S, Ndao S, Michna g J, et al. Flow Boiling of R134a in Circular Microtubes—PartI: Study of Heat Transfer Characteristics. Journal of Heat Transfer,2011,133.
    [3] Bassous E, Taub H, Kuhn L. Ink jet printing nozzle arrays etched in silicon. Appl PhysLett,1977,31:135-137.
    [4] Peeters E, Verdonckt-Vandebroek S. Thermal ink jet technology. Circuits and DevicesMagazine, IEEE,1997,13:19-23.
    [5] Yuan H, Oguz H, Prosperetti A. Growth and collapse of a vapor bubble in a small tube.International Journal of Heat and Mass Transfer,1999,42:3643-3657.
    [6] Tsai J H, Lin L. A thermal-bubble-actuated micronozzle-diffuser pump. Journal ofMicroelectromechanical Systems,2002,11:665-671.
    [7] Tsai J-H, Lin L. Active microfluidic mixer and gas bubble filter driven by thermalbubble micropump. Sensors and Actuators A: Physical,2002,97:665-671.
    [8] Deng P G, Lee Y K, Cheng P. Measurements of micro bubble nucleation temperaturesin DNA solutions. J Micromech Microeng,2005,15:564-574.
    [9] Meldrum D R, Holl M R. Microscale bioanalytical systems. Science,2002,297:1197-1198.
    [10] Papavasiliou A P, Pisano A P, Liepmann D. High-speed and bi-stableelectrolysis-bubble actuated gate valves. Proc. the11th International Conference onSolid State Sensors and Actuators (Transducers'01), Munich, Germany,2001;940-3.
    [11] Gregoratto I, McNeil C J, Reeks M W. Micro-devices for rapid continuous separationof suspensions for use in micro-total-analysis-systems (μTAS). P Soc Photo-Opt Ins,2007,6465:46503-46503.
    [12] West J, Becker M, Tombrink S, et al. Micro total analysis systems: Latestachievements. Anal Chem,2008,80:4403-4419.
    [13] DeVoe D L. Thermal issues in MEMS and microscale systems. Components andPackaging Technologies, IEEE Transactions on,2002,25:576-583.
    [14] Li J, Peterson G. Microscale heterogeneous boiling on smooth surfaces—from bubblenucleation to bubble dynamics. International Journal of Heat and Mass Transfer,2005,48:4316-4332.
    [15]王国栋.微通道内稳定流动沸腾的换热特性及沸腾不稳定性研究[博士]:上海交通大学,2010.
    [16] Kew P A, Cornwell K. Correlations for the prediction of boiling heat transfer insmall-diameter channels. Applied Thermal Engineering,1997,17:705-715.
    [17] Grande S G K W J. Evolution of Microchannel Flow Passages--ThermohydraulicPerformance and Fabrication Technology. Heat Transfer Eng,2003,2415.
    [18] Kandlikar S G. History, Advances, and Challenges in Liquid Flow and Flow BoilingHeat Transfer in Microchannels: A Critical Review. Journal of Heat Transfer,2012,134:034001.
    [19]张鹏,付鑫,王如竹.微通道内流动沸腾的研究进展.制冷学报,2009,30:1-7.
    [20] Peng X F, Hu H Y, Wang B X. Boiling nucleation during liquid flow in microchannels.International Journal of Heat and Mass Transfer,1998,41:101-106.
    [21] Peng X F, Liu D, Lee D J, et al. Cluster dynamics and fictitious boiling inmicrochannels. International Journal of Heat and Mass Transfer,2000,43:4259-4265.
    [22] Peng X F, Wang B X, Christopher D M. Some fundamentals of boiling inmicrogravity. Heat Transfer Science and Technology2000,2000:60-76.
    [23]刘冬,彭晓峰,王补宣.微尺度沸腾的团聚过程分析与压力扰动模型.航空动力学报,2000,15.
    [24] Shiferaw D, Huo X, Karayiannis T G, et al. Examination of heat transfer correlationsand a model for flow boiling of R134a in small diameter tubes. International Journalof Heat and Mass Transfer,2007,50:5177-5193.
    [25] Bertsch S S, Groll E A, Garimella S V. Effects of heat flux, mass flux, vapor quality,and saturation temperature on flow boiling heat transfer in microchannels. Int JMultiphas Flow,2009,35:142-154.
    [26] Muwanga R, Hassan I. A flow boiling heat transfer investigation of FC-72in amicrotube using liquid crystal thermography. Journal of Heat Transfer,2007,129:977-987.
    [27] Kuo C J, Peles Y. Local measurement of flow boiling in structured surfacemicrochannels. International Journal of Heat and Mass Transfer,2007,50:4513-4526.
    [28] Hsieh S-S, Lin C-Y. Correlation of critical heat flux and two-phase friction factor forsubcooled convective boiling in structured surface microchannels. InternationalJournal of Heat and Mass Transfer,2012,55:32-42.
    [29] Lee P C, Tseng F G, Pan C. Bubble dynamics in microchannels. Part I: singlemicrochannel. International Journal of Heat and Mass Transfer,2004,47:15.
    [30] Zhang L A, Wang E N, Goodson K E, et al. Phase change phenomena in siliconmicrochannels. International Journal of Heat and Mass Transfer,2005,48:1572-1582.
    [31] Huh C, Kim M H. An experimental investigation of flow boiling in an asymmetricallyheated rectangular microchannel. Exp Therm Fluid Sci,2006,30:775-784.
    [32] Kandlikar S G. Two-phase flow patterns, pressure drop, and heat transfer duringboiling in minichannel flow passages of compact evaporators. Heat Transfer Eng,2002,23:5-23.
    [33] Ducoulombier M, Colasson S, Bonjour J, et al. Carbon dioxide flow boiling in asingle microchannel-Part I: Pressure drops. Exp Therm Fluid Sci,2011,35:581-596.
    [34] Guodong Wang P C, Huiying Wu. Unstable and stable flow boiling in parallelmicrochannels and in a single microchannel. International Journal of Heat and MassTransfer,2007.
    [35] Edel Z J, Mukherjee A. Experimental investigation of vapor bubble growth duringflow boiling in a microchannel. Int J Multiphas Flow,2011,37:1257-1265.
    [36] Bogojevic D, Sefiane K, Walton A J, et al. Experimental investigation of non-uniformheating effect on flow boiling instabilities in a microchannel-based heat sink. Int JTherm Sci,2011,50:309-324.
    [37] Wang G D, Cheng P, Wu H Y. Further Experimental Studies on Flow BoilingInstabilities in Parallel Microchannels. MNC2007, Sanya, China,2007.
    [38] Thome J R, Dupont V, Jacobi A M. Heat transfer model for evaporation inmicrochannels. Part I: presentation of the model. International Journal of Heat andMass Transfer,2004,47:3375-3385.
    [39] Hardt S, Schilder B, Tiemann D, et al. Analysis of flow patterns emerging duringevaporation in parallel microchannels. International Journal of Heat and MassTransfer,2007,50:226-239.
    [40] Suh Y, Lee W, Son G. Bubble dynamics, flow, and heat transfer during flow boilingin parallel microchannels. Numer Heat Tr a-Appl,2008,54:390-405.
    [41] Hetsroni G, Mosyak A, Pogrebnyak E, et al. Periodic boiling in parallelmicro-channels at low vapor quality. Int J Multiphas Flow,2006,32:1141-1159.
    [42] Avedisian C T, Cavicchi R E, Tarlov M J. New technique for visualizing microboilingphenomena and its application to water pulse heated by a thin metal film. Review ofscientific instruments,2006,77:063706-063706-7.
    [43] Tsai J H, Lin L. Transient thermal bubble formation on polysilicon micro-resisters.Journal of Heat Transfer,2002,124:375-382.
    [44] Xu J L, Zhang W. Effect of pulse heating parameters on the microscale bubbledynamics at a microheater surface. International Journal of Heat and Mass Transfer,2008,51:389-396.
    [45] Deng P G, Lee Y K, Cheng P. An experimental study of heater size effect on microbubble generation. International Journal of Heat and Mass Transfer,2006,49:2535-2544.
    [46] Romera-Guereca G, Lichtenberg J, Hierlemann A, et al. Explosive vaporization inmicroenclosures. Exp Therm Fluid Sci,2006,30:829-836.
    [47] Li J, Peterson G P, Cheng P. Dynamic characteristics of transient boiling on a squareplatinum microheater under millisecond pulsed heating. International Journal of Heatand Mass Transfer,2008,51:273-282.
    [48] Yin Z, Prosperetti A, Kim J. Bubble growth on an impulsively powered microheater.International Journal of Heat and Mass Transfer,2004,47:1053-1067.
    [49] Chen T, Klausner J F, Garimella S V, et al. Subcooled boiling incipience on a highlysmooth microheater. International Journal of Heat and Mass Transfer,2006,49:4399-4406.
    [50] Kim J H, Okuyama K, Ilda Y. Allowable Repetition Frequency of Pulse Heating inMicroactuators Using Rapid Boiling (Effect of Electrical Insulation Layer beneathHeater). J Therm Sci Tech-Jpn,2006,1:20-30.
    [51] Bi J-L, Christopher D M, Lin X-P. Bubble dynamics and heat transfer under a singlebubble during nucleate pool boiling. Kung Cheng Je Wu Li Hsueh Pao/Journal ofEngineering Thermophysics,2012,33:1233-1236.
    [52] Jung J-Y, Lee J-Y, Park H-C, et al. Bubble nucleation on micro line heaters understeady or finite pulse of voltage input. International Journal of Heat and MassTransfer,2003,46:3897-3907.
    [53] Glod S, Poulikakos D, Zhao Z, et al. An investigation of microscale explosivevaporization of water on an ultrathin Pt wire. International Journal of Heat and MassTransfer,2002,45:367-379.
    [54] Martynyuk M M. Transition of Liquid-Metals into Vapor in the Process of PulseHeating by Current. Int J Thermophys,1993,14:457-470.
    [55] Thomas O C, Cavicchi R E, Tarlov M J. Effect of surface Wettability on fast transientmicroboiling behavior. Langmuir,2003,19:6168-6177.
    [56] Leung P K, Deng P, Lee Y K. Comparative study of size effect of micro bubbledynamics by sub-100microsecond and millisecond pulse heating.20061st IEEEInternational Conference on Nano/Micro Engineered and Molecular Systems, Vols1-3,2006:523-527.
    [57] Martynyuk M M. Superheating of Solid and Liquid-Metals in the Process of PulseHeating. Thermochim Acta,1992,206:55-60.
    [58] Guereca G R. Explosive vaporization in microenclosures and boiling phenomena onsubmicron thin film strip heaters: Swiss Federal Institute of Technology Zurich,2007.
    [59] Cavicchi R E, Avedisian C T. Bubble nucleation and growth anomaly for ahydrophilic microheater attributed to metastable nanobubbles. Phys Rev Lett,2007,98:124501.
    [60] Yaddanapudi N, Kim J. Single bubble heat transfer in saturated pool boiling of FC-72.Multiphase Science and Technology,2000,12.
    [61] Chen T L, Chung J N. An experimental study of miniature-scale pool boiling. Journalof Heat Transfer,2003,125:1074-1086.
    [62] Zhang K, Jian A, Zhang X, et al. Laser-induced thermal bubbles for microfluidicapplications. Lab on a Chip,2011,11:1389-1395.
    [63] Pérez-Gutiérrez F, Evans R, Camacho-Lopez S, et al. Short and ultrashort laser pulseinduced bubbles on transparent and scattering tissue models. Proc. SPIE,2007;64350V.
    [64] Deng P G, Lee Y K, Cheng P. Design and characterization of a micro single bubbleactuator. Boston Transducers'03: Digest of Technical Papers, Vols1and2,2003:647-650.
    [65] Lin L, Pisano A, Carey V. Thermal bubble formation on polysilicon micro resistors.Journal of Heat Transfer,1998,120:735-742.
    [66] Zhao Z, Glod S, Poulikakos D. Pressure and power generation during explosivevaporization on a thin-film microheater. International Journal of Heat and MassTransfer,2000,43:281-296.
    [67] Deng P G, Lee Y K, Cheng P. The growth and collapse of a micro-bubble under pulseheating. International Journal of Heat and Mass Transfer,2003,46:4041-4050.
    [68] Xu J, Gan Y, Zhang D, et al. Microscale boiling heat transfer in a micro-timescale athigh heat fluxes. J Micromech Microeng,2005,15:362-376.
    [69] Xu L, Xu J L, Wang B, et al. Pool boiling heat transfer on the microheater surfacewith and without nanoparticles by pulse heating. International Journal of Heat andMass Transfer,2011,54:3309-3322.
    [70]淮秀兰,张兴,刘登瀛,等.脉冲激光加热下超急速爆发沸腾现象观测.自然科学进展,2003,13:688-692.
    [71] Chen G, Cheng P, Quan X. A transient model for heterogeneous nucleation underpulse heating in pool boiling. International Journal of Heat and Mass Transfer,2012,55:3893-3899.
    [72] Ko ar A, Kuo C-J, Peles Y. Boiling heat transfer in rectangular microchannels withreentrant cavities. International Journal of Heat and Mass Transfer,2005,48:4867-4886.
    [73]赵钧.喷墨打印技术展望以及在中国开展研发制造之探讨.中国机械工程,2005,16.
    [74] Asai A, Hara T, Endo I. One-dimensional model of bubble growth and liquid flow inbubble jet printers. Jpn J Appl Phys,1987,26:1794-1801.
    [75] Asai A. Application of the nucleation theory to the design of bubble jet printers. Jpn JAppl Phys,1989,28:909-915.
    [76] Asai A. Three-dimensional calculation of bubble growth and drop ejection in a bubblejet printer. Journal of Fluids Engineering,1992,114:638-638.
    [77] Lindemann T, Sassano D, Bellone A, et al. Three-dimensional CFD-simulation of athermal bubble jet printhead. NSTI Nanotechnology Conference and Trade Show,2004;227-30.
    [78] Carey V P. Thermodynamic analysis of the intrinsic stability of superheated liquid ina micromechanical actuator with elastic walls. Microscale ThermophysicalEngineering,2000,4:109-123.
    [79] Hong Y, Ashgriz N, Andrews J. Experimental study of bubble dynamics on a microheater induced by pulse heating. Journal of Heat Transfer,2004,126:259-271.
    [80] Yushik H, Ashgriz N, Andrews J, et al. Numerical Simulation of growth and collapseof a bubble induced by a pulsed microheater. J Microelectromech S,2004,13:857-869.
    [81] Escobar-Vargas S, Fabris D, Gonzalez J E, et al. Bubble growth characterizationduring fast boiling in an enclosed geometry. International Journal of Heat and MassTransfer,2009,52:5102-5112.
    [82] S E V. Microbubble efficiency during fast boiling growth.2007,2:6.
    [83] Okuyama K, Tsukahara S, Morita N, et al. Transient behavior of boiling bubblesgenerated on the small heater of a thermal ink jet printhead. Exp Therm Fluid Sci,2004,28:825-834.
    [84] Chen G, Quan X J, Cheng P. Effects of surfactant additive on flow boiling over amicroheater under pulse heating. International Journal of Heat and Mass Transfer,2010,53:1586-1590.
    [85] Cheng P, Wu H Y, Hong F J. Phase-change heat transfer in microsystems. J HeatTrans-T Asme,2007,129:101-108.
    [86] Chen G, Quan X J, Cheng P. Effects of pulse width and mass flux on microscale flowboiling under pulse heating. Int Commun Heat Mass,2010,37:792-795.
    [87] Lin X-P, Christopher D M, Wang H-J, et al. Experimental study of the bubbledynamics in a microchannel with localized heating. Kung Cheng Je Wu Li HsuehPao/Journal of Engineering Thermophysics,2011,32:1228-1230.
    [88] Wang H, Lin X, Christopher D M. Nucleate boiling bubble dynamics in a PDMSmicrochannel with a single nucleation site. ASME/JSME20118th ThermalEngineering Joint Conference, AJTEC2011, March13,2011-March17,2011,Honolulu, HI, United states,2011; American Society of Mechanical Engineers, HeatTransfer Division; Japan Soc. Mech. Eng., Therm. Eng. Div.
    [89] Lu Y Y, Wang H, Li Y H. Bubble Dynamics during Boiling in Polydimethylsiloxane(PDMS) Microchannels with Wire Heater. MNHMT2009, Vol2,2010:17-23.
    [90] Chen G, Quan X-j, Cheng P. Flow Boiling on a Microscale Surface under PulseHeating. Journal of Shanghai Jiaotong University,2010,1:025.
    [91] Chen G, Cheng P. Nucleate and film boiling on a microheater under pulse heating in amicrochannel. Int Commun Heat Mass,2009,36:391-396.
    [92] Lee H J, Browne E A, Peles Y, et al. The Onset of Nucleate Boiling in aMicro-Channel Subjected to a Pulsed Heat Flux. ASME Conference Proceedings,2011,2011:55-62.
    [93]李倩,刘国华,徐进良,等.流动沸腾不稳定性对加热膜上微汽泡的影响.化工学报,2009:1156-1161.
    [94]李倩,唐琼辉,张伟,等.脉冲加热下流动沸腾的气泡动力学.清华大学学报:自然科学版,2009:269-272.
    [95]李倩,刘国华,徐进良,等.微气泡在矩形铂膜加热器上的控制性生长及振动.微细加工技术,2008.
    [96]董涛,杨朝初,毕勤成,等.微机电系统中的矩形通道内微气泡控制生长.化工学报,2007,58:54-60.
    [97] Furzeland R. A comparative study of numerical methods for moving boundaryproblems. IMA Journal of Applied Mathematics,1980,26:411-429.
    [98] Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of freeboundaries. Journal of Computational Physics,1981,39:201-225.
    [99] Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: algorithmsbased on Hamilton-Jacobi formulations. Journal of Computational Physics,1988,79:12-49.
    [100] Gunstensen A K, Rothman D H, Zaleski S, et al. Lattice Boltzmann model ofimmiscible fluids. Phys Rev A,1991,43:4320.
    [101]叶政钦,刘启鹏,李星红,等.复杂两相流中界面追踪方法——VOSET的性能分析.化工学报,2011:1524-1530.
    [102]袁德文.窄流道内高过冷流动沸腾条件下的汽泡演化特性及机制:重庆大学,2010.
    [103]高一娟.微通道内两相流界面追踪的数值模拟:天津大学,2009.
    [104]黄筱云.自由表面追踪方法理论研究及数值模拟[硕士]:天津大学,2005.
    [105] Gupta R, Fletcher D F, Haynes B S. CFD modelling of flow and heat transfer in theTaylor flow regime. Chemical Engineering Science,2010,65:2094-2107.
    [106] Son G, Dhir V, Ramanujapu N. Dynamics and heat transfer associated with a singlebubble during nucleate boiling on a horizontal surface. Journal of Heat Transfer,1999,121:623-631.
    [107] Fei K, Chen T S, Hong C W. Direct methanol fuel cell bubble transport simulationsvia thermal lattice Boltzmann and volume of fluid methods. Journal of Power Sources,2010,195:1940-1945.
    [108] Ajaev V S, Homsy G. Mathematical modeling of constrained vapor bubbles.2003.
    [109]田勇,彭晓峰,王补宣.小管道内汽泡生长过程特性.工程热物理学报,2002,23:470-472.
    [110] Fogg D W, Goodson K E. Bubble-induced water hammer and cavitation inmicrochannel flow boiling. Journal of Heat Transfer,2009,131:121006.
    [111] Gedupudi S, Kenning D, Karayiannis T.1-D Modelling of Pressure Fluctuations dueto Confined Bubble Growth During Flow Boiling in a Microchannel.2nd Micro andNano Flows Conference West London, UK,1-2September,2009.
    [112] Gedupudi S, Zu Y, Karayiannis T, et al. Confined bubble growth during flow boilingin a mini/micro-channel of rectangular cross-section Part I: Experiments and1-Dmodelling. Int J Therm Sci,2011,50:250-266.
    [113] Mukherjee A, Kandlikar S G. Numerical simulation of growth of a vapor bubbleduring flow boiling of water in a microchannel. Microfluid Nanofluid,2005,1:137-145.
    [114] Mukherjee A, Kandlikar S G, Edel Z J. Numerical study of bubble growth and wallheat transfer during flow boiling in a microchannel. International Journal of Heat andMass Transfer,2011,54:3702-3718.
    [115] Lee W, Son G. Bubble Dynamics and Heat Transfer During Nucleate Boiling in aMicrochannel. Numerical Heat Transfer, Part A: Applications,2008,53:1074-1090.
    [116]杨朝初,董涛,毕勤成,等.研究论文微小有限空间内微气泡控制生长的界面追踪与数值模拟.化工学报,2007,58.
    [117] Son G, Dhir V K. Numerical simulation of nucleate boiling on a horizontal surface athigh heat fluxes. International Journal of Heat and Mass Transfer,2008,51:2566-2582.
    [118] Zu Y Q, Yan Y Y. A Numerical Study of Quasi-Nucleate Boiling in Mini-and MicroChannels. ASME Conference Proceedings,2008,2008:585-591.
    [119] Zu Y Q, Yan Y Y, Gedupudi S, et al. Confined bubble growth during flow boiling ina mini-/micro-channel of rectangular cross-section part II: Approximate3-Dnumerical simulation. Int J Therm Sci,2011,50:267-273.
    [120]付鑫.微细通道内液氮流动沸腾热物理特性与机理的可视化研究[博士]:上海交通大学,2011.
    [121] Christopher D M, Lin X. Bubble growth during nucleate boiling in microchannels.201014th International Heat Transfer Conference, IHTC14, August8,2010-August13,2010, Washington, DC, United states,2010;453-461.
    [122] Kotake S, Glass I I. Flows with nucleation and condensation. Progress in AerospaceSciences,1979,19:129-196.
    [123] Zhang W, Xu J, Thome J R. Periodic bubble emission and appearance of an orderedbubble sequence (train) during condensation in a single microchannel. InternationalJournal of Heat and Mass Transfer,2008,51:3420-3433.
    [124] Bohacek J. Surface Tension Model for High Viscosity Ratios Implemented in VOFModel. Annual Conference on Liquid Atomization and Spray Systems, Brono, CzechRepublic,2010.
    [125] Zhuan R, Wang W. Simulation on nucleate boiling in micro-channel. InternationalJournal of Heat and Mass Transfer,2010,53:502-512.
    [126] Zhuan R, Wang W. Simulation on Nucleate Boiling and Frictional Pressure Drop inMicrochannel.2008.
    [127] Carey V P. Liquid-vapor phase-change phenomena. NY (United States): Hemisphere,1992.
    [128] Mikic B, Rohsenow W, Griffith P. On bubble growth rates. International Journal ofHeat and Mass Transfer,1970,13:657-666.
    [129] Cooper M, Lloyd A. The microlayer in nucleate pool boiling. International Journalof Heat and Mass Transfer,1969,12:895-913.
    [130] Demiray F, Kim J. Microscale heat transfer measurements during pool boiling ofFC-72: effect of subcooling. International journal of Heat and Mass Transfer,2004,47:3257-3268.
    [131] Garimella S. Condensation flow mechanisms in microchannels: Basis for prossuredrop and heat transfer models. Heat Transfer Eng,2004,25:13.
    [132]唐经文,刘彬武,刘朝,等.微通道中水蒸气凝结过程流型变化的分子动力学研究.工程热物理学报,2009,30:927-930.
    [133] Médéric B, Miscevic M, Platel V, et al. Experimental study of flow characteristicsduring condensation in narrow channels: the influence of the diameter channel onstructure patterns. Superlattices and Microstructures,2004,35:573-586.
    [134]沈超群,陈永平,施明恒.疏水微通道内流动冷凝流型实验研究.工程热物理学报,2013,34:3.
    [135] Wu J, Shi M, Chen Y, et al. Visualization study of steam condensation in widerectangular silicon microchannels. Int J Therm Sci,2010,49:922-930.
    [136] Chen Y, Wu R, Shi M, et al. Visualization study of steam condensation in triangularmicrochannels. International Journal of Heat and Mass Transfer,2009,52:5122-5129.
    [137] Wu H Y, Cheng P. Condensation flow patterns in silicon microchannels.International Journal of Heat and Mass Transfer,2005,48:12.
    [138] Liu T Y, Li P L, Liu C W, et al. Boiling flow characteristics in microchannels withvery hydrophobic surface to super-hydrophilic surface. International Journal of Heatand Mass Transfer,2011,54:126-134.
    [139]蔚萌萌,吴慧英,全晓军,等.硅微通道凝结相变过程中的喷射流现象与分析. JEng Thermophys-Rus,2007,28:3.
    [140] Quan X J, Cheng P. Transition from annular flow to plug/slug flow in condensationof steam in microchannels. Int J Heat Mass Transfer,2008,51:10.
    [141]李鑫,陈永平,吴嘉峰,等.宽矩形硅微通道中流动冷凝的流型. CIESC Journal,2009,60:7.
    [142] Zhang W, Xu J, Liu G. Multi-channel effect of condensation flow in a microtriple-channel condenser. Int J Multiphas Flow,2008,34:1175-1184.
    [143] Fang C, David M, Wang F-m, et al. Influence of film thickness and cross-sectionalgeometry on hydrophilic microchannel condensation. Int J Multiphas Flow,2010,36:608-619.
    [144] Romera-Guereca G, Choi T, Poulikakos D. Explosive vaporization and microbubbleoscillations on submicron width thin film strip heaters. International Journal of Heatand Mass Transfer,2008,51:4427-4438.
    [145] Holman J P. Experimental methods for engineers. Boston: McGraw-Hill,2001.
    [146] Nukiyama S. The maximum and minimum values of the heat Q transmitted frommetal to boiling water under atmospheric pressure. International Journal of Heat andMass Transfer,1966,9:1419-1433.
    [147]杨世铭,传热学.传热学基础:高等教育出版社,1991.
    [148] Chai L H, Shoji M. Boiling curves–bifurcation and catastrophe. InternationalJournal of Heat and Mass Transfer,2001,44:4175-4179.
    [149] Ghiaasiaan S M. Two-Phase Flow, Boiling, and Condensation: In Conventional andMiniature Systems: Cambridge University Press,2007.
    [150] Bloch G, Schmitt D, Sattelmayer T. Influence of turbulence induced by perforatedplates on heat transfer adn critical heat in subcooled flow boiling. InterdisciplinaryTransport Phenomena VII, Dresden, Germany,2011.
    [151]林瑞泰.沸腾换热:科学出版社,1988.
    [152] Kandlikar S G. Fundamental issues related to flow boiling in minichannels andmicrochannels. Exp Therm Fluid Sci,2002,26:389-407.
    [153] Wu H, Cheng P. Visualization and measurements of periodic boiling in siliconmicrochannels. International Journal of Heat and Mass Transfer,2003,46:2603-2614.
    [154] Blander M, Katz J L. Bubble nucleation in liquids. AICHE J,1975,21:833-848.
    [155] Asai A. Three-dimensional calculation of bubble growth and drop ejection in abubble jet printer. Transactions of the ASME,1992,114:638-641.
    [156] Chan S C, Bryant J T, Spicer L D, et al. Energy transfer in thermal methylisocyanide isomerization. The Journal of Physical Chemistry,1970,74:2058-2064.
    [157] Brackbill J, Kothe D B, Zemach C. A continuum method for modeling surfacetension. Journal of Computational Physics,1992,100:335-354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700