用户名: 密码: 验证码:
模架集成式粉末精密压制成形设备的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在粉末冶金生产实践中,装备水平是制约产品密度和精度的重要因素。针对目前国内粉末成形装备中存在的结构复杂、体积较大,设备成本较高等不足之处;本文提出的研究目标是:研制一种粉末精密成形专用设备,集成上二下三模架,通过集成的油缸驱动,结合闭环控制,能成形高精度、高密度且密度分布均匀的复杂粉末冶金零件。
     本文为研制出新型粉末精密成形设备提出了集成模架设计方案,它实现压机与模架集成化设计,使得设备结构简单,调试方便,能最大限度发挥粉末成形专用设备的特点,提高成形精度,降低设备价格。针对模架集成式粉末成形设备设计,首先对粉末压制过程中粉末的本构模型进行力学建模,提出一种更符合实验结果的的粉末材料流动应力模型,获得压制过程的载荷;并以此为基础,通过数值模拟方法,研究在典型粉末冶金零件的压制成形过程中,压制载荷对粉末精密成形设备的影响,实现对设备结构设计方案校核;并针对模架集成式粉末精密成形设备的特点设计制造液压系统,综合压机本体和液压系统设计制造配套的控制系统,编制控制软件,并实现了样机研制,并取得以下研究成果:
     首先要取得压制过程设备的载荷,通过对粉末压制过程中粉末力学模型进行研究,推导出椭球形粉末屈服准则,以实现粉末压制过程的数值模拟,分别模拟计算粉末压制过程的载荷-行程曲线,通过实验和模拟的载荷-行程曲线的对比,分析粉末压制过程中流动应力的变化。结合粉末进行压制实验,对结果进行分析、整理,考虑了Doraivelu的流动应力模型对δ(ρ)的量纲分析,提出用于模架集成式粉末成形设备设计的流动应力模型。
     采用该模型模拟圆柱试样的压制过程,计算粉末压制的载荷-行程曲线,实验结果表明,该模型更贴近粉末力学行为。采用该模型计算粉末压坯的相对密度分布,与实验值比较,表明该模型模拟的结果较为可靠。采用上述流动应力模型,模拟了典型零件的粉末压制过程,为下一步模架集成式粉末成形设备成形加载提供基础数据。
     基于多体动力学数值模拟方法,建立了模架集成式粉末成形设备整机接触分析的有限元计算模型,进行了粉末成形设备整机结构强度与刚度分析,得出了整机及其各子结构的变形和应力分布云图,从变形云图中可以得出,各个模板的最大变形挠度均在安全范围之内。将各子结构的最大应力值与其材料的屈服极限进行比较后,可知各零件仍处于弹性变形范围之内,没有发生屈服;计算结果对于结构优化设计具有理论指导作用。
     对模架集成式粉末成形设备进行模态分析,得到各阶固有频率及对应的固有振型。提取前10阶固有频率及对应的固有振型。设备模态分析计算结果表明,设备的各阶模态频率之间没有重叠,不会产生共振,各阶模态的变形趋势小;从计算结果来看,可以看出整机的固有频率对整机振动的影响,显示出了整机各部分结构振动的强弱分布以及抗振薄弱区,为减少模架集成式粉末成形设备振动和噪声提供了可靠的依据,为成形设备结构动力学优化设计提供了必要的依据。
     对模架集成式粉末成形设备的液压及控制系统进行研究,液压传动回路中使用插装阀回路、电液比例阀,与光栅尺、压力传感器构成控制回路,实现每个冲头都能独立进行精确的连续轨迹控制,在压制各台面之间高度差别大的多台面零件时,能够使各冲头在压制过程中保持近乎一致的高度变化速率,以较高的工作效率和较高的成形精度压制出密度均匀的粉末零件。
     成功研制了模架集成式粉末成形设备样机,并成功实现典型零件加工试制,设备满足设计要求,所提出的用于模架与粉末成形设备相集成的设计方案改变传统设备的结构,能最大限度发挥粉末成形专用设备的特点,并形成自主知识产权。该设备的模架由对称分布的集成油缸驱动,独立控制多个模冲实现上二、下三多台面复杂零件的压制。采用光栅尺、传感器和液压系统组合,检测模冲位置和压力,能进行精确闭环控制,设备精度达到±0.03mm。
In the Powder Metallurgy (P/M) production, P/M equipments are vital important indetermining the formed P/M parts’ precision and density. Domestic produced P/Mequipment now is large, complex and expensive, so an advanced P/M precisionforming equipment is designed, the new equipment have two upper and three lowermulti-plate mold base, drived and closed-loop controlled by integrated cylinder, thehigh-precision, high-density, uniform density P/M complicated production can beproduced.
     The integrated mold base P/M precision forming equipment is developed. Due tothe integrated mold base structure, the equipment can be specialized in P/Mproduction, which makes it simpler, cheaper and easier to debug, furthermore theformed parts are more precise. To ground the design of integrated mold base in reality,the constitutive model accurately describing the specific deformation behavior of thepowder compacted in the equipment is established, in which the flow stress relationfits experimental results better is used, then numerical simulation m odels of the P/Mparts’ forming process and the whole equipment’s simultaneous activity areestablished, by which the influence of equipment structure, parts structure andforming process on equipment are analyzed, and the overall design plan is checkedthen. Electrohydraulic proportional control system of equipment is studied, thecontrol software is programmed considering the specific characteristics of the pressesand their hydraulic system used in the equipment, the prototype is successfullydeveloped, related research results achieved are listed as follows.
     By numerical simulation method based on the ellipsoidal yield criterion, thepowder’s mechanical behaviors in the compacting process are studied, through thecomparison of load-stroke curve of model with that of experiments, the change of thepowder’s flow stress in the whole compacting process is analyzed. The powdercompacting experiments with different apparent density are carried out, theexperimental results are analyzed and arranged, combining with the dimensionalanalysis of the Doraivelu’s flow stress model, the flow stress model δ(ρ)which canbetter apply to the integrated mold base P/M precision forming equipment.
     The compacting process of the powder cylindrical specimens is analyzed by themodel established, the load-stroke curves of model agrees with that of experiments quite well, which means that the model is better in describing the powder’smechanical behaviors in the compacting process. The relative density distribution ofmodel is compared with that of experiments and they agree with each other quite welltoo, which supports the conclusion that present model is better than the past models.Based on the model established, the numerical simulation of the compacting processof some classical parts are carried out systematically, which supply the design ofintegrated mold base P/M precision forming equipment with a theoretical basis.
     Using multibody dynamics numerical simulation method, finite element model ofthe entire equipment is established, which can be used to analyze the contact statusbetween every equipment’s composing parts, also the deformation, stress distributionof all composing parts can be seen from the nephograms given by the model, whichshows that the deflection of mold plates area are within the safe levels. Compare themaximum stress of each composing parts with its yield limit, it can be seen that allparts are in the elastic limits, no yield behaviors are exhibited. The simulated resultsprovide the optimization design of equipment with a scientific basis.
     The modal analysis of the equipment is performed, every natural frequencies andcorresponding vibration modes can then be predicted, and the first to the tenth ordernatural frequencies are derived. The modal analysis shows that all natural frequenciesof the equipment have no overlap with each other, no resonance occurs and thedeformation tendency is quite small. From the vibration shape in every naturalfrequency calculated by modal analysis, the vibration amplitude distribution and theanti-vibration weak area are displayed, the study provides a reliable basis onsuppressing the vibration and noise of the entire equipment, and also providesnecessary a theoretical basis for the structure dynamic optimization of the entireequipment.
     The key technologies being proposed and implemented in the equipment includesthe cartridge valve circuit, electrical and hydraulic proportional valve and the gratingscale used in the hydraulic transmission system, accurate and independe nt continuouspath control to every punch through combination control by different sensors,assurance of height change rate’s uniformity of the mould’s pressing plane whencompacting multi-plane P/M parts with big height differences, and then compactinghigh-precision, high-uniformity density P/M parts with higher level of productivityand quality.
     The equipment successfully developed and the integration of the mold base structure with the P/M forming equipment, with independent intellectual propertyrights, utterly change the traditional P/M equipment’s structure, which makes itsimple, easy to debug and can make best of the characteristics of integrated equipment.The mold base is driven by symmetric integrated hydro-cylinder with theindependently control of all the presses, then the compacting of P/M part with twoupper step faces and three lower step faces are achieved. Using the grating scale,sensors and the hydraulic system, the location and pressure of the presses can beaccurately closed-loop controlled, the attainable precision of the equipment is±0.03mm.
引文
[1]邹志强,黄伯云,杨兵.粉末冶金在国民经济和国防建设中的作用[J].粉末冶金材料科学与工程,1997,6:107-113
    [2]黄培云.粉末冶金原理(第2版)[M].北京:冶金工业出版社.2004.3
    [3]邹志强,曲选辉,黄伯云.国外粉末冶金的最新进展(从全球性国际会议看发展趋势)[J].粉末冶金技术,1997,15(1):66-70
    [4]韩凤麟.2002年中国粉末冶金零件工业进展[J].粉末冶金工业,2003,13(6):23-26
    [5]韩凤麟.中国粉末冶金汽车零件生产现状和市场展望[J].现代零部件,2004,(5):22-25
    [6] Richard Felton. A new spin on hard materials [J].Metal Powder Report2003,(2):16-23.
    [7]李元元,肖志瑜,倪东惠等.温压成形技术的研究进展[J].华南理工大学学报(自然科学版),2002,30(11):15-20.
    [8] PeterK. Johnson. P/M on the move-2003[J]. The International Journal of PowderMetallurgy,2003,39(3):21-36.
    [9]刘文胜,马运柱,黄伯云等.粉末冶金新技术与新装备[J].矿冶工程,2007(10):57-66
    [10]陈振华.现代粉末冶金技术[M],北京:化学工业出版社,2007:322
    [11] Rainer Link, Andreas Zabel. Adapter system boosts Mannesmamm's presses[J]. MetalPowder Report1994;49(10):841-842
    [12]董建东,熊晓红,黄树槐.粉末冶金压机的应用与进展[J].粉末冶金工业1998;8(2):29-31.
    [13]高红云.金属粉末流动温压的成形装置设计与成形过程基础理论研究[D].广州:华南理工大学,2009
    [14]黄伯云,易健宏.现代粉末冶金材料和技术发展现状(二)[J].上海金属,2007,9(4):1-5
    [15]张建国,冯湘.粉末冶金成形新技术综述[J].济源职业技术学院学报,2006,5(1):27-29
    [16]董建东,熊晓红,黄树槐.国内外粉末冶金压力机的研究与应用[J].锻压机械,1998,4:3-4
    [17]田立红,于荣华,李习明等.粉末液压机自动送料装置的数控系统(Z).《第十二届全国塑性工程学术年会第四届全球华人塑性加工技术研讨会论文集》,2011:158-161
    [18] Norbert Nies. Mannesmann Demag AG. Die Filling and Powder Transfer in PowderCompacting(C).1996PM World Congress. Washington,1996:241-246
    [19]罗鸣.先进的压制技术与具有智能的德国柯美佳压机(KOMAGE)[J].粉末冶金工业,1995:259-263
    [20] DORST INFO LINE[OL]. http://www.dorst.de/dorst_seite/index-chi.html.
    [21] SERVO-CONTROLLED MOTORIZED FILLER[OL].http://www.dorst.de/dorst_seite/index-chi.html.
    [22]罗宗强,刘华,周玉山.粉末冶金压力机的发展现状与展望[J].机械工艺师,2000,241(10):56-57
    [23] William R. Gasbarre.粉末冶金自动压机计算机数据处理控制系统[J].孙绍周,译.粉末冶金工业,1994,(22):148-150
    [24]郁建明,姜建国,陆汝恒.粉末冶金结构零件常用压形方法与设备选择[J].粉末冶金工业,1994,(19):19-23
    [25]何灵敏,王劲松.利用压机回程力脱模的自动精整压机系统的开发[J].粉末冶金工业,2003,13(5):25-28
    [26]熊晓红,卢怀亮,黄树槐.智能型粉末成形液压机的研究[J].华中理工大学学报,1998,26(8):38-40
    [27]李响.粉末制品成形液压机的设计[J].锻压装备与制造技术,2012,(5):19-23
    [28]天津市锻压机床厂.中小型液压机设计与计算-主机的设计与计算[M].天津:天津人民出版社,1977:81-91
    [29]南通国龙YGL-79Z系列全自动粉末制品液压机[OL].http://www.ntpress.com/product4.htm.
    [30]董建东,熊晓红,黄树槐.粉末成形压力机的计算数字控制[J].粉末冶金工业1998,8(5):21-24.
    [31]董建东,熊晓红,黄树槐.粉末冶金成形压力机CNC系统中的统计过程控制技术研究[J].粉末冶金工业1998,8(6):40-44.
    [32] PM Modnet Computer Modelling Group. Comparison of computer models representingpowder compaction process[J]. Powder Metallurgy,1999,42:301-311
    [33]李健.钼粉末温压成形过程的有限元数值模拟研究[D].西安:西北工业大学,2007.
    [34]沈小燕,粉末冶金件表面塑性变形强化规律的研究[D].武汉:武汉理工大学,2010.
    [35]宋平.铁基粉末压制成形数值模拟研究[D].合肥:合肥工艺大学,2008.
    [36]焦明华.粉末冶金压制成形数值模拟研究进展[J].金属功能材料,2007,14(5):28-32.
    [37]王德广.金属粉末高致密化成形及其数值模拟研究[D].合肥:合肥工业大学,2010.
    [38] Ismail Aydm, Brain J. Briscoe, Kenan Y. Sanliturk. Density distributions during thecompaction of alumina powders: A compaction of a computational prediction withexperiment[J]. Computational Materials Science,1994,3:55-68
    [39] D. C. Drucker, W. Prager. Soil Mechanics and Plastic Analysis or Limit Design[J]. Quart.Appl. Math.1952,10:157-165
    [40] D.C. Drucker, R.E. Gibson, D.J. Henkel. Soil Mechanics and Workhardening theories ofplasticity[M]. Trans.1953, ASCE122:338-346
    [41] N.P.Suh, A yield criterion for plastic frictional, work-hardening granular materials[J].International Jounal of Powder Metallurgy, Vol.5.No.1,1969:69-78.
    [42] I.S.Sandler, F.L.Dimaggio, and G.Y. Baladi. Generalized Cap Model for GeologicalMaterials[J]. J.of the Engineering Mechanics Division, ASCE,1976, Vol.102.No.GT7:683-699.
    [43] D.V. Tran, R.W. Lewis, D.T. Gethin, etc. Numerical modeling of powder compactionprocesses: displacement based finite element metheod[J]. Powder Metallurgy,1993,36(4):257-263.
    [44] R.J. Green. A plasticity theory for porous solids[M]. Int. J. mech. Sci. Pergamon Press.1972,14:215-224
    [45] H.A. Kuhn, C.L. Downey. Deformation characteristics and plasticity theory of sinteredpowder materials[J]. International Journal of Powder Metallurgy,1971,7(1):15-25
    [46] Shima Susumu, Oyane M. Plasticity theory for porous metallurgy[J]. InternationalJournal of Mechanical Sciences,1976,18(6):285-291
    [47] Moriya Oyane, Susumu Shima. Theory of Plasticity for Porous Metals[M]. Bulletin ofthe JSME,1973,16(99):1254-1262
    [48] S.M. Doraivelu, H.L. Gegel, J.S. Gunasekera, J.C. Malas, J.T. Morgan, J.F. Thomas, Jr.A new yield function for compressible P/M materials[J]. International Journal of MechanicalSciences,1984,26:527-535
    [49] N.A. Fleck, L.T. Kuhn, R.M. McMeeking. Yield of metal powder bonded by isolatedcontacts[J]. Journal of the Mechanics and Physics of Solids,1992,40:1139-1162
    [50] Pia Redanz. Numerical modelling of cold compaction of metal powder[J]. InternationalJournal of Mechanical Sciences,1998,40(11):1175-1189
    [51] Pia Redanz. Numerical modeling of the powder compaction of a cup[J]. Eur. J. Mech.A/Solids1999,18:399-413
    [52] Pia Redanz, Viggo Tvergaard. Analysis of shear band instabilities in compaction ofpowders[J]. International Journal of Solids and Structures,2003,40:1853-1864
    [53] Pia Redanz. A study of stresses in powder compacted components during and afterejection[J]. International Journal of Solids and Structures,2001,38:759-775
    [54]汪俊,罗思东,李从心.金属粉末零件压制过程有限元模拟的研究[J].中国机械工程,1997,8(4):40-43
    [55]汪俊,李从心,阮雪榆.粉末金属压制过程数值模拟建模方法[J].机械科学与技术,2000,19(3):436-438
    [56]汪俊.金属粉末体压制过程的计算机模拟[D].武汉:华中理工大学,1997
    [57]汪俊,李从心.金属粉末体压制成形过程模型的研究[J].锻压机械,1996:41-43
    [58] Xue-kun Sun. Analysis of cold compaction densification behavior of metal powders[J].Materials Science and Engineering,1999,A267:43-49
    [59]贺峻,康永林,任学平.粉末构件CIP成形过程的有限元数值模拟[J].材料科学与工艺,1999,7:186-189
    [60]贺峻,康永林,任学平.数值模拟在陶瓷粉末材料冷等静压过程中的应用[J].材料科学与工艺,2002,10(1):97-99
    [61]贺峻,康永林,任学平.陶瓷粉末冷等静压成形密度缺陷模拟分析[J].研究与开发,2001,19(6):339-342
    [62]刘心宇,张继忠,占美燕.粉末体成形的有限元数值模拟[J].中南工业大学学报,1999,30(3):279-282
    [63]任学平,康永林.粉末塑性加工原理及其应用[M].北京:冶金工业出版社,1998:181-192
    [64]任学平.粉末体的屈服准则[J].粉末冶金技术,1992,10(1):8-10
    [65]任学平,侯红亮,康永林等.可压缩材料平面应变滑移线应力方程的两种推证方法[J].塑性工程学报,1999,6(2):31-36
    [66]华林,赵仲治.可压缩材料平面应变三角上限元研究[J].武汉工学院学报,1994:45-48
    [67]华林,彭颖川,赵仲治.粉末烧结材料镦粗变形实验研究[J].汽车研究与开发,1999:53-54
    [68]华林,毛华杰,赵仲治.粉末冶金锻造变形力和密度计算[J].粉末冶金工业,2000,10(1):32-35
    [69]卫原平,阮雪榆.粉末烧结材料塑性变形过程的有限元分析[J].中国有色金属学报,1994,4(4):56-61
    [70]Chen Puqing, Xia Wei,et.al. Three-dimensional combined finite-discrete elementapproach for simulation of the single layer powder compaction process[J]. Transactions ofNonferrous Metals Society of China,2004,(8):751-755
    [71]Xia Wei, Chen Puqing, et.al. Numerical Simulation of Upsetting a Cubic Sintered IronPowder Compact[J]. Journal of Materials Science and Technology,2003,(19Sup1):141-143
    [72]陈普庆.金属粉末压制过程的力学建模和数值模拟[D].广州:华南理工大学,2004
    [73]赵伟斌.金属粉末温压成形的力学建模和数值模拟[D].广州:华南理工大学,2005
    [74] R.J.Bathurst, and L. Rothenburg: Micromechanical Aspects of Isotropic GranularAssenblies with linear Contact interactions[J], Journal of Applied Mechanics,1988,55:17-23
    [75] Harunori Kitahara, Hidetoshi Kotera, Susumu Shima.3-D simulation of magneticparticles behaviour during compaction in a magnetic field[J]. Powder Technology,2000,109:234-240
    [76] C.L. Martin, D. Bouvard. Study of the cold compaction of composite powders by thediscrete element method[J]. Acta Materialia,2003,51:373-386
    [77] C.L. Martin, D. Bouvard, S. Shima. Study of particle rearrangement during powdercompaction by the Discrete Element Method[J]. Journal of the Mechanics and Physics ofSolids,2003,51:667-693
    [78] P.A. Cundall, O.D.L. Strack. A Discrete Numerical Model for Granular Assemblies[J].Geotechnique,1979(29):47-65
    [79]焦明华,柏厚义,俞建卫等.金属粉末压制成形的细观模拟研究[J].金属功能材料,2008,15(5):28-32.
    [80] Tamura S. Three Dimensional Granular Modeling for Metallic Powder Compaction andFlow Analysis [J].J. of Material Processing Technology,1994,42:197-207.
    [81] Lian J, et al. Powder Assembly Simulation by Particle Dynamics Methods [J]. Inter. J.For Numerical Methods in Engineering,1994,37:763-775.
    [82]马晓霞.联合收割机风筛式清选装置中物料运动及试验研究[D].镇江:江苏大学,2007
    [83] R.S. RansingU, D.T. Gethin, A.R. Khoei, P. Mosbah, R.W. Lewis. Powder compactionmodelling via the discrete and finite element method [J]. Materials and Design,2000,21:263-269
    [84] D. Gethin. Modelling offers PM the route to cheaper tools[J]. Metal Powder Report,1995,50(3):18-22
    [85] O.Skrinjar, P.L. Larsson, Cold compaction of composite powders with size ratio[J], ActaMater,52(2004):0871-1884
    [86] O.Skrinjar, P.L. Larsson, On discrete element modeling of compaction of powders withsize ratio[J]. Computational Materials Science,31(2004):131-146
    [87] N.A. Fleck, L.T. Kuhn, R.M. McMeeking. Yielding of metal powder bonded by isolatedcontacts[J]. Journal of the Mechanics and Physics of Solids,1992,40:1139-1162
    [88] Pia Redanz. Numerical modelling of cold compaction of metal powder[J]. InternationalJournal of Mechanical Sciences,1998,40(11):1175-1189
    [89]程远方,果世驹,赖和怡.球形颗粒随机排列过程的计算机模拟[J].北京科技大学学报,1999,21(4):387-391
    [90] Y.F.Cheng,S.J.Guo,H.Y. Lai.Dynamic simulation of random packing of sphericalparticles[J]. Powder Technology,2000,107:123-130
    [91]程远方.粉体致密化过程的离散元模拟[D].北京:北京科技大学,2000
    [92] Mori K. and Shima S. Finite Element Method for the Analysis of Plastic Deformation ofPorous Metals [J], Bull. JSME,1980,23(178):12-18
    [93] Hedi Chtourou, Augustin Gakwaya, Michel Guillot. Modelling of the metal powdercompaction process using the cap model. Part II. Numerical implementation and practicalapplications[J]. International Journal of Solids and Structures,2002,39:1077-1096
    [94] Alan C.F. Cocks. Constitutive modeling of powder compaction and sintering[J]. Progressin Materials Science,2001,46:201-229
    [95] B.O. Budiansky, R.J. Connell. Elastic moduli of a cracked solid [J]. International SolidsFracture,1976,2(1):81-87
    [96] N.A. Fleck, H. Otoyo, A. Needleman. Indentation of porous solids[J]. Internationaljournal of solids and structures,1992,29(13):1613-1636
    [97] A.R. Khoei, S. Iranfar.3D numerical simulation of elasto-plastic behaviour in powdercompaction process using a quasi-nonlinear technique[J]. Journal of Material ProcessingTechnology,2003(143-144):886-890
    [98] D.T. Gethin, D.V. Tran, R.W. Lewis, A.K. Ariffin, An investigation of powdercompaction processes[J]. Int. J. Powd. Metall,1994,30:385
    [99]贺峻.陶瓷粉末冷等静压成形数值模拟及应用研究[D].北京:北京科技大学,2001.2
    [100]汪俊,李从心,阮雪榆.基于实验参数修正的粉末金属压制过程数学模型[J].上海交通大学学报,2003,34(3):322-325
    [101] H.A. Kuhn, C.L. Downey. Deformation characteristics and plasticity theory of sinteredpowder materials[J]. International Journal of Powder Metallurgy,1971,7(1):15-25
    [102] D. N. Lee, H. S. Kim. Plastic yield behaviour of porous metals[J]. Powder Metallurgy,1992,35(4):275-279
    [103] Doraivelu, S.M., Gegel, H.L., Gunasekera, J.S., Malas, J.C. and Morgan, J.T. A newyield function for compressible P/M materials[J], International Journal of Mechanical Science,Vol.26,527–535,1984
    [104]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社.2004.8:154-159
    [105]吴建营.基于损伤能释放率的混凝土弹塑性损伤本构模型及其在结构非线性分析中的应用[D].上海:同济大学,2004.4
    [106]李琼.非线性结构大变形分析的Lagrangian RKPM法[OL].http://wenku.baidu.com/view/cb9bde2a4b73f242336c5fec.html
    [107]王宏业.冻融环境下混凝土破坏的有限元模拟研究[D].哈尔滨:哈尔滨工程大学,2009.
    [108]王勖成,邵敏.有限单元法基本原理和数值方法(第二版)[M].北京:清华大学出版社.1997.3:54-58
    [109] MSC.Marc Volume A. Theory and User Information[Z], version2007:322-336
    [110] A new yield functions for compressible P/M materials[J]. International Journal ofMechanical Sciences.1984,26:527-535
    [111] Hinzmann G, Holthausen M. CNC metal powder compaction presses[J]. Metal PowderReport,1990,45(4):451-455
    [112]周照耀,黄春曼,何晖等.集成油缸驱动的多层模板粉末压制成形模架[J].华南理工大学学报(自然科学版),2006,(2):45-51
    [113]李元元,邵明,王郡文等.发明专利:预紧框架式精密成形粉末压机[P].中国:CN03139804.9,2003
    [114]赵伟斌.上二下三台面零件压制成型的数值模拟[J].现代制造工程,2009,(9):34-38
    [109] E Carrera, M A Serna. Inverse dynamics of flexible robots[J]. Mathematics andComputers in Simulation, vol.41,485-508,1996
    [115] X Zhong, R Q Yang, Z F Xu, et al. Dynamic Modeling of Multi-FlexibleSystem-Theory and Application[J]. Mechanical Science and Technology, vol.21,387-389,March2002
    [116] B Simeon. On Lagrange multipliers in flexible multibody dynamics[J]. Computermethods in applied mechanics and engineering, vol.195,6993-7005,2006
    [117]多体系统动力学基本理论[OL].http://wenku.baidu.com/view/34c1a9a4b0717fd5360cdc40.html,2012-08-26
    [118]朱春霞,朱立达,刘永贤等.并联机器人多柔体系统协同建模与动力学仿真[J].东北大学学报(自然科学版),2008, vol.29(03):366-370
    [119]张韵韵.基于ADAMS的桥式抓斗卸船机结构动力学仿真研究[D].[硕士学位论文].武汉:武汉理工大学,2008
    [120]李增刚. ADAMS入门详解与实例[M].北京:国防工业出版社,2006:187-190
    [121]李皓月,周田朋,刘相新. ANSYS工程计算应用教程[M].北京:中国铁道出版社,2002:242-246
    [122] Huston. Multibody dynamics: Modeling and analysis methods[J]. Appl Mech. Rev,1991, Vol.44(03):109-117
    [123]杨明亚,杨涛,阴红等.有限元分析软件在机床床身模态分析中的应用[J].机电工程技术,2007, Vol.36(01):25-28
    [124]倪振华.振动力学[M].西安:西安交通大学出版社,1990
    [125]廖伯瑜,周新民,尹志宏.现代机械动力学及其工程应用[M].北京:机械工业出版社,2003
    [126]张安龙.极异方型多级磁环成形液压机电液比例系统研究[D].武汉:武汉科技大学,2007
    [127]黄春曼.精密粉末压制设备及其工艺辅助软件的研究[J].机床与液压,2008,(9):30-33
    [128]刘福娥.200T全自动粉末冶金压机的研制[D].重庆:重庆大学,2011
    [129]王俊君,刘明俊,周照耀等.金属粉末轧制工艺及装置研究[J].现代制造工程,2006,(11):42-45
    [130]邱诚,周玉山,夏伟.模架集成式粉末成形设备的研制[J].现代制造工程,2006,(6):37-40
    [131]夏伟,胡俊文,何晖等.粉末冶金多台面复杂成形零件压制设备的设计[J].现代制造工程,2004,(12):47-50
    [132]罗先兵,陈奎生,张飞龙等.基于电液比例控制系统的粉末成型液压机液压系统设计[J].液压与气动,2009(2):53-56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700